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Abstract: In this paper, we proposed a novel structure enabling the low voltage operation of three-
dimensional (3D) NAND flash memory. The proposed structure has a ferroelectric thin film just
beneath the control gate, where the inserted ferroelectric material is assumed to have two stable
polarization states. A voltage for ferroelectric polarization (VPF) that is lower than the program or
erase voltage is used to toggle the polarization state of the ferroelectric thin film, whose impact on the
channel potential profile is analyzed to optimize operation voltage reduction. The channel potential
of select word line (WL), where the natural local self-boosting (NLSB) effect occurs, increases due to
the polarization state. Model parameters for the ferroelectric thin film of 8 nm are fixed to 15 µC/cm2

for remanent polarization (Pr), 30 µC/cm2 for saturation polarization (Ps), and 2 MV/cm for coercive
field (Ec). Within our simulation conditions, a program voltage (VPGM) reduction from 18 V to 14 V
is obtained.

Keywords: 3D NAND flash memory; ferroelectric; natural local self-boosting (NLSB); program
voltage for ferroelectric polarization (VPF)

1. Introduction

The growing demand for data storage devices such as solid-state drives (SSD), mobile
phones, and data centers has been supported by high density NAND flash memories.
Their classical two-dimensional implementation [1,2] has been revolutionized to current
three-dimensional (3D) NAND flash technologies based on cell stacking [3–5]. Further
development is necessary to mitigate conventional cell-to-cell interference, reliability,
and newly investigated issues [6–8]; which can be accomplished by operation voltage
reduction of memory cells. In this paper, a low voltage NAND flash memory cell is
proposed with ferroelectric thin film just beneath the control gate, where ferroelectric
polarization gives an auxiliary biasing for the reduction of program or erase voltages.
If the ferroelectric thin film is used, program disturb decreases because high channel
potential of selected WL reduces the program disturb in the inhibited string. When the
channel potential of selected WL is increased, the program disturb is decreased in the
inhibited string. Therefore, we analyzed the channel potential of the proposed structure
in this paper. In addition, the natural local self-boosting (NLSB) effect of selected word
line (WL) in the inhibited string was analyzed according to the voltage for ferroelectric
polarization (VPF) [9,10]. The channel potential of proposed structure was compared
with the channel potential of conventional structure. The 3D technology computer-aided
design (TCAD) simulation was conducted to analyze the characteristic of the proposed
structure, in which ferroelectric materials are with the ferroelectric permittivity model in
ATLAS SilvacoTM [11,12].
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2. Proposed Structure and Operation

Figure 1 shows the proposed structure, which is composed of 16-word lines, string
select line (SSL), ground select line (GSL), bit line (BL), and common source line (CSL).
In this structure, the WL 8 was specified as the selected WL. The conventional structure
consists of silicon, oxide, nitride, oxide, and silicon (SONOS) [13–15], where the ONO
thickness combination is 8 nm, 8 nm, 4 nm. The proposed structure has ferroelectric thin
film replacing the oxide beneath the control gate. Model parameters for the ferroelectric
thin film are set as follows: 15 µC/cm2 for Pr, 30 µC/cm2 for Ps, and 2 MV/cm for
Ec. The voltage for the ferroelectric polarization is smaller than the program voltage
(or the absolute value of the erase voltage), and its application gives one of two stable
polarization states in the ferroelectric thin film. Positive VPF is applied prior to the program
operation, when downward polarization is built in the ferroelectric thin film as illustrated
in Figure 1. This downward polarization gives an auxiliary positive biasing on the tunnel
oxide and nitride dielectric layers, which gives reduction in program voltage that is applied
subsequent to the VPF.
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Figure 1. Proposed structure with ferroelectric thin film on top of the nitride.

Figure 2 shows the timing diagram of the WL 8 in the proposed structure. The VPGM
is fixed at 18 V, in addition, variable VPF is applied for optimization. During the program
operation, the pass voltage (VPASS) of 6 V is applied to unselected WL. Meanwhile, 2.4 V is
applied to SSL and bit line (BL). The channel potential profiles are collected at t1 and t2.
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Figure 2. Timing diagram of the proposed structure. Pulse duration of VPF, and the delay between
VPF and VPGM is indicated as T1.

3. Results and Discussions

Figure 3 shows the channel potential profiles when VPF ranged from 3 V to 7 V.
The VPF time was fixed to 2 µs because VPF time did not significantly affect the channel
potential. As a result, the channel potential reached the maximum value when VPF was
4 V. However, when VPF is increased from 4 V to 7 V, the channel potential of WL 8 also
decreased. The most suitable value of VPF in this range is, therefore, 4 V, as the maximum
channel potential was obtained.
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Figure 3. Comparison of the channel potential according to VPF at t2 in Figure 2.

In Figure 4, the channel potential profiles at VPF of 4 V with a fixed pulse width of 2 µs,
where the delay time between VPF and VPGM (T1) is varied from 1 to 4 µs. In Figure 4a,
when T1 was 1 µs, the lowest channel potential was obtained. Furthermore, the channel
potential increased with T1, as the polarization phenomenon positively affected the channel
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potential during T1. As a result, with the increase of T1, the duration in which the increased
channel potential lasted longer. This conclusion is also supported by the results shown
in Figure 4b. The channel potential of WL 8, where the natural local self-boosting effect
occurs [10], also increased with T1.
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Figure 4. Channel potential profiles with various T1 periods collected (a) at t1 and (b) at t2.

