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Abstract: This study examines trends in temperature, precipitation and discharge rates over a
65-year observation period (1951–2015) and compares the two sub-periods 1951–1980 and 1981–2015.
The research was carried out on annual and monthly values. The research area is the basin of the
Vistula, the largest river in Poland. The main aim of the study was to assess how changes in air
temperature and precipitation in the Vistula basin have translated into river hydrology. In the 65-year
study period, a lack of statistically significant trends in outflow prevailed. Compared to the full
period 1951–2015, the sub-period 1951–1980 stood out for its statistically significant increase in annual
average outflows. In the years 1981–2015 a slight falling trend in outflow of the Vistula was noted,
though the values were not statistically significant. This was caused by significant warming during
this period (an increase in air temperature of between 0.27 and 0.45 ◦C per decade, depending on
location) and a slight increase in precipitation. Seasonal changes in outflows were more volatile.
The results indicate that the Vistula’s water resources have fallen slightly as a result of changes in air
temperature and precipitation and due to the river’s significant hydrological inertia, which in turn
results from the catchment being very large and physiographically diverse.

Keywords: precipitation time series; temperature time series; outflow time series; trend analysis;
Mann–Kendall statistical test; change analysis; Vistula; Poland

1. Introduction

In recent years, numerous studies have been conducted on climate change and its impact on water
resources. Spatial and temporal changes in precipitation and air temperature have been observed
in many parts of the world [1–3]. Precipitation and air temperature are considered to be the main
climatic drivers of hydrological changes. The amount of river outflow, apart from climatic conditions,
is influenced by the physiographic features of the basin area, e.g., soil permeability, topography,
land use. In addition to natural conditions, the hydrological systems of rivers are influenced by
human use of river catchments’ water resources and modifications of the river regimes. Due to the
complexity of the interactions of the above factors, it is extremely difficult to clearly establish which
of these factors plays a decisive role. This is especially true of larger catchments, where processes
with opposing hydrological influences may operate simultaneously. Among the elements of the
hydrological cycle, the most attention has been devoted to the analysis of river flow trends over the
past decades. River runoff is one of the most sensitive elements of the hydrological cycle, especially to
changes in precipitation. In principle, the change of one element of the water balance entails the
change of other elements. Therefore, various studies use water balance simulations based on various
models that include analyzes of the impact of climate change on surface runoff and groundwater
flow [4,5]. Spatial and temporal changes in river outflow have been observed in many regions of
Europe [6–15]. The causes of changes in river runoff are symptoms of climate warming. Depending on
the adopted observation periods and the research area, the obtained results indicate different trends in
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outflow changes. An example is the study carried out for 441 rivers in 15 European countries between
1962–2004. They showed negative trends in annual flows in the south and east of Europe and generally
positive trends in other regions [16] (Stahl et al. 2010). The trends in monthly flows between 1962–2004
explained the potential causes of these changes, as well as changes in the hydrological regime across
Europe. Positive trends occurred in the winter months in most catchments. In turn, studies by the
authors [17] showed that there are regional patterns of both increases and decreases in observed river
flows between 1951 and 2010, which are indications of a changing climate. In tthe analyzed multiannual
period of 1951–2010, an increase in autumn and winter precipitation was observed, increasing floods
in north-western Europe; decreasing rainfall and increasing evaporation has led to a reduction in
the number of floods medium and large catchments in southern Europe and decreasing snow cover
and snow melting, resulting from higher temperatures, led to a reduction in the number of floods in
eastern Europe. Pressure on water resources is increasing and often reduces the availability of water
resources. The volume of water resources depends primarily on changing climatic conditions [18].
The climate changes currently being observed manifest in, among other things, more frequent extreme
weather phenomena [19,20]. Over the past decades, several extreme events related to water excesses
and deficits (floods and droughts) have occurred in Europe that have had dramatic economic and
social consequences [21–23]. In the very late 20th and early 21st centuries, some of the most severe
floods in a century occurred in many European countries [24–28]. By contrast, prolonged periods of
little or no precipitation and intense heat waves led to droughts (meteorological and hydrological),
which affected a much larger area of Europe than did floods [29,30]. In Poland, as in many other
European countries, risk events associated with fresh water, especially drought, are expected to
become more frequent, more intense and longer due to climate change [31,32]. It is forecast that
these changes will adversely affect the volume of water resources and their temporal and spatial
distribution, making surface and ground waters less accessible and less available [33]. This problem
is significant because Poland’s water resources are among the lowest in Europe. Total resources in
the years 1951–2015 averaged 1600 m3/person per annum [34]. Surface waters are the main source of
water supply for the national economy in Poland. They cover as much as 84% of demand, mainly for
industrial production purposes [34]. Information on water resources, especially relating to periods of
excess or deficit, is crucial not only for conducting water management activities, but it also significantly
supports the analysis of hydrological processes, their modelling and a number of environmental
protection issues [35].

Studies on the hydrological regimes of Polish rivers have been conducted by many
researchers [36–41]. However, the majority of research on this issue has focused on selected regions
or aspects that allowed temporal and spatial changes in river outflow to be identified, as well as its
structure and seasonality. Studies using various hydrological and climatological indicators to detect
trends and changes have mainly involved single small catchments [42–45] or several catchments with a
relatively unmodified outflow regime [46–54]. The impact of meteorological conditions (air temperature
and precipitation) on large catchment areas in Poland has been little studied [55–57].

It therefore seems desirable to conduct more detailed analyzes of precipitations patterns, air
temperature and outflow and their variability in individual sub-catchments of the river basin with
different meteorological and physical geographic conditions. This will provide insight into various
aspects of potential hydrological changes that result from meteorological changes. The main idea and
novelty of this study compared to other studies was an integrated analysis of trends and changes in
the hydrological regime of the river as well as changes in precipitations and air temperature.

