
resources

Article

Cousins, Siblings and Twins: A Review of the
Geological Model’s Place in the Digital Mine

Jane H. Hodgkinson * and Marc Elmouttie

CSIRO Energy, PO Box 883, Kenmore, Brisbane 4069, Australia; Marc.Elmouttie@csiro.au
* Correspondence: jane.hodgkinson@csiro.au; Tel.: +617-3327-4118

Received: 5 December 2019; Accepted: 27 February 2020; Published: 4 March 2020
����������
�������

Abstract: Digital mining is a broad term describing the enhancement of the physical mining method
through the use of digital models, simulations, analytics, controls and associated feedbacks. Mining
optimisation will be improved through increased digitisation and real-time interactions via a “digital
twin”, however digitisation of the rock mass component of this system remains problematic. While
engineered systems can be digitally twinned, natural systems containing inherent uncertainties
present challenges, especially where human-intensive procedures are required. This is further
complicated, since the mining system is designed not only to interact with, but to substantially and
continually alter its surrounding environment. Considering digital twin requirements and geological
modelling capabilities, we assess the potential for a mine’s synchronised digital twin to encompass
the complex, uncertain, geological domain within which it interacts. We find that current geological
(and indeed hydro-geological) models and simulations would support digitisation that could be
considered to provide, at best, a digitised ‘cousin’. Based on this assessment, the digital twin’s value
for medium term forecasting of mining operations may be limited and we discuss technological
advancements that can mitigate this.

Keywords: mining; digital twin; geological model; digitised sibling

1. Introduction

Digital mining is a broad term describing the enhancement of the physical mining method using
digital models, simulations, analytics, controls and feedbacks. While much has been written on the
value of the digital twin (e.g., [1–4]) little has been said on the digital twin’s interaction with the
non-engineered space, or the natural environment within which it sits. Often the twin of an engineered
system may only need to consider a few natural, external conditions or environmental parameters
such as temperature, wind and moisture, each of which may be predictable in a statistical sense,
directly observable or measurable. Additionally, the environmental aspects of a digital twin can also
be implemented because the engineered system that has been twinned is typically not designed to
dramatically change the natural environment upon which it operates and with which it interacts.

We define the minimum criterion of a digital twin to be a synchronised, real-time pairing of a
virtual and a physical domain that can predict its own behaviour and inform decision makers with
sufficient precision to ensure adequate productivity and safety in real time. To optimise the functioning
of a digital twin in a complex environment, an equally accurate digital twin of that environment
would be ideal. We define mining as the process of extracting geological materials from the Earth.
We hypothesise that in the case of a mining system, which comprises coupled engineered and natural
systems, this is problematic. Therefore, it is important to explore the extent to which the natural system
can be replicated in a digital domain. The purpose of this work is to explore to what extent a digitised
in situ geological environment can match reality, to determine whether it can be described as a digital
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twin. We explore how effectively the digitised in situ geological environment can be implemented to
support a digital twin for optimal operation of the physical mining system.

Background

In 2010, Shafto et al. [5] described the term digital twin as:

‘ . . . an integrated multi-physics, multiscale simulation of a vehicle or system . . . continuously
forecasts the health of the vehicle/system, the remaining useful life and the probability of
mission success.’

Figure 1 presents a schematic of the digital twin concept that considers the pair (the physical and
the virtual systems) to be twinned.
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Formerly, digital twins were descriptive, static 3-D computer-aided design (CAD) objects. In 2002,
an early version of a digital twin was presented as the Product Lifecycle Management (PLM, later
called the Mirrored Spaces Model, MSM) consisting of a virtual system containing all the information
about the physical system (University of Michigan). The twins were dynamically updated and linked
throughout an entire lifecycle [6]. The concept of having a (partially digital) twin of an engineered
system was later adopted for the Apollo program when NASA built multiple space vehicles to allow
one on Earth to be used as a mirror of the one sent into space, and to provide for training and
simulations [1].

More recently, digital twins have become actionable, meaning that we can simulate physical
forces over time to influence and determine the model’s behaviour [6]. As simulations have become
more advanced, their connection between the virtual and physical form has allowed them to become
real-time representations that can be used to forecast conditions and provide predictive capabilities.

