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Abstract: Kojic acid (KA) has emerged as a prominent tyrosinase inhibitor with considerable potential
in cosmetic applications; however, its susceptibility to instability during storage poses a challenge to
its widespread use. This review explores the advancements in addressing this limitation through
the development of various KA derivatives, focusing on the modification of the C-7 hydroxyl group.
Strategies such as esterification, hydroxy-phenyl ether formation, glycosylation, and incorporation
into amino acid or tripeptide derivatives have been employed to enhance stability and efficacy.
Among these derivatives, Kojic Acid Dipalmitate (KDP), a palmitic ester derivative of KA, stands
out for its notable improvements in stability, permeability, and low toxicity. Recent developments
indicate a growing utilization of KDP in cosmetic formulations, with over 132 available products
on the market, encompassing various formulations. Formulations based on nanotechnology, which
incorporate KDP, have been provided, including nanosomes, nanocreams, multiple emulsions,
liposomes, solid lipid nanoparticles (SLNs), ethosomes, and nanoemulsions. Additionally, three
patents and seven advanced system deliveries of KDP further underscore its significance. Despite its
increasing prevalence, the literature on KDP remains limited. This review aims to bridge this gap by
providing insights into the synthesis process, physicochemical properties, pharmaceutical preparation,
diverse applications of KDP in cosmetic products, and recent nanotechnology formulations of KDP.
This review paper seeks to explore the recent developments in the use of KDP in cosmetics. The goal
is to enhance stability, permeability, and reduce the toxicity of KA, with the intention of promoting
future research in this promising sector.

Keywords: kojic acid dipalmitate; cosmeceuticals

1. Introduction

Tyrosinase (monophenol, L-dopa: oxygen oxidoreductase, EC 1.14.18.1) is known
as the starting point for the formation of mammalian skin color [1]. It is an enzyme that
catalyzes several steps in the production of the pigment melanin in living cells, including
bacteria, fungi, plants, animals, and humans [1,2]. It is located in melanocytes in the
epidermis, especially in the viable epidermis [3,4]. Tyrosinase is the enzyme that controls
the pace of melanin synthesis [5,6] which is the process responsible for producing the
pigment that determines skin color [7].

Melanin synthesis, or melanogenesis, is a complex process that involves various
protein groups, including tyrosinase, tyrosinase-related protein 1 (Tyrp1 or TRP1), and
tyrosinase-related protein 2 (Tyrp2, DCT, or TRP2) [6–8]. Melanogenesis occurs in an
auto-regulated manner. The activity of tyrosinase begins with the presence of the sub-
strate tyrosine and the enzyme co-factor, dihydroxyphenylalanine (DOPA). Tyrosinase
uses its binuclear copper center to hydroxylate tyrosine into 3,4-dihydroxyphenylalanine
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(DOPA) [9,10]. Then, tyrosinase catalyzes the oxidation of DOPA to DOPAquinone [11].
This reaction proceeds with multi-polymerization to form pigments that are blackish-gray
in color, namely eumelanin, and red-yellowish in color, namely pheomelanin, with the
influence of the conjugation reaction [12].

This melanogenesis process occurs in the melanosome [13], where the size, density,
and shape of the melanosome among populations have the same characteristics [14,15].
The determinant of skin color for a population is the total amount, ratio, and distribution
of eumelanin and pheomelanin, which differ among populations around the world, such
as Europe, Africa, and Asia [16]. In some countries, particularly in Southeast Asia, a high
amount of eumelanin is undesirable because fair and clean skin has become the standard of
beauty for women in these countries [14,17]. This is evident from a study by Peltzer (2016)
of 19,624 students from 26 low-, middle-, and developing-income countries, showing that
Southeast Asia has a higher percentage of skin-lightening product users than Africa, at
36.0% [18]. Indonesia, with a majority of Fitzpatrick skin phototypes IV and V, which tend to
be dark or brown [18], has a skin-lightening product usage rate of up to 36% [19]. Abnormal
skin pigmentation in the form of hypo- or hyperpigmentation can cause significant anxiety
and decrease self-esteem in affected individuals [18,19]. Various methods are employed to
regulate pigmentation in the fields of dermatology and cosmetics. One of these methods
involves the utilization of synthetic compounds, such as hydroquinone and kojic acid
(KA) [20–22].

Hydroquinone is a gold standard compound for treating hyperpigmentation [20,23,24].
However, its use in cosmetic formulations is prohibited due to the side effects such as
irritation, allergic reactions, post-inflammatory hyperpigmentation, and temporary hy-
popigmentation that it can cause [12,13,15–18,25,26]. Hydroquinone (C6H6O2) reduces
the level of pigmentation by non-selectively degrading epidermal melanocytes and ker-
atinocytes, making it cytotoxic to cells [27,28]. Therefore, the use of skin-lightening agents
in cosmetic formulations has shifted towards more effective alternative compounds with
low toxic and irritation effects, such as kojic acid [23,29].

Kojic acid is one of several tyrosinase inhibitors that have been extensively studied for
this purpose [22,30–33]. It is a natural compound with both skin-lightening and antibacte-
rial properties and is widely used for cosmetic purposes and as a food additive to prevent
browning caused by enzymes [20,23,24]. While KA has a competitive inhibitory effect on
the monophenolase activity and a mixed inhibitory effect on the diphenolase activity of
mushroom tyrosinase, its use in cosmetics is limited by its instability during storage due to
its labile oxidative properties, which can be accelerated by light and heat [34,35]. To ad-
dress these limitations, various KA derivatives have been developed by modifying the C-7
hydroxyl group, such as through esterification [36], hydroxyphenyl ether formation [37],
glycosylation [38], or incorporation into amino acid or tripeptide derivatives [39], with the
aim of improving their stability and efficacy in cosmetic and cosmeceutical applications.

According to reports, kojic acid–tripeptide amide derivatives have shown superior
storage stability in comparison with kojic acid [40]. Additionally, as stated in Rho et al.
(2010) [41], kojyl thioether derivatives strongly inhibit tyrosinase activity. Moreover, Lee
et al. (2006) [38] report that kojic acid derivatives with two pyrone rings possess eight times
higher tyrosinase inhibitory potency than kojic acid itself. Maltol (3-hydroxy-4H-pyran-4-
one) and its derivatives share a similar scaffold with kojic acid and have similar biological
effects. Ester derivatives of allomaltol (5-hydroxy-2-methyl-4H-pyran-4-one) have been
described to have inhibitory to tyrosinase and antioxidant effects by Wempe and Michael
(2012) [42]. Kojic acid has also been reported to exhibit antioxidant activity [43]. According
to Ahn el al. (2011), a kojic acid derivative containing a trolox moiety exhibits potent
tyrosinase inhibitory and radical scavenging activity [44]. Lajis et al. (2012) suggest that KA
esters derived from the esterification of kojic acid and palm oil-based fatty acids, namely,
kojic acid monooleate, kojic acid monolaurate, and kojic acid monopalmitate, exhibit similar
inhibitory effects to kojic acid; however, kojic acid monopalmitate gave slightly stronger
inhibition to melanin formation compared with other inhibitors [45]. Moreover, Balaguer
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et al. (2008) reported that kojic acid dipalmitate (KDP) poses superior stability, oil solubility,
and skin absorption compared with kojic acid, attributed to its resistance to changes in pH,
heat, and light compared with kojic acid [34].

Kojic Acid Dipalmitate (KDP), a palmitic ester derivative of KA, has gained widespread
usage in cosmetic formulations in recent times due to its improvement in stability and
permeability, as well as its low toxicity [21,26,46]. It is synthesized in skin cells through
an in situ esterification process, which results in the release of kojic acid [47]. This unique
characteristic sets it apart from other derivatives of kojic acid [48]. The aforementioned
condition has resulted in the widespread usage of KDP, which is a commonly utilized com-
ponent in numerous skincare items, including creams and serums, by well-known cosmetic
brands. These products usually contain concentrations of up to 3% KDP and are marketed
as skin-whitening and lightening agents [49]. Nanotechnology-based formulations contain-
ing Kojic Acid Dipalmitate (KDP) have been developed, including nanosomes, nanocreams,
multiple emulsions, liposomes, solid lipid nanoparticles (SLNs), ethosomes, and nanoemul-
sions. The primary objective of these formulations is to enhance the penetration of KDP
into melanosomes.