This study aims to provide a long-term analysis of changes in precipitation (P), air temperature
(T) and river outflows (Q) in the Vistula basin over the last 65 years (1951–2015). The research
covered annual and seasonal variability of meteorological conditions and their impact on river outflow.
The main aim of the study was to assess changes in air temperature and precipitation and their impact
on changes in outflows in the Vistula River basin. Trend analysis will not only determine the direction
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and pace of changes, but also whether the data series are statistically homogenous. If the trends are
weak and insignificant, this will indicate the statistical homogeneity of the data series.

2. Data and Methods

2.1. Research Area

The study covered the Vistula River, the largest river in Poland, with the second-largest river
basin area in the Baltic Sea catchment. The river’s total length is 1022 km. The area of the Vistula
River basin enclosed by the water gauge in Tczew is 194,376 km2. The Vistula River basin constitutes
54% of the area of Poland [58,59]. The most important tributaries of the Vistula are the Dunajec,
the Wisłoka, the San, the Wieprz, the Bug with the Narew, and the Drwęca on the right bank, and the
Pilica, the Bzura and the Brda on the left (Figure 1). The Vistula runs meridionally, from south to
north. The river has its sources on the slopes of Barania Góra at an altitude of 1106 m a.s.l., but flows
into the Baltic Sea forming a delta at Żuławy Wiślane. Some of the Vistula waters discharge into the
Vistula Lagoon through a branch of the Vistula called the Nogat River. However, the amount of water
is small and negligible to the total outflow of the Vistula River. In terms of economics, the Vistula is
an important water supply for the population, including the drinking water intake for the national
capital, Warsaw, and for industrial purposes. The Vistula River basin can be divided into three basic
hydrographic regions:

(1) The upper Vistula basin from the source to the mouth of the San. Within this part, a section of the
Vistula known as the Mała Wisła (Little Vistula) splits off from the sources and runs to the mouth
of the Przemsza River. In this section the river has the character of a mountain river, and in the
subsequent part up to the confluence with the San River it takes on an upland character,

(2) The middle Vistula basin from the mouth of the San to the mouth of the Narew. This constitutes
the largest area of the Vistula River basin,

(3) The lower Vistula River basin from the mouth of the Narew to the mouth to the Baltic Sea.

There are two reservoirs on the Vistula: the Goczałkowice reservoir in the upper course of the
Vistula and the Włocławek reservoir in the lower course [60,61]. The largest water reservoirs on the
Vistula’s tributaries include: the Solina reservoir on the San River, the Czorsztyn reservoir and the
Rożnowski reservoir on the Dunajec, as well as the Porąbka and Tresna reservoirs on the Soła River [62].

The Vistula River basin is clearly zoned in terms of terrain and amount of precipitation. The climate
is transitional (maritime–continental), and continental and oceanic masses often collide, resulting in
highly changeable weather. Four zones can be distinguished in the annual precipitation distribution in
the Vistula basin. The lowest precipitations totals were found in the lowland belt in the central part
of the Vistula River basin (less than 550 mm), slightly higher annual precipitation totals were found
in the northern part of the basin and in the upland belt (up to 700 mm). In the southern part of the
Vistula river basin, annual rainfall amounts ranged from 700 to 800 mm, while in the mountain areas,
rainfall in the basin was the highest and exceeded 800 mm (Figure 1). The longitudinal belt system of
hypsometry in Poland facilitates the free flow of air masses in parallel from east to west. In the Vistula
basin, there is a greater continental influence in the east, and more maritime influence in the west of
the basin. The average annual air temperature in the western part of the Vistula River basin was above
8 ◦C and decreased towards the east reaching 7 ◦C. The lowest average annual air temperature was
recorded in the north-eastern part of the basin and in mountain areas (below 6.5 ◦C) (Figure 2).
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data the Institute of Meteorology and Water Management—National Research Institute). Legend:
1—meteorological stations, 2—hydrological stations, 3—rivers, 4—river basin border, 5—average
annual precipitation in mm.
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of Meteorology and Water Management—National Research Institute). Legend: 1—meteorological
stations, 2—hydrological stations, 3—rivers, 4—river basin border, 5—average annual air temperature
in ◦C.

Over the last few decades, there have been extreme climatic events such as warm and dry periods,
periods with catastrophic rainfall. Intensive rainfall, which occurred in May and June 2010 in the
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south-eastern part of the Vistula basin, contributed to the catastrophic flooding along the entire section
of the Vistula [24,63]. Average monthly rainfall totals in May 2010 were 3–4 times higher than the
average values for the period 1951–2015 at most meteorological stations in the southern part of the
Vistula basin. During the last three decades, there were also dry periods (with little rainfall) and
warm (often with hot summers), which resulted in meteorological droughts and, consequently, in the
formation of hydrological droughts. Examples are 1992, 1994, 2003, 2006, 2008 and 2015 [64,65].

2.2. Data

In order to identify changes in the outflow of the Vistula River along its course, changes in
meteorological conditions within its river basin were analyzed. The study takes into account a
continuous data series of daily measurements and includes the sum of precipitation (P), average air
temperature (T), minimal air temperature (T min), maximal air temperature (T max) and outflow rate
(Q) in the hydrological years 1951–2015. The study was conducted in relation to the hydrological year,
which in Poland lasts from November 1 to October 31 of the following year. The data is provided
by the Institute of Meteorology and Water Management—National Research Institute. Monthly and
annual averages were calculated based on daily values. In total, data from four hydrological stations in
the river’s upper, middle and lower courses were used. Meteorological conditions were characterised
based on nine meteorological stations in the Vistula River basin that recorded daily precipitation
sums and air temperatures in the years 1951–2015 (Table 1). For the selected 4 meteorological stations
(Bielsko-Biała, Lublin, Białystok and Chojnice), the average monthly maximum and minimum air
temperature was presented. Based on the initial analysis of hydrometeorological data, the 65 year
period (1951–2015) was divided into two comparable sub-periods: 1951–1980 (30 years) and 1981–2015
(35 years).