With respect to the Shafto et al. definition, continual forecasting would naturally require a direct
connection with the physical object in real time. Glaessegen and Stargel’s definition [7] from later work
from the same team is also widely cited:

“ . . . digital twin means an integrated multiphysics, multiscale, probabilistic simulation of a
complex product, which functions to mirror the life of its corresponding twin’.

For clarity, here we continue to refer to system rather than a product.
In summary, and more recently, a digital twin has been defined by Grieves and Vickers (p. 94) [6] as

‘A set of virtual information constructs that fully describes a potential or actual physical
manufactured product from the micro atomic level to the macro geometrical level. At its
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optimum, any information that could be obtained from inspecting a physical manufactured
product can be obtained from its Digital Twin.’

A digital twin may be of a single part of a machine or system, through to an entire machine or
entire plant, or may be built to represent processes and methodologies that take place in business that
collate large amounts of data. The key word in the definition is ‘manufactured’, suggesting that this
only refers to the built environment and its engineered components.

The mining system is defined herein as the collection of natural and engineered subsystems or
components associated with the exploration, design, operation and closure stages of mining (and
not processing of the extracted rock). The focus of this paper is the operational stage, specifically
removal of rock from the in situ rock mass. The natural system of relevance here comprises the geology
and hydrogeology system with which the engineered components interact. A model of these natural
subsystems will hereafter be referred to as the non-engineered system. Geological and hydrogeological
models are derived from a relatively small amount (volumetrically) of actual observations, prior
knowledge of geological processes and interpretation and interpolation, also requiring human-intensive
interactions for validation and quality assurance.

Interruptions to mining production and problems such as unplanned dilution and unforeseen
hazards are often a result of the mine operating within ‘approximately-known’ geological conditions [8,
9]. It is clear from this, therefore, that a mining digital twin will function better if the geological
domain, and its digitised version, respectively, are closely connected. While a digitised geological
domain does not replicate reality, a well-informed, frequently updated model would provide the mine’s
digital twin with the ability to consider more information as it becomes known to inform potential
operating parameters.

A digital twin of a mining system should therefore provide a decision making tool based on
modelling and simulations that monitor, predict and manage operations to ensure adequate productivity
and safety in real time. This would necessarily involve analysing past and current performance and
assessing and predicting future scenarios. Additionally, models and simulations are commonly
designed to solve one or just few specific problems, so an array of such technologies would be required
to develop a virtual representation of the physical domain. In a report by EY [10], it is suggested
that digital twins are likely to be of value at most nodes in the mining chain although exploration is
not cited as one of these. This may be due to the uncertain nature of the geological modelling of the
in situ rock mass. Nevertheless, digital twins of exploration equipment such as drilling, and assay
operations may potentially be twinned if of value to the process. At mine sites, digital twins are being
used to simulate the processing plant, a man-made, engineered operation, such as at Koodaideri,
Western Australia [11]. Anglo American is using a digital twin for optimising the haulage fleet at Los
Broncos, Chile [10]. Lithological, geochemical and geophysical information of any rock or mineral
resources used to produce engineered components would be vital for informing on their reliability for
an engineered digital twin. Although such information might be derived from a geological model, due
to the limitations of the geological model (namely sampling limitations and rock mass homogeneity) it
would be more likely obtained from micrometre-scale or laboratory-performed analyses that in turn
could inform the geological model.

Here we explore the requirements of a digital twin for the mining system and the extent to which
such a system can be expected to perform when it is interacting with the uncertain, complex and
likely suboptimal digitised geological model. Further we examine potential conduits that may connect
the two.

2. Materials and Methods

Our hypothesis is that although other components of the digital mine may perform with high
reliability, the digital twin of the natural environment (being the geological and hydrogeological
system) will be suboptimal, potentially hampering the overall performance of the digital mine.
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If this hypothesis is proven, we must then assess the extent to which a virtual twin of the physical
geological system (the geological model) is possible, how the interface between the two may work,
how digitisation of the geological system may be improved and its value to the digital twin.

For this process,

• We explore the potential reasons for needing a digital twin to confirm it is necessary in a
mining domain;

• We then compare geological modelling capabilities with digital twin criteria and determine
whether a geological model can become a digital twin;

• Finally, we explore potential technological advances that may improve the geological non-twin.