Despite its widespread use, the available literature on KDP remains limited. This
review aims to discuss various aspects of KDP, including its synthesis process, physico-
chemical properties, pharmaceutical preparation, and application in cosmetic products.
Although KDP is becoming more common, there is still a scarcity of literature on the subject.
This thorough review seeks to fill this need by offering insights into the synthesis process,
physicochemical properties, pharmaceutical preparation, diverse applications of KDP in
cosmetic products, and recent nanotechnology formulations of KDP. This review study
aims to examine the latest advancements in the use of KDP in the field of cosmetics. The
objective is to improve the stability, permeability, and toxicity of KA in order to facilitate
further investigation in this promising field.

2. Kojic Acid Derivatives

Kojic acid, scientifically 5-hydroxy-2-hydroxymethyl-4H-pyran-4one (Figure 1a), is a
well-researched substance that effectively inhibits the enzyme tyrosinase [50]. Kojic acid,
which was first found by Saito in 1907 in Japan, was extracted from the culture of Aspergillus
oryzae that was growing on steam rice [51–53]. The chemical structure was determined by
Yabuta in 1924 [54]. Kojic acid is an organic acid substance derived from the fermentation
process of fungus, specifically from over 58 different fungal strains belonging to genera
such as Aspergilus, Acetobacter, and Penicillium [49,55]. Currently, kojic acid is used as a
food ingredient to prevent enzymatic browning [32] and in the cosmetic business as a
skin-brightening agent [50,51].
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In the cosmetic field, the use of Kojic Acid (KA) is limited due to the potential for skin
irritation, such as contact dermatitis, sensitization, redness, and erythema [9]. Additionally,
KA exhibits limited inhibitory activity and instability during storage [40]. Consequently,
numerous derivatives of KA have been synthesized to enhance its properties. These
modifications often involve converting the C-7 hydroxyl group into esters, hydroxyphenyl
ethers, glycosides, amino acid derivatives [36], or tripeptide derivatives in order to address
these limitations.

Modification of the Kojic Acid (KA) structure at the C-7 hydroxyl group has been
undertaken by Chen et al. [56,57]. Through this modification, compounds were synthe-
sized that exhibited potent inhibition of mushroom tyrosinase. Among the synthesized
compounds, 2-(((4-amino-5-(2-((E)-3-(2-methoxyphenyl)allylidene)hydrazinyl)-4H-1,2,4-
triazol-3-yl)thio)methyl)-5-hydroxy-4H-pyran-4-one (KAD2) demonstrated the most ef-
fective inhibitory effects on diphenolase activity and monophenolase activity, with IC50
values of 7.50 µM and 20.51 µM, respectively. In another study, Zhao et al. [58] altered
the ’O’ at position-1 in the pyranone ring to ’NH’, leading to the synthesis of a range
of hydroxypyridinone–amino acid and hydroxypyridinone–dipeptide conjugates. Com-
pound 6e exhibited superior copper reduction ability and a stronger copper chelating
capacity compared to kojic acid. Asadzadeh et al. [59,60] produced 12 sets of kojic acid
derivatives by altering the C-7 hydroxyl group and the aromatic substituent at the C-2 posi-
tion. Furthermore, some substances demonstrated commendable anti-tyrosinase efficacy.
Compound IIId had the most potent tyrosinase inhibitory action, with an IC50 value of
0.216 ± 0.009 mM. This finding is consistent with the in silico ∆G bind data, which showed
a binding energy of −13.24 Kcal/mol. Shao et al. [61] synthesized new hydroxypyridi-
none derivatives that have an oxime ether by changing the C-7 hydroxyl group. These
compounds have strong inhibitory effects on diphenolase activity and monophenolase
activity, which successfully extend the shelf life of fresh-cut apple slices. Furthermore,
hydroxyl group modifications were conducted by Ashooriha et al. [62] by substituting
alcoholic hydroxyl groups with sixteen suitable substituents. All compounds exhibited very
effective anti-tyrosinase activity, with IC50 values ranging from 0.06 to 6.80 µM. Among
them, compound 6o showed the most promising results and indicated an acceptable safety
profile based on cytotoxicity studies conducted on B16 melanoma cell lines and Human
Foreskin Fibroblast (HFF) cells. Moreover, Xie et al. [63] found that the compound with
the structure of 5-phenyl-3-[5-hydroxy-4-pyrone-2-yl-methylmercap-to]-4-(2,4-dihydroxyl-
benzylamino)-1,2,4-triazole exhibited the most potent tyrosinase inhibitory activity, with
an IC50 value of 1.35 ± 2.15 µM.

Derivatization of kojic acid has also been accomplished through the synthesis of the
dimeric structure of kojic acid, as conducted by Rho et al. The synthesis involved the use of
ester, amide, and thioether linkages [41]. This research demonstrated that thioether linkage
resulted in the most effective inhibition of tyrosinase compared with other linkages, as
well as nitric oxide (NO) production. Lee et al. [38] synthesized kojic acid with two pyron
ring linkages by ethylene, exhibiting tyrosinase inhibition activity eight times more potent
(IC50 = 3.63 µM) than KA (IC50 = 30.61 µM). Furthermore, modification of KA at the 6th
position of the pyranone ring for antityrosinase activity was conducted by Rho et al. [64]
and the impact of this modification was investigated in this study.

Karakaya et al. [64] also contributed to the synthesis of kojic acid derivatives, produc-
ing a total of thirty Mannich bases, including seventeen novel compounds with a structure
of 2-substituted-3-hydroxy-6-hydroxymethyl/chloromethyl/methyl/morpholinylmethyl/
piperidinylmethyl/pyrrolidinylmethyl-4H-pyran-4-one. Among these compounds, ten
derivatives exhibited higher activity than KA, and compound 3, bearing a 3,4-dichlorobenzyl
piperazine moiety, demonstrated the highest inhibitory activity. The hydroxymethyl group
at the 6th position of the pyranone ring was identified as plausibly binding to copper ions
on the active site of the enzyme, acting as a mushroom tyrosinase inhibitor. Additionally,
Cardoso et al. [65] synthesized 14 KA derivatives from malononitrile and aromatic alde-
hyde using β-cyclodextrin (β-CD) as a catalyst. All derivatives exhibited conformational
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affinity to the enzyme’s active site, with D5 (a derivative of KA containing phenolic com-
pounds in the benzene ring) identified as the most stable KA derivative, with a binding
free energy of −18.13 (D5) kcal mol−1. This suggests that these derivatives could serve
as potent competitive inhibitors of the natural substrates of L-DOPA and L-tyrosine in
melanogenesis.

Subsequently, the hydroxyl group of kojic acid at position C-7 was modified by in-
cluding amino acids or peptides. The synthesis of amino acid derivatives of kojic acid was
initially conducted by Kayahara et al. in 1990 with the aim of obtaining compounds with
enhanced antibacterial potential [66]. Meanwhile, the synthesis of amino acid derivatives
from kojic acid to elevate tyrosinase inhibition activity was carried out by Kobayashi et al. in
1995. It was reported that six amino acid derivatives of kojic acid had been synthesized, in-
cluding N-carbobenzoxy (abbr., Z)-Ala-Kojic acid derivative, Z-Thr(OH)-Kojic acid deriva-
tive, Z-Val-Kojic acid derivative, Z-Leu-Kojic acid derivative, Z-Ile-Kojic acid derivative,
and Z-Phe-Kojic acid derivative. The synthesis involved the introduction of Z-protected
amino acids into the 7th position of kojic acid using 1-ethyl-3,3-dimethylaminopropyl
hydrochloride (EDC). Based on the evaluation of the IC50 values for tyrosinase inhibition
[EC 1.14..18.1] obtained from mushrooms, it was revealed that all amino acid derivatives
of kojic acid exhibited a higher tyrosinase inhibition potential than kojic acid, with the
L-phenylalanine derivative being the strongest inhibitor, displaying an IC50 value approx-
imately 1/80th of that for kojic acid [36]. Unnatural amino acids, which may be found
naturally or created via chemical synthesis, are extensively used in ligand design. When
included in therapeutic peptidomimetics and peptide analogs, they serve as a potent tool
in drug development.