Table 1. Characteristics of precipitation and air temperature at selected stations (own study based on
data the Institute of Meteorology and Water Management—National Research Institute).

Meteorological
Stations Longitude Latitude Annual Average Precipitation

(mm)
Annual Average Air

Temperature (◦C)

1951–1980 1981–2015 1951–2015 1951–1980 1981–2015 1951–2015

Bielsko-Biała 19 00 04 49 48 29 1016.1 959.9 987.2 7.8 8.6 8.2
Kraków 19 48 07 50 04 49 679.0 661.7 669.7 7.7 8.6 8.2
Kielce 20 41 32 50 48 37 650.0 614.0 630.6 7.2 7.9 7.6
Lublin 22 23 37 51 13 01 600.8 576.6 587.8 7.4 7.9 7.7
Łódź 19 23 59 51 43 24 563.4 559.4 561.2 7.6 8.4 8.0

Warsaw 20 57 40 52 09 46 507.8 532.1 522.0 7.8 8.6 8.2
Toruń 18 35 43 53 02 31 527.7 529.7 528.9 7.6 8.6 8.1

Białystok 23 09 44 53 06 26 597.3 575.9 585.8 6.7 7.3 7.1
Chojnice 17 31 57 53 42 55 566.7 580.5 575.4 6.9 7.7 7.3

Data available for 25 meteorological stations, most of which have complete data from 1951–2015,
were used to map the course of annual precipitation totals (Figure 1) and the average annual
air temperature (Figure 2). The exceptions are meteorological stations in Rzeszów (1952–2015),
Lesko (1954–2015) and Nowy Sącz (1954–2015). Points interpolation through the kriging tool in
ArcGIS was used to prepare the map. The selection of meteorological and hydrological data
of appropriate quality is extremely important for further analysis [66]. The meteorological and
hydrological stations represent the various geographic regions of the country. The above data series
come from a certified database, adapted to the heterogeneity of the Institute of Meteorology and Water
Management—National Research Institute.

The basic criteria for the selection of stations were the length and completeness of the available
time series of records and the spatial distribution of the stations in order to cover the range, it is not
possible that this is the territory of Poland in a uniform manner in climatic regions. Data was used
only from the station with no breaks in the observation series. The data has been identified and quality
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control has been performed. The first step was to digitize errors such as the maximum temperature
lower than the minimum temperature. Daily precipitation values were also checked to identify false
values according to the approach of other authors [67,68]. On the basis of the daily average, maximum
and minimum air temperature values, monthly average values were calculated.

The highest of the meteorological stations is in Bielsko-Biała (398 m a.s.l.), which reflects the
meteorological conditions in the upper Vistula basin. There are three meteorological stations in the
upland area of the Vistula River basin, i.e., in Kraków (237 m a.s.l.), Kielce (260 m a.s.l.) and Lublin
(238 m a.s.l.). The majority of the Vistula River basin lies at altitudes ranging from 100 to 200 m
a.s.l. (Łódź, Warsaw, Białystok, Chojnice). The most low-lying is the meteorological station in Toruń
(69 m a.s.l.). Four hydrological stations were used to address the hydrological conditions of the
Vistula, and these reflect the volume of Vistula outflows in its upper (Nowy Bieruń and Sandomierz),
middle (Warsaw) and lower (Tczew) courses (Table 2).

Table 2. Characteristics of the Vistula flows (own study based on data the Institute of Meteorology and
Water Management—National Research Institute).

Hydrological Stations Basin Area Km of River Section Average Annual Outflow (m3
·s−1)/Unit Outflow (dm3

·s−1·km−2)

(km2) 1951–1980 1981–2015 1951–2015

Nowy Bieruń 1780 919.8 21.9/12.3 20.4/11.5 21.1/11.8
Sandomierz 31,810 654.4 303.0/9.5 281.0/8.8 295.0/9.3

Warsaw 84,630 430.6 600.0/7.1 553.0/6.5 579.0/6.8
Tczew 193,923 32.8 1072.0/5.5 1020.0/5.3 1044.0/5.4

2.3. Statistical Data Homogeneity

The statistical homogeneity of the data was determined using the non-parametric Kruskal–Wallis
test [69], known as the rank sum test. This involved ordering and assigning a rank to the items of all
samples, and then determining the sum of ranks for each sample. If the verified hypothesis H0 that all
samples derive from a single general population (i.e., that they are homogenous) is true, then the sum
of ranks for individual samples should not differ significantly. The x2 statistic used in this test has an
asymptotic distribution with k − 1 degrees of freedom. For the assumed significance level α and for
k − 1 degrees of freedom the critical value x2 is read from the Pearson x2 distribution table, such that
P {x2

≥ xα2} = α. If the calculated value of statistics x2
≥ xα2 then the H0 hypothesis should be rejected,

whereas if x2 < xα2 then there is no reason to reject the H0 hypothesis, indicating that all the samples
are homogenous. The null hypothesis H0 was verified as significant at α = 0.05.

2.4. Detecting Trends

The non-parametric Mann–Kendall test [70,71], which is commonly used in hydrological analyses,
was used to track changes in river outflow trends. Mann–Kendall statistics and the β directional
coefficient expressed by the Theil-Sen estimator [72,73] were calculated for periods covering every
possible combination of start- and end-years for the multi-year research period. The minimum length
of calculation period was 30 years, as per the standard for hydrological calculations [74–76].