3. Analysis and Results

3.1. Understanding Digital Twins and Confirming Their Necessity in the Mining Domain

In the case of mining, a digital twin consists of the physical system, the virtual system and a
two-way link between them allowing the system to be informed and synchronised, allowing it to adjust
its behaviour as required [7]. The two-way link, referred to as the unified repository [12] is constantly
maintained with both the physical and virtual systems, receiving and sending information in both
directions. Systems are known to behave predictably or unpredictably [6] affecting the productivity,
safety and environmental responsibility of the mining operation. Real-time connectivity (in actual-time,
reporting and responding to sensors ‘on the fly’) through the unified repository for mining applications
requires subsecond two-way transfer of information. Connectivity between the incoming data and
the geological model should also be fast, if not in real-time, to facilitate prompt interpretation and
incorporation of the information. This two-way link allows predictable behaviour to be mapped and
unpredicted behaviour to be monitored, further informing the decision maker.

While it is possible to measure, analyse, control and predict the components and interactions
within an engineered, complex system, its sophistication and size can cause it to be unreliable and may
fail to produce desired results, often without warning [6], jeopardising mining productivity, safety
and environmental security. While unpredicted behaviour, may, by good fortune lead to desirable
outcomes, it may also cause undesirable minor, dramatic or even catastrophic outcomes. Minor issues
in a complex system can also cascade into a major failure [6]. Therefore, to optimise productivity
and safety for people and the environment, unpredicted behaviour requires resolution. Digital twins
can support this optimisation, particularly in the increasingly autonomous mine, providing design,
analysis and forecast of mining performance against this triple bottom line.

Geological environment aside for the time being, a complex mining system that is measurable
and predictable can be designed, monitored and managed to avoid the least desirable behaviour to
occur. For example, excess wear and tear on equipment may be undetected, cables may be broken
or faulty, equipment may be unsuited to the task, each leading to major failure that can have severe
consequences. Mining system automation provides a means to achieving a safer, more productive
mine [13]. Being able to remotely ‘see’ or operate every asset within the mining space is becoming
more possible. Challenges include sensing for the location and state of equipment and mineralogy,
architecture to improve communications safety and performance, automation connectivity between
multiple machines, and integration of the human-experience with feedback mechanisms and immersive
visualisation [13].

An additional challenge, however, is the mine’s interaction with its environment, with unexpected
events affecting the resulting behaviour. As engineering solutions and management processes are
developed and implemented to optimise production whilst maintaining safe operations, resulting
behaviour should become more predictable. Other interruptive and problematic behaviour can
occur within mining systems as a result of interaction with unexpected conditions in the geological
environment. We discuss this further below.
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Not only can complex systems such as those in mining be difficult to predict, further problems
can arise from human interaction, where people may be (deliberately or accidentally) inconsistent or
they may not make suitable sense of inputs and outputs [6]. Further, some parts of the complex system
heavily rely on expert elicitation and involvement such as for quality assurance or validation. We argue
that unexpected, unintended behaviour of natural systems that are external to the engineered system,
and in particular the geological system, can influence the engineered system. As much information
as possible of the natural, interacting, physical system, and indeed a digitised version of it, would
provide a means to avoiding or reducing potential unpredicted/undesired behaviour.

3.2. Assessment of Current Geological Modelling Capabilities against Digital Twin Criteria

Grieves and Vickers (p. 94, [6]) define a digital twin as requiring a set of virtual information that
fully describes a physical, manufactured product. It is clear a geological system is not manufactured,
and the natural rock mass necessitates an appraisal of geological sampling and modelling capabilities
compared with those of an engineering model to determine the capacity for it to be twinned.

The rock mass is often described as Discontinuous, Inhomogeneous, Anisotropic, and Not Elastic
(DIANE). This presents particular challenges in sampling and modelling/simulation when compared
to engineered materials. For example, characterisation of rock mass discontinuities (orientation,
persistence, connectivity, aperture) is critical for simulation of mine processes including slope design
and stability, depressurisation and dewatering, drill and blast optimisation and rock mass fragmentation.