In alignment with this research, Kwak et al. (2007–2010) conducted the derivatiza-
tion of amino acids from KA, namely KA-AA3-AA2-AA1-NH2 with varying tripeptide
arrangements. As a result, kojic acid-FWY-NH2 (FWY: Phe-Trp-Tyr) was demonstrated to
be the most effective compound, displaying the highest inhibitory activity, which remained
consistent over different storage times under various temperatures and pH conditions [62].
Although kojic acid–tripeptide amides (KA–FWY–NH2) exhibited a 100-fold increase in
tyrosinase inhibitory activity compared with kojic acid itself, KA–FWY–NH2 showed
limited inhibitory activity due to its large molecular weight, hindering its ability to pene-
trate the cell membrane. Consequently, Kwak (2009) synthesized a kojic acid–amino acid
amide (KA–AA–NH2) library to reduce molecular weight. Kojic acid–phenylalanine amide
(KA–F–NH2), despite displaying the highest tyrosinase inhibitory activity equivalent to KA–
FWY–NH2 in mushroom tyrosinase inhibitory tests, did not inhibit the melanin synthetic
pathway in cell systems, likely due to its poor cell-penetrating ability. Researchers ex-
plained this phenomenon in relation to the hydrophobic nature of L-phenylalanine [40,67].
Introducing synthetic amino acids into peptides has the capacity to bolster their resistance
against enzyme breakdown, therefore amplifying the range of structures and biological
functions shown by peptides. Kojic acid-containing amino acid derivatives provide several
sites for oxidation, reduction, alkylation, acylation, and peptide-coupling reactions. These
chemicals show great potential for use as tyrosinase inhibitors [54]. Nevertheless, it is
important to take into account the physical characteristics, such as the molecular mass,
of the derivative compounds. The compound’s efficiency may be diminished due to the
hindered penetration of cell membranes caused by an increase in molecular weight [67].

3. Sythesis of Kojic Acid Dipalmitate

The hydrophilicity of KA has limited its use in cosmetics, oily foods, and pharma-
ceutical products. Furthermore, concerns exist regarding its potential toxicity [49] and
irritancy [44,47,68–70]. To enhance the chemical and biological attributes of KA, researchers
have developed derivatives with improved properties. Several efforts, including the en-
zymatic esterification of KA and fatty acids to form KA esters, have been undertaken [71]
to increase their hydrophobicity and expand their potential uses, such as in the cosmetic
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industry. Some KA esters, like KA dipalmitate, have been brought to market for cosmetic
and skin health applications [72].

Kojic acid dipalmitate can be synthesized by esterifying kojic acid with palmitic acid.
Figure 1 depicts the basic molecular structure of KA and KDP. Kojic acid possesses two
functional groups: a hydroxyl group (OH) at C-5 and a carboxylic group (COOH) at C-7 [73].
The esterification process involves removing the OH group and attaching the fatty acid (R)
to create KA monoesters like 5-O-KA monoesters and 7-O-KA monoesters. Fatty acids have
been synthesized chemically and enzymatically to link with KA at positions C-5 and C-7 [74].
Chemical esterification of KA oleate was facilitated by N,N′-dicyclohexylcarbodiimide
(DCC)/4-dimethylaminopyridine (DMAP) in dichloromethane, resulting in yields of up
to 80% within 24 to 48 h. However, this method necessitates the use of environmentally
harmful and dangerous chemicals, requiring additional safety precautions. Other chemi-
cal esterification procedures involve numerous steps and chemicals, leading to a higher
production cost for KDP [45].

Enzymatic processes for esterification of KA involve the preparation and catalysis
of lipases and proteases in organic or solvent-free systems, resulting in the utilization of
fewer chemicals and being more cost-effective and environmentally friendly. When used
in their immobilized form, most of the enzymes can be repeatedly reused, resulting in
consistent specific enzyme activity and yield during the synthesis of KA esters. The yield
of enzymatically synthesized KA esters is influenced by several factors, including the type
of catalytic enzyme, reaction temperature, organic solvents, KA to fatty acid ratio, metal
ions, water content, and pH [45,75,76].

Various enzymes have been screened for enzymatic synthesis of KA esters, and most
of them were derived from fungi and bacteria. However, the highest yields were obtained
when lipase enzymes from Candida antarctica, Pseudomonas cepacia, and Rhizomucor miehei
were utilized. Based on research conducted by Liu and Shaw (1998) [75], Kobayashi et al.
(2001) [77], Khamaruddin et al. (2008) [78], and Ashari et al. (2009) [71], the synthesis
of C-5-KA monoester using these enzymes resulted in a yield of 40–60%. The optimal
temperature for KA ester synthesis is closely linked to the optimum temperature of the
immobilized enzyme employed in the esterification process. For instance, lipase from
Pseudomonas cepacia exhibits its optimal activity at a temperature of 50 ◦C [75,76]. In this
context, immobilized enzymes are utilized due to their thermostability and higher catalytic
activity when compared to free enzymes [79]. Furthermore, the choice of an organic solvent
played a significant role in influencing the esterification process. A high ratio of KA to fatty
acid esterification resulting in KA esters was attained by using specific solvents, namely
acetonitrile, acetone, and chloroform, which possessed logP values of −0.33, −0.21, and
2.00, respectively [80]. To enhance the hydrophobic nature of the reaction mixture and
thereby improve the efficiency of the esterification process, a co-solvent mixture was also
employed [80]. Moreover, KA-to-fatty acid ratio, metal ions, water content, and pH also
influence the esterification process. Lajis et al. (2013) [76] have extensively discussed the
influence of these parameters on esterification. Readers are encouraged to refer directly to
the literature for more details.

4. Physical and Chemical Propreties of Kojic Acid Dipalmitate

The molecular formula of kojic acid dipalmitate (2-Palmitoyloxymethyl-5-palmitoyloxy-
pyrone) is C38H66O6, with a molecular weight of 618.9 g/mol [81]. Kojic dipalmitic acid
exhibits characteristics of a white powder [47], a melting point of 94 ◦C, and solubility
in oil, alcohol, mineral oil, and esters. Unlike kojic acid, kojic acid dipalmitate is more
stable to light, heat [82], and oxidation and does not chelate metal ions [83]. This makes it
more color-stable, with a reduced likelihood of turning yellow or brown, which makes it
a more popular choice for manufacturers of skin-lightening whitening creams [83]. Kojic
acid dipalmitate is also considered stable over a wide range of pHs [84].

The chemical structure of kojic acid dipalmitate consists of two molecules of palmitic
acid, which are saturated fatty acid, attached to the two hydroxyl groups of kojic acid. This
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structure gives kojic acid dipalmitate its lipophilic (fat-loving) properties, making it more
soluble in oils and fats than kojic acid itself [47,85]. These derivatives have been found to
improve both the stability and solubility of kojic acid in oily cosmetic products [86]. The
comparison of the physical and chemical properties of kojic acid dipalmitate and kojic acid
is presented in Table 1.

Table 1. Physicochemical properties of kojic acid dipalmitate and kojic acid.

Properties Kojic Acid Dipalmitate Kojic Acid

Molecular weight 618.9 g/mol 142.11 g/mol

Solubility Poor aqueous solubility [87]
Soluble in water, acetone;
slightly soluble in ether;
insoluble in benzene [88]

Physicochemical property White crystalline powder White to yellowish crystalline
powder

Melting point 94 ◦C 152 ◦C

pH Stability Exhibits stability within a pH
range of 3 to 10.