Mann–Kendall S statistics were calculated using the formula:

S =
∑n−1

k=1

∑n

j=k+1
sgn(xj − xk) (1)
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sgn(x j − x k) =



+1 if (x j − x k) > 0

0 if(x j − x k) = 0

−1 if(x j − x k) < 0

(2)

where:

• xj and xk—values of the variable in particular years j and k, where j > k,
• n—series length (number of years).

The S statistic quickly tends towards the norm, and for n > 10 this statistic has an approximately
normal distribution with a mean of 0 and a variance described by the formula:

Var(S) = [n(n− 1)(2n + 5)]/18 (3)

Z =



S−1√
Var(S)

if S > 0

0 if S = 0
S+1√
Var(S)

if S < 0

(4)

In the Mann–Kendall test, the null hypothesis assumes no significant trend in the data series.
The trend is significant if the null hypothesis cannot be accepted. The region of acceptance at the
significance level α = 0.05 is determined by the range −1.96 ≤ Z ≤ 1.96 (no significant trend), while the
rejection region is given by Z < −1.96 (significant downward trend) and Z > 1.96 (significant upward
trend), where Z is a standardized test statistic.

T β directional coefficient expressed by the Theil–Sen estimator (β) was calculated by the formula:

β = Median
((

xj − xk
)
/(j− k)

)
(5)

A positive β value indicates an upward (increasing) trend, and a negative value indicates a
downward (decreasing) trend in a time series.

2.5. Annual and Seasonal Variability

The annual and seasonal variability was determined using the Cv coefficient of variation based
on long-term annual averages and monthly averages.

Cv =
∂

X
=

√
Σ(Xi−X)

2

n

X
(6)

where:

• δ—standard deviation
• Xi—monthly average value in a given year (precipitation, outflow) or month

• X—average monthly value over several years for individual years or months
• n—number of years in a multi-annual period.

Changes in river outflow at selected posts were analyzed based on average monthly precipitation
sums and average monthly outflows in the years 1951–1980 and 1981–2015.



Resources 2020, 9, 103 8 of 26

3. Results

3.1. Precipitation and Air Temperature in the Vistula Basin in 1951–2015 and Their Annual Variability

Analysis of annual sums of atmospheric precipitation in the Vistula basin in 1951–2015 showed
uneven precipitation distribution in individual years and at individual meteorological stations (Figure 1).
Precipitation shows a dependence on hypsometry and its spatial distribution corresponds to the layout
of the main geographical regions. The highest precipitation is recorded in the south of Poland, in the
mountain region. The highest average annual precipitation in the studied long-term period was
recorded at the Bielsko-Biała meteorological station (987.2 mm), in the upper part of the river basin.
As terrain lowers northwards, so the amount of precipitation decreases, and in the uplands precipitation
totaled 550 mm (Kraków, Kielce, Lublin, Łódź). The central part of the Vistula River basin is occupied
by a belt of lowlands (central Poland) where precipitation is lowest, ranging from 550 mm to 500 mm
(Warsaw, Toruń). In the northern part of the river basin, in the lakelands, annual precipitation was
slightly higher, at 550–600 mm (Białystok, Chojnice).

The annual average temperature at individual meteorological stations in the period 1951–2015
ranged from 8.2 ◦C in the south and center of Poland to 7.1 ◦C in the north (Białystok). The highest
annual average temperatures at all stations were recorded in 2007. The lowest annual air temperatures
were recorded in 1996 at the four stations in the south of the country, while in central and northern
Poland the lowest average annual temperatures were recorded in 1970. Only at the most eastward
meteorological station of Bialystok was the coldest year 1987.

Based on the calculations (Table 2), it was indicated that at all meteorological stations analyzed the
average annual air temperatures were significantly higher in 1981–2015 than in 1951–1980. Meanwhile,
at six meteorological stations, the annual precipitation totals were lower in the years 1981–2015 than
in the years 1951–1980 or 1951–2015. The exceptions, where the precipitation was slightly higher,
were stations in central and northern Poland (Warsaw, Toruń, Chojnice).

Annual Trends in Precipitation and Air Temperature

The average annual precipitation and air temperature values for the nine meteorological
stations were analyzed statistically to assess homogeneity of measurement series. The results of
the Kruskal–Wallis test for atmospheric precipitation for the years 1951–1980 and 1981–2015 indicated
no reasons to reject the null hypothesis (H0) assuming homogeneity of the analyzed precipitation data
for the nine meteorological stations (Białystok, Bielsko-Biała, Chojnice, Kielce, Kraków, Łódź, Lublin,
Toruń, Warsaw). This is evidenced by the χ2 values, which were smaller than the value adopted
when defining the critical region (for the compared samples: χ2kr = 3.841 and 2.706). This means
that the analyzed random variables came from the same general population. It was found that there
was no significant factor affecting the processes controlling the large water outflow from the studied
catchments that appeared in the analyzed multi-year period. In the case of annual average sums of
precipitation, a slight upward trend or no trend was recorded throughout the entire period of 1951–2015
for seven of the meteorological stations (Figure 2, Table 3). Only at the stations in Bielsko-Biała and
Kielce was the trend downwards during this period, though this was not statistically significant. In the
years 1981–2015, a slight upward trend in precipitation was recorded at all the meteorological stations.
The results for the nine meteorological stations agree with the results presented by other authors for a
greater number of meteorological stations in the Vistula basin [77,78].