Data used to build a geological model (such as logs, remote sensing, geophysical surveys,
geochemical data) is obtained in a range of spatial resolutions that require varying degrees of
processing and interpretation. Interpretation uncertainties and inconsistencies will exist in interval
data, trend data, logs and resulting maps and cross-sections in three dimensions [14]. The lack of
precision in subsurface knowledge and sources of uncertainty in the geological model can be considered
from what has been used to develop the geological model. To improve precision and reduce uncertainty,
new methods are being developed, but while a key aim is to analyse, quantify and communicate
uncertainties in a geological model, they do not yet remove those uncertainties sufficiently to develop
a ‘twin’ of reality. That is not to say that efforts are not being made to improve the models being used.

Geoscientific data frequently has irregularities in distribution and number of observations,
in addition to noise. Such issues can be approached to improve the data-value for modelling, using
multivariate analysis including self-organising maps (SOM) [15] and machine learning [16] to predict
missing values or interpolate where inconsistencies occur. SOM is also useful for combining disparate
datasets including magnetic susceptibility and gravity data for example [15].

Limitations with current, state-of-the-art geological modelling capabilities have both cognitive
and technological roots. The former is well described in the literature and stems from the reliance of the
geological and geotechnical engineering discipline on ‘expert judgement’, particularly for addressing
‘epistemic’ or model uncertainty [17]. The latter is also well recognised and stems from the complexity
of the rock mass in terms of structure, composition, coupled interactions and time dependency and the
inability of current computational methods to be reliable and practical.

Numerical modelling methods have advanced substantially [18], however, they are currently
limited in terms of model dimension, multi-physics capabilities and dynamic processes.
For management of stochastic or ‘aleatoric’ uncertainty, stochastic simulation methods have advanced
considerably in the geosciences, particularly in the field of geostatistics. However, these methods
struggle to reliably generate and quantify likelihood of low probability but high consequence realisations,
especially associated with rock mass structural conditions, and therefore the usefulness of such
approaches for forecasting mining system behaviour falls well short of a digital twin’s requirements.
Benndorf and Buxton [19], discussed discontinuous- to near-real-time reserve reconciliation that
updates the model, by processing and integrating information from sensors, quantifying prior resource
model knowledge and updating it in near real-time. Improving the resolution of geological information
will provide more realistic model scenarios, particularly important for geotechnical challenges and
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improving stability of underground roofs and walls. Techniques are currently being developed for
example to detect faults with less than 1m throw [20,21]. Presence of minerals using remotely sensed
data hyperspectral data is used widely for geological characterisation [22]. Uncertainty inherent in
certain characteristics of underground mines exhibit risk profiles requiring evaluation methods that
evaluate a range of strategies to help the decision making process [23]. Such methods aim to reduce
risk relating to known uncertainties, seek more information about the model itself, and improve it as
quickly as possible, acknowledging that the model is not close enough to reality to be described as a
‘twin’ while as inherent uncertainties remain.

Geological and hydrogeological models inform the mine design and operations. The models are,
in turn, informed by direct and indirect observations, augmented by ‘synthetic’ data not supported
by direct observations, but by interpolation between them [24]. The geotechnical model (including
lithology, structure, rock mass character and hydrogeology [25]) in combination with the resource
model, is used to optimise mine design. The geotechnical model is also developed through a process of
direct observations (exploration and blast drill holes, core, down-hole geophysics), indirect observations
(cross-hole geophysics), interpolation between those observations and from neighbouring datasets and
interpretation and prediction in addition to stochastic simulation to manage uncertainty. The moment
the excavation of rock begins, the model is being tested and validated. As new data and information
become available, updates to the geological and geotechnical models can provide opportunity to
improve or adjust production. In practice, models are typically updated infrequently.

For the virtual system of a digital twin to be more than a digital model or simulation, it must be
informed by real-time sensors and fed information about its surrounding environment. Equally, for a
digital twin to be valid, it must be synchronised, with high levels of automation for information sharing
through the unified repository, holistically testing and reporting on the system. Mining operations
may use in-house, external or a combination of expertise and capabilities for data-acquisition, quality
assurance/quality control (QA/QC), model construction, simulation and interpretation. In the authors’
experience, the degree of human interaction required is high (particularly for the QA/QC and model
construction and interpretation stages) and the associated latency between data acquisition and
interpretation of model results is often the order of weeks to months. This falls well short of the
requirements for a digital twin.