Unstable at pH levels greater
than 7.

Light and heat stability Durable under light and heat,
resistant to oxidation

The light, heat, and metal ion
stability of the substance is
low, making it prone to
oxidation [89]

Based on a comparative stability study conducted by Tazesh et al. (2019) between
KA and KDP under oxidative stress, it was observed that KDP underwent more rapid
degradation in similar liquid oxidative stress conditions compared with KA [47]. This
degradation could possibly be linked to the opening of the pyrone ring, followed by subse-
quent decomposition into smaller aliphatic chains. Based on the study, it was concluded
that the notion of enhancing the stability of KA by obstructing its hydroxyl groups through
the attachment of two palmitic acid molecules was a misconception, as the hydroxyl groups
are not the reactive moiety of the molecule. However, Tazesh et al. (2019) still recommend
choosing KDP over KA in cosmetic formulations. Yet, to prevent oxidation, formulators
can include antioxidants to achieve improved stability results [52].

5. Mechanism of Action of Kojic Acid Dipalmitate

Kojic Acid Dipalmitate (KDP) demonstrates greater effectiveness compared with
KA [89,90]. Esterases within skin cells hydrolyze KDP, leading to the in situ release of
kojic acid, as illustrated in Figure 2 [34]. Consequently, the mechanism of action for KDP is
akin to that of KA. The depigmentation properties of kojic acid, elucidated from cellular to
molecular levels, have been extensively explored by Saeedi et al. (2019) [90].

Kojic acid, extensively studied as an inhibitor of tyrosinase, is recognized for its
competitive inhibition of monophenolase activity and its mixed inhibitory effect on the
diphenolase activity of mushroom tyrosinase [50]. Due to the action mechanism described,
kojic acid is categorized as a “true inhibitor”, wherein it can bind to the enzyme and inhibit
tyrosinase activity. Tyrosinase is a copper-containing monooxygenase enzyme that catalyzes
two reactions: o-hydroxylation of monophenols to catechols, also known as monophenolase
or cresolase activity, and oxidation of catechols by O2 to o-quinones, known as diphenolase
or catecholase activity. Typically, true inhibitors are classified into four types: competitive
inhibitors, uncompetitive inhibitors, mixed-type (competitive/uncompetitive) inhibitors,
and non-competitive inhibitors (Figure 3). Competitive inhibitors are compounds that
can bind to free enzymes, thereby preventing substrates from binding to the enzyme. The
observed competitive inhibitory effect of kojic acid is attributed to its ability to chelate
copper at the enzyme’s active site. In contrast to competitive inhibitors, uncompetitive
inhibitors can bind only to the enzyme–substrate complex. A mixed-type inhibitor, which
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is both competitive and uncompetitive, can bind to both the free enzyme and the enzyme–
substrate complex. Most mixed-type inhibitors bind to a free enzyme and an enzyme–
substrate complex with the same equilibrium constant. In addition to the inhibitory
mechanism, the strength of inhibition is a primary criterion for an inhibitor [50].
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Casella et al. [91] studied how KA affects the oxidation of 3,5-dtbc (3,5-di-tert-butyl
catechol) by dicopper model complexes. They suggested that KA acts as a connecting bridge
between the metal centers in the dicopper(II) catalysts, indicating that KA may bind to the
dicopper Ty center. This idea gained support from two other reports that characterized
tetrachloro-o-catecholate-bridged dicopper(II) complexes [92]. Subsequent reports by
Plenge et al. [93] and Ackermann et al. (2002) [94] put forward the concept of bridging
and unsymmetric binding of catechol substrates in a Z2:Z1 fashion, with one of the two
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oxygen atoms participating in a weak interaction with either of the neighboring copper(II)
ions. Studies involving electron spin echoed envelope modulation (ESEEM) [95] and X-ray
absorption spectroscopy (XAS) [96] of a met Ty-KA adduct from bacterial Streptomyces
antibioticus Ty, providing further support for this binding mechanism. However, when
the X-ray structure of the adduct of KA with the met form of Bacillus megaterium Ty was
examined, it revealed that the KA molecule was situated at a distance of 7 Å from the
dicopper center. This finding contrasted with the conclusions of Bochot et al. (2013) [97],
who reported that the distances between copper and oxygen atoms of KA varied around
2.15 Å for CuB. . .O2, 2.04 Å for CuA. . .O2, and 2.17 Å for CuA. . .O3 [97].

Moreover, kojic acid has been reported as a slow-binding inhibitor of tyrosinase’s
diphenolase activity. Other potent slow-binding inhibitors of tyrosinase include tropolone
and the substrate analog L-mimosine. Interestingly, all these slow-binding inhibitors of
tyrosinase share a common feature: they contain an α-hydroxyketone group. Kojic acid,
tropolone, and L-mimosine are frequently used as positive controls in the literature to
compare the inhibitory potency of newly discovered inhibitors [50].

6. Cosmetic Application of Kojic Acid Dipalmitate
6.1. Cosmetic Products Containing KDP

In skincare products, kojic acid dipalmitate was used at concentrations ranging from
0.01% to 25%. Typically, it was employed at concentrations between 0.2% and 8.0%, with the
most frequent usage occurring at concentrations of 0.4% to 4.0% [98]. Kojic acid dipalmitate
exhibited the ability to inhibit the activity of the tyrosinase enzyme, thereby decelerating
melanin synthesis by impeding the conversion of DOPAchrome into DHICA [45].

A study conducted by Chandrashekar et al. in 2018 demonstrated that a 2% kojic
acid dipalmitate formulation in a combination cream was effective and safe as a therapy
for melasma. Kojic acid dipalmitate did not induce skin irritation and contributed to skin
brightening, as evidenced by a reduction in hyperpigmentation observed in 51–57% of the
subjects. Kojic acid at concentrations of 1–2% did not exhibit hepatocarcinogenic effects, was
non-genotoxic, did not irritate the mucosal layer, and did not lead to sensitization [99,100].

As of the time when this literature review was conducted, it is known that there are
over 132 cosmetics available on the market containing Kojic Acid Dipalmitate (KDP) in
various formulations. These data were obtained from a list of products containing kojic acid
dipalmitate accessed on the website [101]. These formulations include face or body creams,
lotions, gels, face masks, serums, toners, eye-brightening products, lip products, face or
body washes, and soap bars, as well as underarm creams designed to reduce pigmentation.
All of these have been summarized in Figure 4.

The concentrations of KDP in these products typically range from 0.4% to 4.0%. KDP
is most commonly formulated in creams designed for brightening both facial and body
areas. In contrast, formulations containing KDP as face scrub and lip scrub are relatively
rare. Additionally, KDP is incorporated into cosmetics intended for the whitening of the
under-eye area and the lightening of the underarms. In addition to containing KDP, these
whitening products may be provided as standalone treatments or in combination with other
depigmenting agents such as arbutin, niacinamide, retinol, tranexamic acid (an antifibri-
nolytic agent widely favored in cosmetics for addressing melasma or hyperpigmentation),
or in combination with exfoliant agents like glycolic acid and lactic acid. These products
may also include antioxidants such as ascorbic acid and tocopherol acetate, as well as pine
bark extracts [101].
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formulations.

6.2. Patent Products of KDP

The patents related to kojic acid dipalmitate remain relatively limited. One such
patent related to KDP is the US patent held by Whittemore et al. (1998), which claims a
skin-whitening cosmetic composition containing kojic dipalmitate. The invention specifi-
cally pertains to an anhydrous skin-whitening cosmetic composition incorporating kojic
dipalmitate [98].

The Shanghai Institute of Technology holds a patent for Solid Lipid Nanoparticles
(SLN) containing kojic acid dipalmitate, valid until 2014. A disclosed innovation pertains
to a nanometer-sized solid lipid carrier encapsulating kojic acid dipalmitate. This delivery
system was designed to enhance the permeation of kojic acid dipalmitate into the skin,
increase utilization efficiency, and improve the whitening effect components.