The calculated statistics of the non-parametric Kruskal–Wallis rank sum for air temperature
indicate that the H0 hypothesis about the homogeneity of air temperature observations should be
rejected for all nine meteorological stations. Air temperatures were definitely higher in 1981–2015 than
in 1951–1980. A particular increase in temperature was recorded in the years 1981–2015, when the rate
of increase was varied, ranging from 0.27 to 0.45 ◦C per decade at different stations. A downward trend
in air temperature was recorded at six meteorological stations in the period 1951–1980. The upward
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trend in air temperature was statistically significant at all analyzed meteorological stations in the years
1951–2015 and 1981–2015, as the statistics show (Table 3).

Table 3. Statistical analysis of meteorological variables (own study based on data the Institute of
Meteorology and Water Management—National Research Institute).

Years
Precipitation Temperature

Trend
mm/10 year

S Mann–Kendall Z
Test Statistics

Normalized Z Test
Statistics

Trend
◦C/10 Year

S Mann–Kendall
Statistics

Normalized Z Test
Statistics

Bielsko-Biała

1951–1980 −12.70 −13 −0.214 0.12 −22 −0.375
1981–2015 42.50 84 1.179 0.44 203 2.869
1951–2015 −6.25 −158 −0.889 0.25 753 4.257

Kraków

1951–1980 43.87 79 1.392 −0.12 −63 −1.106
1981–2015 21.04 41 0.568 0.35 142 2.002
1951–2015 3.63 20 0.108 0.24 658 3.720

Kielce

1951–1980 8.11 5 0.071 −0.20 −89 −1.570
1981–2015 27.71 108 1.520 0.40 184 2.599
1951–2015 −3.14 −20 −0.108 0.19 555 3.136

Lublin

1951–1980 31.36 93 1.641 −0.33 −115 −2.034
1981–2015 41.28 177 2.499 0.45 193 2.727
1951–2015 3.97 156 0.878 0.14 406 2.293

Łódź

1951–1980 35.23 103 1.820 −0.05 −41 −0.714
1981–2015 15.70 73 1.203 0.35 142 2.002
1951–2015 5.01 114 0.640 0.24 685 3.872

Warsaw

1951–1980 36.31 105 1.855 −0.09 −50 −0.874
1981–2015 27.79 139 1.960 0.43 180 2.542
1951–2015 13.08 358 2.021 0.25 688 3.889

Białystok

1951–1980 51.00 105 1.855 −0.22 −98 −1.731
1981–2015 22.40 89 1.250 0.27 114 1.605
1951–2015 2.56 82 0.459 0.16 470 2.655

Toruń

1951–1980 51.00 92 1.624 0.05 4 0.054
1981–2015 16.84 53 0.738 0.30 110 1.548
1951–2015 8.02 193 1.087 0.27 752 4.252

Chojnice

1951–1980 16.10 −7 −0.107 −0.14 −17 −0.321
1981–2015 33.00 132 1.860 0.36 159 2.244
1951–2015 8.71 177 0.996 0.25 751 4.246

Calculations for significance at 0.05.

3.2. Outflows in the Years 1951–2015 and Their Volatility

The analysis of average annual outflows of the Vistula included data for four hydrological stations
along the river’s course. The volume of outflows on the Vistula increased with the increase in catchment
size along its course: the smallest outflows were recorded in Nowy Bieruń and the largest in Tczew.
Outflow variability (Cv) decreased with the increase in catchment size along its course in the research
period (Table 4). The 1981–2015 period was characterized by greater outflow variability than the
1951–1980 period, with the exception of Tczew. At all analyzed hydrological stations, the average
annual outflow was lower in 1981–2015 than in 1951–1980. The highest average annual Vistula River
outflows in the analyzed multi-year period occurred in 2010 at all water gauge stations. They were
caused by intense precipitation in May and June in the south-eastern part of the Vistula basin. The unit
outflow decreased inversely to the area of individual sub-catchments, and in the years 1951–2015
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averaged from 11.9 dm3
·s−1
·km−2 in the upper Vistula River (Nowy Bieruń) to 5.4 dm3

·s−1·km−2 in the
lower course (Tczew). Unit outflow for particular sub-catchments in 2010 ranged from 8.6 dm3·s−1

·km−2

in Tczew to 24.2 dm3
·s−1
·km−2 in Nowy Bieruń. The lowest average annual outflows were recorded

in 1984 (Nowy Bieruń, Sandomierz, Warsaw) and in 1954 (Tczew). Unit outflow in these years was
5.4 dm3

·s−1
·km−2 in Nowy Bieruń, 5.2 dm3

·s−1
·km−2 in Sandomierz and 4.32 dm3

·s−1
·km−2 in Warsaw.

The smallest average annual unit outflow in 1954 was 3.3 dm3
·s−1
·km−2, recorded in Tczew (Figure 3).

Table 4. Hydrological characteristics of the Vistula at selected water gauge stations (own study based
on data the Institute of Meteorology and Water Management—National Research Institute).

Hydrological Station Average Outflow (m3
·s−1)/Cv Average Unit Outflow (dm3

·s−1·km−2)

1951–1980 1981–2015 1951–2015 1951–1980 1981–2015 1951–2015

Nowy Bieruń 21.9/0.26 20.4/0.32 21.1/0.29 12.3 11.5 11.9
Sandomierz 300.0/0.20 281.0/0.28 290.0/0.24 9.4 8.8 9.1

Warsaw 592.0/0.21 564.0/0.23 577.0/0.22 7.0 6.7 6.8
Tczew 1072.0/0.22 1020.0/0.21 1044.0/0.22 5.5 5.3 5.4
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3.2.1. Analysis of Annual Outflow Trends

The results of the Kruskal–Wallis test for 1951–1980 and 1981–2015 did not indicate any reasons
to reject the null hypothesis (H0) assuming homogeneity of the analyzed data for Nowy Bieruń,
Sandomierz, Warsaw and Tczew. This is evidenced by the χ2 values, which were smaller than the
value adopted when defining the critical region (for the compared samples: χ2kr = 3.841 and 2.706).
This means that the analyzed random variables come from the same general population. It was found
that there was no significant factor affecting the processes controlling the large water outflow from the
studied catchments that appeared in the analyzed multi-year period.