That said, a ‘system’ can be a subset of a larger system, so digital twins of part of an entire mining
system would be effective. Developing a mine over its life requires an iterative process involving
improvements in geological knowledge (rock type, its characteristics, its boundaries, its structure),
and successful production requires iterations using new drilling, sensing, mapping, interpretation and
interpolation to continuously, predict and model the rock mass.

Table 1 assesses typical methods used in acquiring data to develop a geological model (including
geophysical, lithological, structural and geochemical detail) and the potential of the model to match
reality as a static, digitised system in the event that the metric can be ‘up-scaled’ as much as is
physically possible.

Almost all geological measurements, calculations and statements contain uncertainty of some
kind [26] that may be quantified or unquantified. Uncertainty may result from limitations on how
we observe much of the geology, which restrict our abilities to measure it and cause errors due to
the inability to express true values [26,27]. Uncertainties in geology, classified by Mann [28], include
inherent natural variability, sampling and observational errors, measurement and evaluation errors,
and propagation of errors that can lead to conceptual and model uncertainties.
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Table 1. Typical geological, hydrogeological and geomechanical model-development inputs and methods (although commercially available methods may differ), how
each provides value to knowing the geological environment, potential for improvement over time and an assessment of their capacity to match reality given the ‘best
possible scenario’.

Typical Input Data and Methods Value Improvement Potential Potential to Support a Digital Geological Twin

Non-geophysical drill hole data Pins down known information spatially Improves with greater drill hole density and
more core recovery

Impractical in near future to achieve required hole
density for high resolutions (<50 cm desired in

underground operations)

Down-hole logging data Complete logging provides good
information on geology

Value depends on drill hole density and core
recovery/quality, and detail from methods

(such as Corescan, Hylogger)

Interpolation and interpretation required,
impractical in near future to achieve required hole
density. Restricts data collection and incorporation

Geological maps (surface/outcrops)
Developed using various processes,
simulations, geostatistical models

Provides in-field direct and indirect
information, depends on connectivity

between surface and subsurface,
depends on cover

Improves with less cover, may be useful for
correlating with down-hole information, may

not be able to improve depth analysis if
lacking detail or connectivity

High potential to define surface twin, potential to
constrain twin at subsurface depending on

methods.

Geophysics—regional and cross-hole
including, processes, simulations

Provides broad scale information, may
detail

Improves with more hole density and seismic
surveys

Interpolation and interpretation required but
restricted, impractical in near future to achieve

volumetric sampling required

Lithological and geochemistry data from
mapping, hand specimens, core

Provides point information on lithology,
rock character

Value depends on drill hole density and core
recovery/quality Improves with more samples,

better core recovery, more drill holes, more
detailed lab analysis

Sparse data at best (prior to full excavation of rock
mass after which lithology may be remodelled)

Stratigraphic modelling outputs
(interpolated cross-holes)

Combines direct and indirect
information

Improves with more samples, improved
integrity of core, and greater drill hole density

Direct information sparse prior to full excavation
of rock mass, after which stratigraphy may be

remodelled

Structural modelling outputs (from
surface, core observations; interpretation

from geophysics)

Provides direct and indirect information;
depends on recovery and integrity of

core, quality and quantity of geophysics

Improves with more samples, improved
integrity of core, and greater drill hole density,

greater density of geophysical analysis

Large/regional structures could be estimated to
closely match reality. Mine- and finer-scale detail,
not possible to match reality at mine scale prior to

full excavation of rock mass—after which full
detailed structure may be reinterpreted

Boundary contact mapping outputs
(from core, down-hole geophysical

characteristics, interpolated cross-holes)