Components of the formulation shown in the patent include kojic acid dipalmitate,
phospholipid, solid lipid, liquid lipid, a solid emulsifying agent, a polyalcohol additive,
and a preservative, with the remaining content being deionized water. The method for
preparing the nanometer solid lipid carrier involves melting an oil phase and ingredients
that dissolved in it at 75–95 ◦C, heating a water phase containing deionized water and the
polyalcohol additive, and combining the two phases. High-pressure homogenization is
then performed, followed by stirring and cooling to produce the nanometer-sized solid
lipid carrier [102].

As for the patent regarding the analytical approach of Kojic Acid Dipalmitate (KDP)
using the High-Performance Liquid Chromatography (HPLC) method, it is held by Shang-
hai Jahwa United Co. Ltd., Shanghai, China [103]. The three patented formulations and
characterizations containing kojic acid dipalmitate are presented in Table 2.



Cosmetics 2024, 11, 21 11 of 27

Table 2. Patents of kojic acid dipalmitate.

Pantent Holder Field of Invention Year No. of
Patent Reference

Jerry
Whittemore

Robert Neis, US

The present invention relates to
a skin-whitening cosmetic
composition and in particular to
such a composition that is
anhydrous and incorporates
kojic dipalmitate.

1998–2018 US5824327A [98]

Shanghai
Institute of
Technology,

Shanghai, China

A kind of nano-solid lipid
carrier and preparation method
of coated kojic acid acid
dipalmitate

2014–2034 CN104116643A [102]

Shanghai Jahwa
United Co Ltd.,

Shanghai, China

The present invention relates to
a kind of high-performance
liquid chromatography (HPLC)
analytical approach, specifically
related to a method with the
HPLC quantitatively analyzing
kojic dipalmitate.

2002–2022 CN1188700C [103]

7. Nanotechnology Formulations of Kojic Acid Dipalmitate

Nanotechnology refers to the manufacturing and use of materials at the nanoscale [104–107],
where they exhibit distinct physicochemical characteristics compared with their larger
particles [107]. These novel materials demonstrate an increased surface area as a result
of certain internal rearrangements, leading to distinct interactions with biological sys-
tems [108]. The integration of nanotechnology into cosmetic formulations is regarded
as the most current and developing technology currently accessible [105]. Cosmetic pro-
ducers use nanoscale compounds to enhance UV protection [109–112], facilitate deeper
skin penetration [113–117], prolong the effects [118,119], intensify color [120,121], improve
finish quality [121], stability [118,122], and provide lower toxicity [87,115]. Kojic acid di-
palmitate has been widely utilized in the cosmetics industry. It has been formulated using
nanotechnology, primarily to enhance its physical and chemical properties.

Kojic acid dipalmitate incorporates two palmitate groups onto the hydroxyl group at
C-7 [36], resulting in a molecular weight of KDP exceeding 500 Da, thereby impeding its
permeability. As previously explained in the preceding section, the molecular weight of
KDP is 618.9 g/mol [81]. According to the literature, a majority of chemical compounds
with a molecular weight greater than 500 Da are unable to permeate the skin through
passive diffusion processes [123]. To address this limitation, KDP has been formulated into
various preparations such as nanosomes, nanocreams, multiple emulsions, liposomes, solid
lipid nanoparticles (SLN), ethosomal suspensions, and nanoemulsions. These formulations
aim to enhance skin permeability and stability, and reduce toxicity, thereby improving
efficacy and conferring skin benefits. Figure 5 displays schematic representations of the
architectures of KDP integrated into several types of nanomaterials, while Table 3 presents
various cosmeceutical formulations of KDP utilizing nanotechnology.
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Table 3. Enhanced cosmeceutical formulation of KDP.

Published In Preparation of
KDP

The Research
Objective

Diameter of
Particle/Droplet Zeta Potentials Loading Capacity Results Reference

2000 Nanosome

Development of KDP
nanosome in
mono-vesicle and
increased stability

57–75.7 nm −24 mV NA

Turbidity was very good transparency compared
with nanosome with liposome. It formed the
monovesicle in the opposite direction to form the
multi-lamellar vesicle of the liposome. The stability
of nanosomes was very good for 6 months.

[124]

2010 Nanocream
Increased release and
permeability through
skin in vitro

<350 nm NA NA

Nanocreams had shown to produce a higher drug
release and permeability through Franz diffusion
cells, although there was no significant variation
than that in normal cream at p value < 0.05.
Nanocreams penetrate faster and the cumulative
amount of KDP is higher than in normal creams.

[72]

2015 W/O/W Multiple
Emulsions

Increased safety and
activity of KDP in vitro 0.056–12.487 µm NA N/A Incorporation of KDP into MEs improved the

safety and antioxidant activity of KDP in vitro. [85]

2020 Liposome Increasing stability and
loading capacity

80–100 nm;
PDI ≤ 0.2 −0.5 to −0.6 mV 0.61% to 28.12%

Ethosomal gel had a good stability at lower
temperature (8, 25 ◦C).
KDP loading capacity increased from 0.61 to
28.12%

[125]

2020 Solid Lipid
Nanoparticle (SLN)

Increase release profile
and permeability
through skin ex vivo

70 nm NA 47%

The KDP loaded in the SLN presented a slower
release profile of KDP in comparison with the
formulations loaded with KDP. The KDP loaded
into SLN had the highest concentration in the
stratum corneum.

[48]

2022 Ethosomal
suspension

Increase stability and
skin benefits 148 nm −23.4 mV 90.0008%

Ethosomal gel gave a significant decrease in skin
melanin, erythema, and sebum levels while
improving in skin hydration level and elasticity
during non-invasive in vivo studies. The
formulation had good stability at a lower
temperature (8, 25 ◦C).

[87]

2023 Nanoemulsion

Increase permeation,
antioxidant and
depigmentation
efficiency, and lower
cytotoxicity

<130 nm −10 mV >95%

The nanoemulsion containing 1 mg/mL KDP
exhibited antioxidant and depigmenting activities
and allowed the active compound to reach the
epidermis without permeating to deeper layers of
the skin, showing potential for use in cosmetic
formulations for melasma treatment. Such
nanoemulsion was safe for fibroblast-like cells
(3T3-L1) at concentrations up to 1%.

[126]
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7.1. Nanoemulsion

Similarly to KDP, many pharmaceutical ingredients are hydrophobic or have low
solubility in water. Lipid-based delivery systems, such as nanoemulsified systems, are
considered the optimal method for delivering medications that are water-soluble, insoluble,
or weakly soluble due to their enhanced ability to solubilize and transport these pharma-
ceuticals [127–129]. Researchers have shown significant interest in nanoemulsions (NEs)
for the development of diverse drug delivery systems in pharmaceutical applications via
different administration routes [130–132].

Nanoemulsions (NEs) consist of droplets with diameters equal to or less than
100 nm [133], with an oil content varying from 5 to 20% w/v [134]. Some specific NEs may
use a combination of oils to enhance the solubility of drugs. To facilitate the stabilizing pro-
cess, it is possible to include a co-surfactant/co-solvent in addition to the surfactant [135].
NEs exhibit distinct behavior compared with other emulsion systems, such as minimal ag-
glomeration or precipitation, thereby reducing the likelihood of creaming or sedimentation.
Thus, NEs exhibit greater stability compared with other emulsion systems [134].
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Diverse methodologies and strategies are used for the fabrication of NEs, which can be
categorized based on energy requirements, type of phase inversion, and self-emulsification.
High-energy techniques are extensively used to generate NEs, which require more me-
chanical energy to generate powerful disruptive forces that transform bigger droplets into
smaller ones [136]. Various mechanical equipment or instruments, such as ultrasonica-
tors [137], microfluidizers [138–140], and high-pressure homogenizers [136], are used to
create disruptive forces.