The analysis of annual average Vistula outflows in the years 1951–2015 at all analyzed hydrological
stations showed slight to zero upward trends that were not statistically significant. The largest changes
in river outflow were recorded in 1951–1980. In these years, strong upward trends in statistically
significant outflows were recorded in three out of four hydrological stations, with the exception being
the station at Nowy Bieruń. In the years 1981–2015, a slight upward trend was noticeable at the stations
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at Nowy Bieruń and Sandomierz (the upper course of the Vistula), while at the other hydrological
stations in Warsaw (the middle section of the river) and Tczew (the lower section of the river) this trend
was much smaller (Figure 4). The results are not statistically significant. This means that the river
outflow has been stable over the years, with no major changes.
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Figure 4. Average annual Vistula outflows at selected hydrological stations, 1951–2015 (own study
based on data the Institute of Meteorology and Water Management—National Research Institute).
Legend: SQ—average annual outflows in m3

·s−1, SSQ 1951–1980—average annual outflows 1951–1980,
SSQ 1981–2015 average annual outflows 1981–2015.

The analysis of the Vistula outflows revealed a slight increase or no trend at all hydrological stations
in the years 1951–2015 and 1981–2015, in contrast to the period 1951–1980, when there was an upward
trend in outflows (Table 5). It can thus be concluded that outflows trended downwards in the years
1981–2015 as compared to the years 1951–1980. This is the result of a large increase in air temperature
alongside a small increase in precipitation, which indicates an increase in evapotranspiration. The lack
of a clear downward trend in statistically significant outflows in the years 1981–2015 may result from
short-term high outflows that affected average outflow rates. An additional factor affecting outflow is
land use, the volume of water abstraction for economic purposes, and groundwater supply. Therefore,
to determine the impact of meteorological conditions on the volume of the Vistula’s water resources
requires analysis of the distribution of outflows, precipitation and air temperature in individual months
in the years 1981–2015 compared to 1951–1980.

Table 5. Statistical analysis of the outflow test.

Years Trend m3.s−1/10 year S Mann–Kendall Statistics Normalized Z Test Statistics Probability/Trend

Nowy Bieruń

1951–1980
1981–2015
1951–2015

2.08
2.21
0.22

85
129
33

1.499
1.818
0.181

Non-significant
Non-significant
Non-significant

Sandomierz

1951–1980
1981–2015
1951–2015

31.34
23.76
2.56

127
111
0

2.248
1.562

0

Increasing
Non-significant
Non-significant

Warsaw

1951–1980
1981–2015
1951–2015

61.81
35.82
5.29

136
101
58

2.409
1.420
0.323

Increasing
Non-significant
Non-significant

Tczew

1951–1980
1981–2015
1951–2015

154.22
6.78
4.32

166
6

15

2.944
0.071
0.079

Increasing
Non-significant
Non-significant
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3.2.2. Variability of Precipitation and Air Temperature over the Year

Figure 5 summarizes the average monthly sums of precipitation and average air temperature,
which reflect meteorological conditions in individual sub-catchments of the Vistula River basin, for the
period 1981–2015 compared to the period 1951–1980. In the years 1951–1980, precipitation was highest
in the summer months, from May to September, peaking in July. Precipitation was lowest in the months
from January to March, bottoming out in February. Over the last 35 years (1981–2015) precipitation
has increased noticeably in September and May, which extended the period of high precipitation
during the year (May to September), and this was countered by a drop in precipitation mainly in
August and October. The highest average monthly air temperatures were recorded in the summer
months, peaking in July and lowest in February. The trajectory of average monthly air temperatures
over the years 1981–2015 was similar to the years 1951–1980, but with noticeably higher values at all
analyzed meteorological stations. This shows that the years 1981–2015 were clearly warmer than the
period 1951–1980.

The average monthly minimal (Tmin) and maximal (Tmax) air temperatures over the years
1981–2015 was similar to the years 1951–1980, but with noticeably higher values at all analyzed
meteorological stations (Figure 6). This shows that the years 1981–2015 were clearly warmer than the
period 1951–1980. It is especially visible in the winter months (January and February). The average
minimal and maximal air temperature in the period 1981–2015 is about 2 ◦C higher than in the period
1951–1980 in the same month.
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Figure 5. Average monthly sums of precipitation (P in mm) and average air temperature (T in ◦C) at
selected meteorological stations in two comparable periods 1981–2015 and 1951–1980.

On the basis of the coefficient of variation Cv, the variability of monthly sums of precipitation in
the years 1981–2015 was compared to that of the period 1951–1980 (Figure 7). Over the years 1951–1980,
precipitation varied most for October and February at most meteorological stations. The exception
was Toruń, where the highest variability in precipitation during this period was in June. The diversity
in precipitation variability between individual meteorological stations was noted to be greater in the
period 1981–2015 than in 1951–1980. In addition to October, high precipitation variability was recorded
in May in the southern and eastern parts of the river basin (Bielsko-Biała, Kraków, Lublin), as well as
in April (Kielce, Toruń) and July (Warsaw).

Average monthly air temperatures were characterized by high fluctuations in the two main
sub-periods. Air temperatures were most variable in December and March in the years 1951–1980, but
in December and February in the years 1981–2015. The high air temperature variability in these months
shortened the cold periods while extending the warm periods. Increased variability of precipitation
can, in combination with high winter air temperatures in particular, increase the risk of flooding.
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Figure 6. Average monthly air temperature minimal (Tmin in ◦C) and maximal (Tmax in ◦C) at selected
meteorological stations in two comparable periods 1981–2015 and 1951–1980.