Provides direct and indirect information;
depends on recovery and integrity of

core and quality and quantity of
geophysics techniques used

Improves with more samples, improved
integrity of core, and greater drill hole density,

geophysical analysis

Not at mine scale prior to full excavation of rock
mass—after which full detailed structure may be

reinterpreted

Hydrogeological data—piezometer
readings, Ground penetrating radar,

water table data

Provides direct and indirect information;
depends on frequency of data collection

and density of piezometers

Improves with more water observations,
natural levels disturbed deliberately for

mining

Not at mine scale during or after mining.
Informed estimates and modelling at best. Water

pumping will change water level data
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A recent conference devoted to the subject of geotechnical risk management in mining operations
presented a thorough review of strengths and limitations of current computational methods [29]. Lack of
geological data and knowledge and natural variability lead to uncertainty in mining geomechanics
and geotechnical engineering [30]. Hadjigeorgiou [31] refers to the ‘asymmetry of knowledge’, which
stems from the complexity and uncertainty in the geological model and hinders managements’ abilities
to make risk based decisions.

As previously discussed, a digitised geological model is subject to two key types of
uncertainty—epistemic (such as limitations in knowledge of three-dimensional geometry of contacts)
and aleatoric (such as sampling stochastic parameters of the model like joint size and orientation).
The majority of the rock mass cannot be seen prior to its excavation and statistical methods and
expert judgements are typically used to provide an estimate of the system properties and behaviour.
We examined the fulfilment requirements of a digital twin as explained by Grieves [12] and compared
the potential for them to be met for both the engineered and geological components of the mining
system (Table 2).

Table 2. Assessment of engineered and non-engineered systems regarding their abilities to fulfil digital
twin requirements.

Part of the Digital Twin
Digital Twin Fulfilment

Requirements (after Grieves, 2014
[12])

Engineered Mining System Non-Engineered Geological
System

The physical system Components and boundaries
identified and defined

POSSIBLE depending on its
interaction with geological

unknowns

PARTIALLY POSSIBLE
restricted by data availability

(see Table 1)

Unified repository (UR)

Possible to connect between the
physical and virtual process in

constant real-time or near real-time
communication; populate UR by

data from them both

POSSIBLE assuming few
mechanical unknowns in both
virtual and physical systems

PARTIALLY POSSIBLE
restricted by capacity for data
collection and incorporation

(see Table 1)

The virtual system

All information ‘as designed’
available for each component such
as dimensions, tolerances, torque
requirements, strength, capacity,

hardness requirements); geometry
and connectivity between

components

POSSIBLE depending on
interaction with geological

unknowns

PARTIALLY POSSIBLE
restricted by data availability

and interpretation (see Table 1)

The digital twin environment ([6], p. 94) refers to the “multi-domain physics application space
for operating on digital twins”, of, for example, the processing or other engineering system of the
mine. This requires geological input of the mining twin’s surrounding environment, whether a whole
geological model or geological information from such a model. This will be important for predicting
future behaviour and performance. Unfortunately, unlike the virtual version of an engineered system
that can largely be known, measured and replicated in digital form, a geological model is merely a
representation of an interpretation of the geology. Importantly, the use of geological data within, say,
a processing digital twin, does not imply the existence of a geological digital twin.

A geological model as defined in this paper, encompasses the hydrogeological processes. These
are subject to change over short time frames and are influenced deliberately by the mining process.
Further, the process of mining or excavating rock (either surface or subsurface) alters the stress-state
of the rock mass. Observable geological and hydrogeological characteristics and features are highly
integrated with synthetic, interpolated and interpreted data to form the digitised geological system
(Table 1). Precision of geological modelling is currently heavily limited by geological uncertainty.
While improvements are possible as more information becomes known, it is not possible to build a
‘twin’ of the physical system in the same way that it is for an all-manufactured engineered system, the
components of which are well defined. Nevertheless, we conclude that the non-engineered geological
system can partially fulfil digital twin requirements (Table 2) and may be described instead as a “digital
sibling” or a “digital cousin”. In definition, a digital cousin bears a somewhat distant relationship
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to the physical system, being informed by quantitative data that is outbalanced by the amount of
qualitative, interpolated and interpreted data including expert judgement. A digital sibling bears a
closer relationship with the physical system than does the digital cousin, as it has more quantitative
data in place of some of the qualitative data, but unlike the twin, still retains estimates and judgements.