High-pressure valve homogenization (HPH) is a well-recognized and widely used
technique for producing nanoemulsion [136]. August Gaulin created the basic technique
in the early 1900s to decrease the size of fat globules in milk, with the goal of improving
stability and prolonging shelf life [141]. This equipment operates based on a valve that is
specifically built and paired with the use of high pressures. As a consequence, it creates
a concentrated and confined area of extreme hydrodynamic stress. This process success-
fully divides the drops into smaller pieces, resulting in the generation of tiny drops that
are required for the creation of nanoemulsions [142]. Microfluidization involves manip-
ulating and controlling fluids at a small scale, often in the micrometer range [138–140].
Ultrasonication surpasses other high-energy technologies in terms of both operation and
cleaning [137].

Emulsion production techniques that operate at low energy levels are more efficient
due to their use of internal chemical energy inside the systems [134]. Phase inversion refers
to the process of changing the polarity or composition of a substance [143]. Emulsification
techniques involve the observation of phase transition occurring during the emulsification
process, caused by the sudden change in curvature of the surfactant. The Phase Inver-
sion Temperature (PIT) technique induces a quick change in the surfactant’s curvature by
temperature variations, resulting in the formulation of NEs [144]. The Phase Inversion
Composition (PIC) approach achieves phase inversion by modifying the emulsion compo-
sition instead of adjusting the system temperature [145,146]. The Emulsion Inversion Phase
(EIP) approach involves the inversion of emulsions via Coalescence and Phase Inversion
(CPI) processes, affecting the proportion of the dispersed phase volume instead of the
surfactant properties [147].

Kojic Acid Dipalmitate is one of the active ingredients that has been formulated in a
nanoemulsion preparation using the high-energy method, employing the Ultra-Turax [126].
The study suggests that nanoemulsions serve as effective carriers, enhancing both the
stability [148] and activity [72] of KDP on the skin. Beyond their carrier capabilities, na-
noemulsions are recognized as a preferable option for drug delivery systems related to
skin permeation. This preference arises from their diminished particle sizes and lipophilic
characteristics [149], resulting in an increased affinity with the stratum corneum. Conse-
quently, this facilitates deeper penetration and permeation of active substances into the
skin, leading to heightened efficacy [150]. Additionally, nanoemulsions possess lipophilic
cores, making them excellent carriers for hydrophobic actives in aqueous media [150].

7.2. Nanocream

Kojic acid dipalmitate (KDP) was also formulated in nanocream [148]. Nanocream is
a formulation of nanoemulsion in the form of semisolid cream [151,152]. Nanoemulsions
are composed of an isotropically clear dispersion of two liquids that are immiscible with
each other, with droplet size varied between 100 and 200 nm [153,154]; in another study,
600 nm [151]. These liquids include a dispersed phase consisting of oils and a continuous
phase consisting of water. The presence of dispersed-phase droplets that are smaller than
200 nanometers results in the nanoemulsion exhibiting a clear and transparent appear-
ance [155]. The stability of this dispersion is maintained by an interfacial film of surfactant
molecules, which possess stable thermodynamic properties [123,156].

Al-Edresi and Baie (2009) conducted a study aimed at formulating a nanoemulsion
in cream form containing Kojic Acid Dipalmitate (KDP) as a whitening active ingredient
and evaluating its stability [148]. The primary components of the nanocream formulation
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included Emulium Kappa® (EK), which consists of candelilla/jojoba/rice bran polyglyceryl-
3-esters, glyceryl stearate, stearoyl alcohol, and sodium stearoyl lactylate, serving as the
emulsifier. Propylene glycol was used as a cosurfactant in a 9:1 ratio. The oil phase
comprised virgin coconut oil (VCO) and squalene oil, maintaining a consistent surfactant-
to-oil ratio of 1.4:1.2. The formulation of the nanoemulsion was successfully achieved using
the Emulsion Inversion Point method.

To mitigate Ostwald ripening, the main instability mechanism of emulsion systems [149],
insoluble oil (squalene)-was added to the system. The Ostwald ripening rate decreased
significantly from 14.94 to 0.97 nm/day as the squalene concentration increased from
2 to 20%, representing a nearly 15-fold reduction in growth rate. This finding aligns
with the study done by Cruz-Barrios (2014), which demonstrates that the inclusion of
squalene in the formula mitigates the impact of ripening [157]. The zeta potential of the
formulation indicated an increase in charge from −65.1 to −101.8 mV with the rising
squalene ratio. This led to enhanced repulsion forces between the droplets, contributing
to the improved stability of the nanoemulsion [158]. The negative droplet charge resulted
from the adsorption of hydroxyl ions on the non-polar VCO droplet through hydrogen
bonding [159]. The primary droplet diameter, ranging from 171.3 to 240.2 nm, remained
unaffected by the squalene ratio. It is important to note that, while this research focused
on enhancing the stability of the nanocream in terms of the zeta potential of the system, it
did not assess the permeation of active ingredients into the skin [148]. In the subsequent
development, Kojic acid dipalmitate (KDP) was further developed into an encapsulated
form using phospholipids, namely, liposomes [125].

7.3. Liposome

Al-Edresi et al. (2020) conducted a study to enhance the loading capacity of kojic
acid dipalmitate (KDP) into liposomes using the active loading method [125]. In this
research, KDP was formulated in liposomes as encapsulating agents to overcome obstacles
to cellular uptake [160–162] and target specific sites in vivo [163,164], thereby improving
the delivery efficacy of compounds. Liposomal formulations were also proposed as a
means of enhancing the therapeutic efficacy of poorly bioavailable drugs [165,166].

Initially, liposomes were prepared using the thin lipid film hydration method without
active ingredients. To actively load KDP into the liposomes, a KDP solution was mixed
with liposome suspension in a shaking water bath at 60 ◦C [167]. As the temperature of the
liposomes increased to the phase transition temperature, holes opened in the lipid bilayer,
allowing KDP to permeate from the intraliposomal to the interliposomal medium due to
concentration gradients. This gradient served as a driving force for the permeation of KDP,
leading to an equilibration of concentration on both sides of the liposome bilayer [168].
Active loading resulted in significantly higher loading capacity (%LC) compared with
passive loading of KDP [163,168]. The concentration gradient technique forced KDP to be
incorporated into the core of the liposomes, achieving an %LC of 28.12% [125].

Passive loading of KDP into liposomes, on the other hand, depended mainly on hy-
drophobic interaction and association with the 1,2-distearoyl-sn-glycero-3-phosphocholine
(DSPC) bilayer structure as a phospholipid [168]. Liposomes were able to incorporate KDP,
but in low percentages for passive loading methods, with a loading capacity of 0.61%, as
the lipid bilayer constituted only small fractions of the liposomes.

Using the active loading method not only resulted in an increase in the amount of
KDP incorporated into the liposomes but also maintained stable liposomes with particle
sizes in the range of 80–100 nm, PDI ≤ 0.2, and zeta potential of −0.5 to −0.6 mV [125]. No
significant changes in particle size over time were observed, indicating stable liposomes.
However, it is important to note that this study did not conduct penetration testing into the
skin or evaluate the content of formulations during storage stability testing.
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7.4. Solid Lipid Nanoparticles

Solid lipid nanoparticles (SLNs), formerly referred to as lipospheres, are a kind of
pharmaceutical nanocarrier that show potential for controlled drug delivery [169,170].
SLNs are generally composed of biodegradable and safe lipidic components [171]. SLNs
possess the notable ability to transport a wide range of therapeutic substances, such as tiny
medication molecules, big biomacromolecules (such as polysaccharides), genetic material
(such as DNA or siRNA), and vaccination antigens [172]. Small drug molecules have the
ability to load both hydrophilic and lipophilic medicines, including KDP.