Resources 2020, 9, 103 18 of 26

Resources 2020, 9, x FOR PEER REVIEW 18 of 27 

 

On the basis of the coefficient of variation Cv, the variability of monthly sums of precipitation 
in the years 1981–2015 was compared to that of the period 1951–1980 (Figure 7). Over the years 1951–
1980, precipitation varied most for October and February at most meteorological stations. The 
exception was Toruń, where the highest variability in precipitation during this period was in June. 
The diversity in precipitation variability between individual meteorological stations was noted to be 
greater in the period 1981–2015 than in 1951–1980. In addition to October, high precipitation 
variability was recorded in May in the southern and eastern parts of the river basin (Bielsko-Biała, 
Kraków, Lublin), as well as in April (Kielce, Toruń) and July (Warsaw). 

  
(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure 7. Cont.



Resources 2020, 9, 103 19 of 26
Resources 2020, 9, x FOR PEER REVIEW 19 of 27 

 

  
(g) (h) 

Figure 7. Variability of average monthly precipitation sums (Cv) at selected meteorological stations 
in the two comparable periods 1981–2015 and 1951–1980. 

Average monthly air temperatures were characterized by high fluctuations in the two main sub-
periods. Air temperatures were most variable in December and March in the years 1951–1980, but in 
December and February in the years 1981–2015. The high air temperature variability in these months 
shortened the cold periods while extending the warm periods. Increased variability of precipitation 
can, in combination with high winter air temperatures in particular, increase the risk of flooding. 

3.2.3. Analysis of Seasonal Outflows and Their Volatility 

Figure 8 presents comparative analyses of average monthly Vistula outflows in 1981–2015 
relative to 1951–1980. Outflows of the Vistula in the period 1951–1980 in the upper reaches of the 
Vistula (Nowy Bieruń) were highest in March and July, and lowest in September. As the catchment 
area grows progressively along the river’s course, the highest average monthly outflows shifted to 
April, while the average monthly outflows in summer decreased. On the lower section of the Vistula, 
there are practically no high average monthly outflows during the summer. In the years 1981–2015, 
average monthly outflows had lower amplitudes than in the years 1951–1980. The highest monthly 
outflows in New Bieruń and Sandomierz shifted to April and June. The lowest average monthly 
outflows shifted to October at the stations in the upper and middle course of the river. The exception 
was the minimum average outflow at the hydrological station in Tczew, which was recorded in 
September. It is noteworthy that the average monthly outflow in January was higher in 1981–2015 
than in 1951–1980, which can be associated with air temperatures also being higher during the later 
period. This changes the form of precipitation from snow to rain and shortens the persistence of snow 
cover, which increases outflow in the winter half-year and decreases outflows in the summer half-
year, since persistence of snow cover and gradual temperature changes result in the steady feeding 
of surface and ground waters, whereas rainfall and high air temperatures lead to rapid and short-
lived supply to rivers. 

Figure 7. Variability of average monthly precipitation sums (Cv) at selected meteorological stations in
the two comparable periods 1981–2015 and 1951–1980.

3.2.3. Analysis of Seasonal Outflows and Their Volatility

Figure 8 presents comparative analyses of average monthly Vistula outflows in 1981–2015 relative
to 1951–1980. Outflows of the Vistula in the period 1951–1980 in the upper reaches of the Vistula
(Nowy Bieruń) were highest in March and July, and lowest in September. As the catchment area
grows progressively along the river’s course, the highest average monthly outflows shifted to April,
while the average monthly outflows in summer decreased. On the lower section of the Vistula,
there are practically no high average monthly outflows during the summer. In the years 1981–2015,
average monthly outflows had lower amplitudes than in the years 1951–1980. The highest monthly
outflows in New Bieruń and Sandomierz shifted to April and June. The lowest average monthly
outflows shifted to October at the stations in the upper and middle course of the river. The exception
was the minimum average outflow at the hydrological station in Tczew, which was recorded in
September. It is noteworthy that the average monthly outflow in January was higher in 1981–2015
than in 1951–1980, which can be associated with air temperatures also being higher during the later
period. This changes the form of precipitation from snow to rain and shortens the persistence of snow
cover, which increases outflow in the winter half-year and decreases outflows in the summer half-year,
since persistence of snow cover and gradual temperature changes result in the steady feeding of surface
and ground waters, whereas rainfall and high air temperatures lead to rapid and short-lived supply
to rivers.

The highest variability of average monthly outflows (Cv) was recorded in the upper reaches of the
Vistula, and decreased systematically along the river, reaching its lowest values at the station in Tczew
(Figure 9). In the years 1951–1980 variability was greatest in the summer months from June to October
and in November, while in the years 1981–2015 it was highest from May to September. This shift
results from variability of precipitation in April and May being higher in 1981–2015 than in 1951–1980.