4. Discussion

In relation to our aims to explore the requirements of a mining system’s digital twin, specifically
in production or extraction, how it may interact with the uncertain geological model, and how the
two models may be connected, the results show that the digitised geological system may, to some
extent, fulfil the requirements of a digital twin and bear a relationship that could be connected through
a unified repository. This would provide and receive updates on a near-real time basis with the
mining twin. The digital twin of a mine must, however, operate with and within both the knowns
and unknowns of the geological domain. These relationships can be conveyed through the use of an
interaction matrix as described in the Rock Engineering Systems (RES) approach [32]. This is shown in
Figure 2. Causality is coded in the clockwise direction.Resources 2020, 9, 24 9 of 13 
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Figure 2. An interaction matrix to illustrate clockwise connections between the physical and virtual
parts of the mining twin and the geological sibling (geological system refers to geology, hydrogeology
and geotechnical models and systems in this matrix).

While no direct connectivity is required between the virtual mining system (VMS) and the
physical mining system (PMS) (Figure 2), a four-way connection may be needed to join the systems, to
allow the geological digitised sibling (VGS + PGS) to become part of the mining twin (VMS + PMS).
This means that the mining twin can continue to optimise operations as far as uncertainty within the
geological digitised sibling will allow. Importantly, sensors built into the PMS can inform the VMS
of new information received, that in turn will update the VGS, potentially in real time, making it
closer to the reality of the PGS. Efforts such as those previously discussed that are being made to
update and improve the VGS (geological model) are extremely valuable in improving the geological
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digitised sibling. Although it is an opportunity, it will also be a challenge, to develop the interface
between the potentially “twinnable” engineered system and the natural domain with which it interacts.
The epistemic uncertainty in the geological domain is usually significant, however, this is not so for
individual mine site assets and processes where typically only stochastic uncertainty may need to be
considered. For example:

• Stockpile: A digital twin of a stock- or spoil pile for instance may be possible, given that its
engineering was planned and deliberately constructed with known and measurable particle
characteristics (including grain size, chemistry and packing) in four dimensions.

• Processing plant: A digital twin of a processing plant including all its engineered components
would be possible, with its digital twin environment being supplied with geological information
on feed material.

• Mobile assets: reliability data on components associated with mobile assets (such as engine
performance, tyre wear) can be used to build digital twins.

Mine assets that the authors argue to be too closely coupled to the geology (and hence inherit
significant epistemic and stochastic uncertainty) to allow digital twin construction include:

• Slopes and underground excavations: epistemic and stochastic uncertainty in the geotechnical
properties (rock mass structure, rock matrix strength and hydrogeology) mean current numerical
simulation for slope deformation and underground convergence requires significant model
simplification for it to be tractable. Quantitative prediction of low probability, high consequence
events is still intractable. Rock fall and fall of ground simulation is even more challenging.

• Ore body: ore body knowledge is currently reliant heavily on geological modelling and geophysical
sensing. Interpretation of geophysical data is currently heavily reliant on expert knowledge, and
epistemic uncertainties associated with this process can be significant.

• Tailing dams and waste dumps: in particular for legacy structures, there is significant epistemic
uncertainty associated with dam construction and consolidation, and stochastic uncertainty
associated with material properties, combined with inadequate technologies for in situ monitoring
of hydrological conditions.

Technological Advances that May Improve the Geological Model and Digital Twin

Operational flexibility can be built into operational planning [8] and continued improvements
to geological (and hydrogeological) knowledge will help optimise planning and operations. In a
dynamic model, mapping while drilling, taking advantage of logging data collected while drilling
(logging-while-drilling, LWD) to update geological and geotechnical maps [20,33], will provide
near-instant updates to inform the digitised geological model that in turn will inform the mine
extraction and on-going planning process.

It is important to have a system that will allow co-visualisation of incoming data with the
seismic, faulting and lithological horizon components of the current (and updating) model [34].
Ground-penetrating radar (GPR) is valuable for horizon-sensing [35,36] and can provide information
that quickly updates a geological model for informing and optimising the open cut process.
Ore-recognition tools that can quickly scan rock and drill-core in the mine, such as laser-induced
breakdown spectroscopy (LIBS) [37], detect changes in rock fragments’ chemistry. Such information
can allow stock piling and processing to be modified to suit what has been mined and can update the
geological model that, in turn, will help improve its prediction and validity to help plan and inform
the next mining stages.