Figure 5a shows the channel potential profiles obtained from the proposed and con-
ventional structures when VPGM was 18 V. The highest values of channel potential of the
conventional and proposed structures were 12.12 V, 13.95 V, and 15.64 V, respectively.
The channel potential of proposed structure with 3.9 for ferroelectric permittivity (εf) is
higher than that of the conventional structure. This result means the polarization phe-
nomenon positively influenced the channel potential of WL 8. In addition, the channel
potential of proposed structure with default value (200) of εf is highest since the more polar-
ization occurs if the permittivity is higher. Therefore, the ferroelectric thin film can increase
the channel potential because of the high permittivity and the polarization phenomenon.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 5 
 

 

Figure 4. Channel potential profiles with various T1 periods collected (a) at t1 and (b) at t2. 

Figure 5a shows the channel potential profiles obtained from the proposed and con-
ventional structures when VPGM was 18 V. The highest values of channel potential of the 
conventional and proposed structures were 12.12 V, 13.95 V, and 15.64 V, respectively. 
The channel potential of proposed structure with 3.9 for ferroelectric permittivity (εf) is 
higher than that of the conventional structure. This result means the polarization phenom-
enon positively influenced the channel potential of WL 8. In addition, the channel poten-
tial of proposed structure with default value (200) of εf is highest since the more polariza-
tion occurs if the permittivity is higher. Therefore, the ferroelectric thin film can increase 
the channel potential because of the high permittivity and the polarization phenomenon. 

As a result, in the proposed structure, the same effect as that when 18 V is applied to 
the conventional structure can be obtained even if VPGM is lowered. When VPGM was 14 V, 
considering the proposed structure, the channel potential of WL 8 was the same as that of 
the conventional structure, as shown in Figure 5b. The voltage reduction obtained from 
these results is a significant advantage of the proposed structure for the 3D NAND flash 
memory. 

When using a ferroelectric thin film, it may be difficult to make a thin film due to a 
process problem. In addition, since blocking oxide is used as a ferroelectric thin film, leak-
age current may occur. However, if several drawbacks of ferroelectric material are further 
studied, they can be sufficiently used in mass production because they have great ad-
vantages. 

 
(a) (b) 

Figure 5. Comparison of the proposed structure and the conventional structure. (a) VPGM was 18 V for structures; (b) VPGM 
was 14 V for the proposed structure. 

4. Conclusions 
In this paper, we proposed a novel structure composed of ferroelectric material for 

the 3D NAND flash memory. When VPF was applied to the WL 8, the channel electrons of 
the neighbor cells migrated to the WL 8. The channel potential increased with T1 as the 
polarization phenomenon improved the channel potential during T1. In addition, experi-
ments with different VPF were conducted to obtain the voltage (4 V) that maximized the 
channel potential. The maximum channel potential of the proposed structure was higher 
than that of the conventional structure. Therefore, the same electrical behavior of the con-
ventional structure when VPGM was 18 V can be observed when VPGM was lowered to 14 V 
with the proposed structure, which is a significant advantage for the 3D NAND flash 
memory. 

0.1 0.4 0.7 1.0 1.3

0
2
4
6
8

10
12
14

 

 

C
ha

nn
el

 P
ot

en
tia

l [
V

]

Distance From BL [m]

  Proposed
@ V

PGM
= 14 V

  Conventional 
@ V

PGM
= 18 V

WL15      /      WL8      /      WL0

0.1 0.4 0.7 1.0 1.3

0
2
4
6
8

10
12
14
16

 

 

C
ha

nn
el

 P
ot

en
tia

l [
V

]

Distance From BL [m]

  Proposed (Default)
  Proposed (

f
 = 3.9)

  Conventional

15.64 V 

12.12 V

WL15      /      WL8      /      WL0

0.66 0.68 0.70 0.72

12

13

14

15

16

 

  

 

13.95 V 

Figure 5. Comparison of the proposed structure and the conventional structure. (a) VPGM was 18 V for structures; (b) VPGM

was 14 V for the proposed structure.



Electronics 2021, 10, 38 5 of 6

As a result, in the proposed structure, the same effect as that when 18 V is applied
to the conventional structure can be obtained even if VPGM is lowered. When VPGM was
14 V, considering the proposed structure, the channel potential of WL 8 was the same as
that of the conventional structure, as shown in Figure 5b. The voltage reduction obtained
from these results is a significant advantage of the proposed structure for the 3D NAND
flash memory.

When using a ferroelectric thin film, it may be difficult to make a thin film due
to a process problem. In addition, since blocking oxide is used as a ferroelectric thin
film, leakage current may occur. However, if several drawbacks of ferroelectric material
are further studied, they can be sufficiently used in mass production because they have
great advantages.

4. Conclusions

In this paper, we proposed a novel structure composed of ferroelectric material for
the 3D NAND flash memory. When VPF was applied to the WL 8, the channel electrons
of the neighbor cells migrated to the WL 8. The channel potential increased with T1 as
the polarization phenomenon improved the channel potential during T1. In addition,
experiments with different VPF were conducted to obtain the voltage (4 V) that maximized
the channel potential. The maximum channel potential of the proposed structure was
higher than that of the conventional structure. Therefore, the same electrical behavior of
the conventional structure when VPGM was 18 V can be observed when VPGM was lowered
to 14 V with the proposed structure, which is a significant advantage for the 3D NAND
flash memory.
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