Kojic Acid Dipalmitate (KDP) have been formulated in SLN by Mohammadi et al.,
(2020) [48]. SLN-loaded KDP formulation consisted of melted GMS 100 mg and KDP 10
mg in 2% PVA using evaporated solvent ethanol/acetone 2.5:1.5, all of which had a KDP
entrapment efficiency of about 47%, meaning the KDP concentration in the formulation
was 10 mg/25 mL (0,04%) and being loaded in the SLN of about 47% of 0.04% (0.02% KDP
in SLN). SLN-loaded KDP was successfully formulated with the mean size of 70 ± 5 nm. In
this formulation, stability test results are not explained, so conclusions about the stability
of the formula cannot be drawn. However, in vitro drug release and ex vivo permeation
of Kojic Acid Dipalmitate (KDP) from Solid Lipid Nanoparticle (SLN)-based preparations
were clearly described in the research paper.

The release profile of KDP from SLN preparations follows a first-order kinetic model.
In comparison to KDP powder and KDP cream, formulations loaded with KDP in SLN,
hydrogel, SLN-based cream, and SLN-based hydrogel exhibit a slower release rate. Among
these, the KDP hydrogel demonstrates the slowest release profile, followed by the SLN-
based hydrogel of KDP. These findings suggest that the lipophilic nature of KDP, the
occlusive effect of the cream, the matrix structure of SLN, and the hydrogen bonds facilitated
by polyvinyl alcohol (PVA) play crucial roles in determining the release rate of KDP and its
diffusion into the receiving phase [48].

One of the factors accelerating the release rate from KDP powder and KDP cream
is the lipophilic nature of KDP, which enables penetration into the skin through both
intracellular and paracellular pathways. The second factor is the entrapment efficiency of
KDP in the SLNs (47%). In contrast, KDP powder, KDP cream, and KDP hydrogel have
higher concentrations, leading to a greater diffusion rate through the skin based on Fick’s
second law. The lipid matrix structure of SLNs retains lipophilic drugs for an extended
period, allowing a slower release. The hydrogen bonds formed through the interaction of
the hydrophilic structure of hydrogels, PVA in the SLNs, and even KDP itself contribute to
a slower release rate from hydrogel formulations [48].

7.5. Ethosomes

Ethosomes are nanocarriers in the form of vesicles that contain a relatively high concen-
tration of ethanol, ranging from 20% to 45% [123,173]. Ethanol is an effective substance that
enhances permeation, giving ethosomes distinct characteristics, including high flexibility
and deformability [174]. This enables them to profoundly enter the skin and boost the
absorption and distribution of drugs. The augmented concentration of ethosomes offers
significant benefits in delivering medicinal ingredients for many ailments, such as acne,
psoriasis, alopecia, skin infections, hormone deficiencies [175], and hyperpigmentation [87].

The fundamental constituents of ethosomes consist of active pharmaceutical ingre-
dients (API), ethanol, water, and phospholipids [176]. Ethosomal vesicles consist of a
phospholipid bilayer around an aqueous core that holds the medication. Ethosomes differ
from other lipid nanocarriers in terms of ethanol content, bilayer fluidity, absorption route
via the skin, synthesis procedure, and absence of adverse effects. Ethosomes have a smooth
and pliable size, ranging from 30 nm to several microns. It has been shown that ethosomes,
although being manufactured using the same technique as liposomes, are smaller in size
than liposomes [175]. The decrease in size is caused by the increased alcohol content, and it
becomes progressively smaller as the percentage of ethanol increases to 20–45 [173].
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Ethosomes have the ability to trap several types of molecules, including hydrophilic,
lipophilic, and high-molecular-weight compounds [177]. Kojic Dipalmitate (KDP) can also
be formulated in nanosized ethosome gel. Various ethosomal suspensions loaded with
KDP were prepared using soy phosphatidylcholine, ethanol, propylene glycol, and water
through a cold method. These formulations underwent assessment for size, zeta potential,
polydispersity index, entrapment efficiency, FTIR spectroscopy, and scanning electron mi-
croscopy (SEM). Subsequently, the stability of the optimized gel was examined, and in vivo
studies were conducted to evaluate the skin benefits. The optimized formulation has zeta
potential, size, and entrapment efficiency of −23.4 mV, 148 nm, and 90.0008%, respectively.
SEM results showed that the vesicles were spherical in shape. Ethosomal gel had good
stability at lower temperatures (8, 25 ◦C). In addition, ethosomal gel causes a significant
decrease in skin melanin, erythema, and sebum levels, while it causes improvement in skin
hydration level and elasticity during non-invasive in vivo studies [87].

The overall findings indicated that the prepared KDP-loaded ethosomal formulation
was stable and provided deep penetration of KDP into the skin. It offers a promising
therapeutic approach for use in skin hyperpigmentation, as it has skin-whitening and
moisturizing effects [87].

7.6. Nanosome

Nanosomes, also known as “nanoscaled liposomes”, are tiny and homogenous mi-
croscopic vesicles made up of a phospholipid bilayer [178]. These vesicles may contain
one or numerous lipid bilayers and have the capability to encapsulate pharmaceuticals.
Nanometer-sized vesicles are composed of phospholipid bilayers, which may consist of
a single or many lipid bilayers [179]. Therefore, they possess the desirable qualities of
being harmless, non-stimulating to the immune system, and capable of being broken
down naturally due to their resemblance to the molecular structure of mammalian cell
membranes [180]. The nanoscaled liposomes possess comparable physicochemical and
thermodynamic characteristics to those of regular liposomes. Several studies have shown
that nanosomes exhibit greater encapsulation of nonpolar components compared with
traditional liposomes due to their smaller size and better surface-to-volume ratio [134].

Lipid-based carriers can be prepared using various techniques, depending on factors
such as solvent properties, drug release patterns, vesicles’ size and uniformity, and potential
toxicity. Some procedures for creating lipidic nanocarriers, known as “Nanosomes”, include
the supercritical fluid process (SCF) [181], microfluidization process [182], supercritical
reverse phase evaporation method [183], and dual asymmetric centrifugation [178].

The supercritical fluid process (SCF) is used for manufacturing phospholipid nanosomes,
which involves combining lipids and supercritical fluids under high pressure. The mixture
is depressurized using a backpressure regulator, resulting in bubbles that dry out and form
a lipid bilayer. This bilayer encloses solute molecules and seals itself, forming phospholipid
nanosomes [181]. The microfluidization process allows for continuous and consistent
formulation production, but requires high pressure, reaching up to 10 pounds per square
inch (psi). Two types of microfluidized systems are used: single-step single-channel
microfluidization and single-step dual-channel microfluidization [182]. The supercritical
reverse phase evaporation method involves adding supercritical liquid carbon dioxide to a
chamber, maintaining pressure above the supercritical threshold to ensure effective mixing.
Once carbon dioxide evaporates, nanoliposomes with sizes ranging from 0.1 to 1.2 µm
are formed [183]. Dual asymmetric centrifugation is a unique method that causes a vial
containing a mixture of lipids and organic solvents to rotate on its vertical axis and spin
around the centrifuge center, resulting in two simultaneous movements. This technique is
not suitable for large-scale production due to its high encapsulation efficiency and high
yield [178].

In 2000, In-young et al. introduced a novel encapsulation vesicle system that combines
elements of both niosomes and liposomes, termed as nanosomes. Generally, when a
surfactant is dissolved in water, it tends to form micelles [105,184]. A liposome is a
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molecule with two lipophilic parts attached, such as a phospholipid [185]. Furthermore,
when phospholipids and surfactants are mixed and dispersed in water, a monolayer is
formed in a lamellar structure, as opposed to micelles. These monolayer vesicles are
denoted as nanosomes. In comparison to liposomes, these vesicles exhibit a much finer
size, contributing to enhanced stability of the active ingredient [124].

In this study, kojic acid dipalmitate was encapsulated inside the mono-layer vesicle
and consisted of phospholipids and surfactants. The phospholipid used was hydrogenated
liposomes (HL), and surfactants included in the formula were diethanolamine cetylphos-
phate (DEA-CP) and diglyceryl diodeate (DGDO). Kojic acid dipalmitate encapsulated in
the vesicle could be up to 1% located in the core of the vesicles. With the application of
the microfluidization (MF) method, the nanosomes were successfully developed until a
nanosized suspension of the monovesicles system was obtained. It was confirmed through
SEM that the particle size of the nanosomes was 57–75.7 nm, and the average particle size
was 66 nm, indicating that a very fine particle size was formed. The stability of nanosomes
developed in this research was also good, because they passed through MF three times, as
confirmed by the zeta potential value at 23.8 mV [124].