Monthly air temperatures were higher in 1981–2015 than in 1951–1980. Average monthly
atmospheric precipitation was lower in the summer months (June–August) and more variable mainly
in the upper part of the river basin, which resulted in higher fluctuations in outflows. The variability of
outflows in winter months (November–April), which was associated with snowmelt floods, decreased.
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4. Discussion

Two meteorological variables significantly influence the hydrological cycle: precipitation and air
temperature. In the case of annual average sums of precipitation, there was a slight-to-zero upward trend
in precipitation throughout the entire period of 1951–2015 at seven out of nine meteorological stations.
In the years 1981–2015, a slight upward trend in precipitation was recorded at all the meteorological
stations. During the year, precipitation totals in the summer half-year (May–October) dominated over
precipitation in the winter half-year (November–April) in both sub-periods, though they differed in
the distribution structure of monthly sums of precipitation. Precipitation in the summer half-year
increased in the southern and eastern parts of the Vistula River basin, but fell in the central and northern
parts. Studies conducted in Poland indicate that the maximum daily precipitation for the summer
half-year increased at many meteorological stations in Poland, and increases are more numerous in
the summer half-year than in the winter half-year [79]. A significant increase is also observed in the
course of average and extreme air temperatures. The upward trend in air temperature was statistically
significant at all analyzed meteorological stations in the years 1951–2015 and 1981–2015, as the statistics
show. The results confirm the work of other authors [80–83] indicating a significant warming in recent
years. The authors [84] noted downward trends in a series of annual number of days with frosts, and
in the number and durations of cold waves. Analysis revealed symptoms of systematic and persistent
warming. The growth rate ranges from 0.18 to 0.34 ◦C per decade, which indicates that the average
annual air temperature in Poland has increased by 1.1–2.2 ◦C since 1951. Similar values (increases
in Tmin of 0.20–0.30 ◦C per decade and Tmax of 0.26 ◦C per decade) were found by Kejna et al. [85]
in some regions of Poland in the years 1951–2005. research on long-term measurement series of air
temperature in Toruń (central Poland) for 1871–2010 showed that winters had shortened significantly
(by 7%), and summers had lengthened by 3.8% [86]. It can be assumed that this has also occurred
in the rest of Poland. This is demonstrated, for example, by the shift in the highest variability of air
temperature from March in the period 1951–1980 to February in the period 1981–2015. Research carried
out by the authors [87,88] has confirmed that the frequency of heat waves is increasing in Poland,
mainly in July and August (maximum temperature ≥ 25 ◦C). Climate change in Poland manifests to
the greatest extent in the temperature [89] and heat stress records [90]. High air temperatures have
often been accompanied by a precipitation deficit, which has increased evaporation and, consequently,
adversely affected the volume of water resources. Over the past three decades, meteorological droughts
have been reported that have led to hydrological droughts, as exemplified by the 1992, 1994, 2003, 2006,
2008 and 2015 hydrological years [91]. Changes in meteorological conditions will adversely affect
the volume of water resources and their temporal and spatial distribution, reducing the accessibility
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and availability of surface waters. While the average annual outflow remains unchanged or shows
a slight decrease over longer research periods (1951–2015), seasonal changes show that there is a
significant variability throughout the year. This is especially true of the summer months, when river
outflows are usually low. The presented research results concur with seasonal changes in outflows in
multi-year periods identified by other authors [39,41,65]. Seasonal variability was particularly evident
towards the end of the 20th century and at the beginning of the 21st century. An analysis of the
outflow trends from the Bieszczady river basin (in the Eastern Carpathians) in the years 1986–2015
showed significant upward trends in winter outflow and a fall in autumn outflow (in September).
There was a clear upward trend in air temperature in the summer and autumn months, while the sum
of precipitation did not change [92]. Research conducted in a small catchment of central Poland has
shown a significant increase in air temperature in 1981–2015 and a systematic decrease in the average
annual and minimum annual outflows [93]. The summer of 2015 was very hot and dry throughout
the country, which led to outflow lows being recorded on many Polish rivers. Meanwhile, in the
beds of some small watercourses not covered by systematic hydrological observations water outflow
disappeared completely [94].

In the contemporary climate, many regions of Poland are frequently suffering from water deficits,
especially during the growing season. In the future, this deficit may become even more serious because
climate forecasts for Poland predict further warming and further changes in the spatial and seasonal
distribution and amount of precipitation [78].

5. Conclusions

The study analyzed long-term trends in river outflows in two time intervals (1951–1980 and
1981–2015) at four selected hydrological stations along the Vistula River. In the full 1951–2015 research
period, average annual outflow values fluctuated, which was related to variability in the volume of
supply from precipitation. It is worth noting that in the 65 year research period a lack of statistically
significant trends in outflow changes predominated. Against the background of the longer period
of 1951–2015, the 1951–1980 sub-period stood out and was characterized by a statistically significant
increase in annual average outflows. The noticeable downward trend in outflow volumes in the
years 1981–2015 as compared to the years 1951–1980 was not statistically significant. This is the
result of an increase in air temperature accompanied by a small increase in precipitation, leading to
increased evapotranspiration. In the years 1981–2015 and 1951–2015 there was a clear and statistically
significant upward trend in average annual air temperature. The annual sum of precipitation showed
no significant upward or downward trend in either 1951–1980 or 1981–2015.

The variability in seasonal outflows is greater in the later sub-period than in the earlier period.
The outflow of the Vistula River seems to be resilient to changing meteorological conditions. This may
be due to the large hydrological inertia of the river, which is associated with the river basin’s large
surface and large physiographic diversity. To accurately determine the causes of changes in water
resources, changes in the water resources of the Vistula’s tributaries need to be analyzed, in conjunction
with an analysis of changes in land use and the volume of water abstracted for economic purposes.
If the falling trend in water resources continues in the coming years, preventive measures should be
taken, which those managing river basins should consider. The results obtained are a warning signal
that such action needs to be taken.
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Theor. Appl. Clim. 2019, 135, 707–724. [CrossRef]
87. Wibig, J. Heat waves in Poland in the period 1951–2015: Trends, patterns and driving factors. Meteorol. Hydrol.

Water Manag. 2018, 6, 37–45. [CrossRef]
88. Wypych, A.; Sulikowska, A.; Ustrnul, Z.; Czekierda, D. Temporal Variability of Summer Temperature

Extremes in Poland. Atmosphere 2017, 8, 51. [CrossRef]
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