Understanding what is behind the cut face is paramount to better managing the cutting direction
in open cut and underground mines. Technologies such as look-ahead radar (LAR) [38] and thermal
infrared-based methods to track seams [39] can provide valuable information to inform the mining
equipment, but importantly can feed through to the geological model for frequent updating.
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With respect to simulation, improved computing frameworks are gradually mitigating some
of the limitations of the past. For example, the Multi-physics Object-Oriented Simulation Engine
(MOOSE), developed for the nuclear industry [40] has general-purpose capabilities now being applied
to mining, and in particular, groundwater modelling [41]. It supports massively parallel, fully
coupled physics simulation, albeit within an extended-finite element framework which poses some
limitations in the modelling of dynamically evolving fracture network geometries as required for many
mining simulations.

Digital connectivity of mining equipment with the mining model (or cousin) will provide for
rapid model updates to reduce uncertainties and improve reliability of models [42]. Methodologies
can be developed to integrate the new data as it is received into 2D and 3D geological models as part of
a workflow with automatically applied changes to boundaries and faults as modelling progresses [43].
Reliability or its lack, propagates through the system and will need to be allowed for in the engineering
of the mine. As feedback to the geological cousin increases, the geological model in turn can provide
improved certainty for engineering solutions.

5. Conclusions

A digital twin, which is more than a digital model or a digital simulation, is a connection via
sensors and data, between a physical object and its digital model, to inform decision makers on current
progress, and through simulation processes it uses that constantly update datasets to predict future
processes. Unlike a model or simulation, it does not only measure or detect and predict one or few
specific effects, conditions or behaviours. The term digital twin, therefore, implies a level of accuracy
and precision that may not be applied to a complex natural system, such as in situ geology with
its structural and physical complexities including numerous interactions and physical laws for all
rock units, boundaries and characteristics. Further, despite recent advances in machine learning and
algorithms, heavy reliance on expert opinion and manual intervention needed for validation and
quality assurance, means that real-time or fast updates to the virtual geological system are currently not
possible. While geological components and data can be used to inform the digital twin environment of
engineered assets around a mine, that in itself does not make a geological digital twin, rather a digital
twin of an operation or process, being informed by geological data. This importantly emphasises the
use of digital twins in mining. The capacity to include geological data aligns the engineered system
with the natural system.

Natural systems contain uncertainties and require a somewhat different approach to digital
versions of engineered mining systems that can be more readily twinned. Engineered mining systems
must act within the natural geological domain, the former having the capacity to be well known and
digitally twinned, the latter having to capacity to be partially known and not digitally twinned.

Geological models (in situ rock boundaries, character and structure) may be well-constrained, but
an early model could be considered, at best, a digitised ‘cousin’, having a relationship with reality
but being far from its physical geological counterpart. Nevertheless, a digital mine’s sensors and
real-time data-gathering capacity will provide the means to improve the digitised geological cousin.
Coupling them providing constant iterations to the cousin, its relationship with reality will improve
and could, potentially become a digitised sibling, having a relationship with reality, but still could not
be considered its twin.

The usefulness of digital twins of components or of the whole mining system may be limited by
the interface to the geological system, unless the in situ geological model is constantly updated by new
data obtained by mining, that in turn can be used by the digital twin to further train itself and inform
decision makers. The aim, therefore, should be to develop a digitised geological cousin that is well
connected with components of the digital mine that can iteratively improve its relationship as mining
progresses, informed by the ‘mining’ digital twin, so that the cousin may eventually become a digital
sibling that can, in turn, better inform the mining system.
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Challenges being addressed to assist mining automation and digitisation through sensing,
architecture, automation connectivity and human-factors may be assisted through focused efforts
to provide the geological model with real- or near real-time data. Digitisation of the engineering
system providing data collection and storage can, through connectivity with the digitised geological
cousin of sibling, improve the model that in turn can improve functioning of the mining equipment.
Importantly, a digitised sibling might only resemble a twin after all rock has been mined and relevant
data assimilated. Although the twin will represent something that is no longer there, it may provide
an analogue or supervisory tool for future mining.
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