7.7. Multiple Emulsion

Nanoemulsions have been recently acknowledged for their distinct features that
render them more adaptable compared with conventional emulsion systems. In addition
to the increasing interest in nanoemulsions, there have been notable advancements in the
formulation of multiphase emulsions, which consist of droplets that contain immiscible
droplets. Multiple emulsions serve as flexible platforms for chemically encapsulating
components with varying polarity or solubilities, as well as for formulating multiphase
materials and facilitating many additional tasks [186]. Widely employed processing tools,
such as microfluidic devices and sequential emulsification, allow for accurate manipulation
of the quantity, dimensions, and composition of the enclosed droplets [187]. This enables a
wide range of possibilities for designing the internal structure of multiphase droplets and
colloidal particles produced using these tools.

Kojic Dipalmitate (KDP) has also been formulated into multiple emulsions (MEs)
with the aim of increasing their bioavailability and protecting the drugs against biological
degradation and oxidation processes [86]. This formulation can extend the drug release,
potentially reducing the required dosages and application time. The ME system formulated
was in the form of a water-in-oil (W/O/W) system, developed through a two-step process.
The initial W/O emulsion was first created using 20% span 80 as a surfactant, 45% liquid
petrolatum, and 35% water. The primary emulsion was then dispersed into an aqueous
solution of Tween 20 to generate a W/O/W ME composed of 80% of the primary emulsion,
10% of the solution in 40% Tween 20, and 10% water [86].

The droplet size of multiple emulsions (MEs) is notably larger in comparison with other
nanodelivery systems, measuring approximately 1 µm with a zeta potential of −13 mV.
In addition to the formulation, the authors conducted in vitro biological assays using the
erythrocyte-induced hemolysis in vitro method to evaluate the potential irritation of a novel
topical preparation. Free Kojic Acid Dipalmitate (KDP) led to the lysis of 4.09% ± 0.13%
of erythrocyte membranes. KDP-unloaded MEs induced lysis of 1.57% ± 0.47% of ery-
throcyte membranes. The incorporation of KDP in ME resulted in 2.98% ± 1.12% lysis,
demonstrating decreased erythrocyte lysis compared with free KDP. Therefore, all systems
exhibited tolerable erythrocyte hemolysis [86].

The formulations, whether with or without the addition of KDP, underwent assessment
for in vitro antioxidant activity over a 28-day period using the DPPH assay. Throughout the
28 days, there was a decline in the antioxidant power of all experimental groups, with the
most significant decrease observed for free KDP. The differences between the samples were
statistically significant (p < 0.05), and the observed lesser destabilization of the samples is
likely attributed to the increased stabilization of the KDP-loaded ME formulation [86].
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8. Conclusions

This article explores the development and use of Kojic Acid Dipalmitate (KDP) in
skincare products, with a specific emphasis on its ability to hinder the production of
melanin and its potential for treating disorders like melasma. KDP concentrations in
skincare products often vary between 0.01% and 25% [98]. In 2018, Chandrashekar et al.
conducted research that demonstrated that a combination cream including a 2% KDP
formulation was both efficacious and safe for treating melasma [99,100].

The article explores the restricted number of patents associated with KDP, specifically
focusing on one patent by Whittemore et al. (1998) for a cosmetic composition that lightens
the skin and contains KDP [98]. Furthermore, the Shanghai Institute of Technology has
a patent for Solid Lipid Nanoparticles (SLN) that includes KDP, with the purpose of
augmenting skin permeability and enhancing whitening effects [102,103].

The fundamental focus of this discussion is the use of nanotechnology in the formu-
lation of KDP. Various preparations, including nanoemulsions, nanocreams, liposomes,
and ethosomal suspensions, are explored in detail. The purpose of these formulations is
to overcome the molecular weight restrictions of KDP and improve the capacity of the
substance to pass through the skin, as well as its stability and effectiveness, while also
minimizing any potential harmful effects.

The article highlights the importance of nanoemulsions in drug delivery systems
for skin permeation, providing evidence from studies that demonstrates their efficacy in
improving both the stability and activity of KDP on the skin. Nanoemulsions are favored
because of their smaller particle sizes and lipophilic properties, which enable enhanced
penetration and absorption of active ingredients into the skin.

In addition, the essay provides a comprehensive analysis of formulations such as
nanocreams and liposomes, specifically examining their stability, particle sizes, and loading
capacities. The focus is on the creation of ethosomal suspensions loaded with KDP, which
show potential for effectively treating skin hyperpigmentation.

Ultimately, the study highlights the transformative influence of nanotechnology on
the development of Kojic Acid Dipalmitate, augmenting its physical and chemical char-
acteristics. The use of KDP in several nanoscale formulations has significant promise for
enhancing effectiveness and skin advantages in cosmetic uses.

9. Future Potential of Kojic Acid Dipalmitate

The future prospects of Kojic Acid Dipalmitate (KDP) in skincare products seem
promising. Furthermore, the potential of KDP can be greatly enhanced by strategically
combining it with other active ingredients. This can unlock synergistic effects that can
significantly amplify its effectiveness in skincare formulations. Through the synergistic
combination of KDP with complimentary active ingredients, the formulation is able to
effectively address numerous facets of skin health, providing a holistic treatment for a
range of skin issues, such as: (1) Enhanced Skin Brightening. Combining KDP with potent
skin brightening agents such as arbutin or licorice extract may create a powerful syn-
ergy [23,188,189]. Arbutin, for example, is known for its melanin-inhibiting properties, and
when combined with KDP, it may result in a more robust formula for addressing hyperpig-
mentation issues. (2) Antioxidant Protection. Incorporating antioxidants like vitamin C or
green tea extract alongside KDP can provide dual benefits [190–193]. This combination not
only inhibits melanin production but also shields the skin from oxidative stress, helping
to prevent premature aging and promoting an overall healthier complexion; (3) Moisture
Retention and Hydration. Formulating KDP with hyaluronic acid or glycerin can enhance
the moisturizing properties of the skincare product [107,194]. This combination ensures
that the skin not only receives the benefits of melanin inhibition but also maintains optimal
hydration, contributing to a more radiant and supple complexion; (4) Anti-Inflammatory
Support. Partnering KDP with anti-inflammatory agents such as chamomile extract or aloe
vera can be beneficial, especially for individuals with sensitive skin [24,195]. This combina-
tion potentially mitigates potential irritations and redness, making the skincare product
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suitable for a broader range of skin types; (5) Collagen Boosting. Introducing collagen-
boosting ingredients like peptides or retinol alongside KDP can support skin elasticity
and firmness [188,196]. This combination potentially addresses not only pigmentation con-
cerns but also contributes to a more youthful and resilient skin appearance; (6) Sunscreen
Integration. Combining KDP with a broad-spectrum sunscreen offers a comprehensive
approach to skin protection. Sunscreen ingredients like zinc oxide or titanium dioxide
can complement KDP by preventing UV-induced pigmentation, providing a well-rounded
defense against sun-related skin issues; and (7) Customizable Formulations. Considering
individual skin needs, formulating KDP with ingredients tailored to specific concerns, such
as acne-fighting agents (e.g., salicylic acid) [197] or anti-aging compounds (e.g., peptides),
may potentially create personalized skincare solutions.

In conclusion, the future potential of Kojic Acid Dipalmitate lies in its ability to
synergize with a spectrum of other active ingredients. These combinations have the
potential to create advanced skincare formulations that not only target pigmentation issues
but also offer a holistic approach to skin health, catering to diverse needs and preferences
in the ever-evolving landscape of skincare.
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