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Abstract: The Chang’e-5 lunar exploration mission of China is equipped with a Lunar Regolith
Penetrating Radar (LRPR) for measuring the thickness and structures of the lunar regolith in the
landing area. Since the LRPR is stationary, an ultra-wideband multiple-input multiple-output (MIMO)
array is designed as a replacement for conventional mobile subsurface probing systems. The MIMO
array, with 12 antenna elements and a switch matrix, operates in the frequency band from 1.0 to
4.75 GHz. In this work, the design and layout of the antenna elements were optimized with respect
to the lander. To this end, the antenna elements were designed as miniaturized Vivaldi antennas with
quarter elliptical slots (i.e., quarter elliptical slotted antenna, or QESA). QESAs are significantly small
while being able to mitigate the impact of the lander on antenna electrical performances. QESAs also
have a wide operating bandwidth, flat gain, and excellent time domain characteristics. In addition,
a high-temperature resistant ultra-light radome with high transmissivity is designed to protect the
external antenna array. After calibration, the MIMO array is used to detect targets embedded in
volcanic ash. The detection depth reaches 2.5 m, and the detection effect is good.

Keywords: MIMO array; vivaldi antenna; ultra-wideband; Chang’e-5; LRPR

1. Introduction

At the end of 2020, China will conduct the Chang’e-5 (CE-5) lunar exploration mission.
The Chang’e-5 lander is equipped with a Lunar Regolith Penetrating Radar (LRPR). The
LRPR is a high-resolution lunar regolith probing imaging radar for detecting the thickness
and fine structure of the lunar regolith in the landing area. The radar is used for studying
the structure, electromagnetic characteristics and mineral composition of lunar regolith,
and analyzing the formation and evolution of lunar regolith. The structure information of
lunar regolith detected by LRPR can support the work of drilling and sampling.

Since the 1970s, the Apollo Lunar Sounder Experiment (ALSE) on the Apollo-17 and
Lunar Radar Sounder (LRS) onboard the SELENE have successively explored the subsur-
face structure of the moon in lunar orbit [1,2]. In 2012 and 2018, the Lunar Penetrating
Radar (LPR), carried by Chang’e-3 and Chang’e-4, implemented high-resolution sounding
on the surface of the lunar with a depth of hundreds of meters [3,4]. The Mars Pene-
trating Radar (MPR) system onboard Tianwen-1 mission of China and the Radar Imager
for Mars’ Subsurface Exploration (RIMFAX) system for National Aeronautics and Space
Administration’s (NASA) Mars 2020 rover mission will be detecting on the surface of
Mars in 2021 [5,6]. All of the above radar systems are satellite or rover borne systems and
detected by mobile scanning. Since the CE-5 lander is stationary, it is necessary to design
a new sub-surface probing mode to replace the conventional mode. For this reason, an
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ultra-wideband multiple-input multiple-output (MIMO) array is designed, which performs
two-dimensional scans of the area below the array by using a switch matrix to switch
antennas between the transmitting and receiving states. This is the first application of this
method in aerospace, and there is almost no ground-based precedent, except that Motoyuki
Sato has used a similar method [7].

The proposed MIMO array consists of 12 elements which uses miniature quarter
elliptical slotted Vivaldi antennas (QESAs), with the thoroughly optimized placements on
the CE-5 lander. This design reduces the impact of the lander on antenna performance and
ensures that the standing wave ratio (SWR) of the antenna elements is <2.0 throughout
the range of 1.0–4.75 GHz. QESAs are capable of providing 2–8 dBi of realized gain and
there are no grating lobes in the operating band. The length and width of the QESA are
both one-third the wavelength of the lowest operating frequency, which is significantly
smaller than conventional Vivaldi antennas [8]. The MIMO array uses a switch to set an
antenna element in the transmitting or receiving state, one of the 12 elements transmits the
impulses, and the remaining elements receive the echo signals at the same time. In one full
scan, each element will be transmitted one-by-one, forming 132 traces of data. In addition,
three radomes are designed to ensure that the array can withstand the temperature from
−150 to +250 ◦C and protect the antennas from the pollution of lunar dust.

Section 2 introduces the design requirements and application requirements of the
antenna array. Section 3 describes the design of the antenna element and the array, and
some simulation and measurement results are shown. In the Section 4, the calibration and
test verification methods of antenna array are given, and the effectiveness of calibration
is demonstrated. The detection effect of the array is verified by testing. Sections 5 and 6
provide the discussion and conclusion.

2. Antenna Design Requirements

The design requirements of MIMO array mainly come from the scientific objectives of
LRPR and mission requirements. The operating frequency of LRPR is defined from 1.0 to
4.75 GHz, because LRPR is necessary to detect the structure of lunar regolith within 2.5 m
thickness and achieve the depth resolution of a few centimeters. Since the CE-5 lander is
stationary, which is different from all previous subsurface structure exploration on Lunar or
Mars, the LRPR antenna system adopts MIMO array and replaces the traditional detection
mode by electrical scanning. The array is divided into three groups, which are respectively
installed at the bottom and side of the lander. The radiation direction of each element is
ensured to point to the lunar surface. The bottom structure of the lander is complex and
the coupling between the antenna and the lander is strong, which changes the radiation
characteristics and impedance characteristics of the antenna. Therefore, it is necessary to
optimize the element design and array layout combined with the lander.

The installation position of the array is only 0.7 m away from the landing engine.
During the landing process, part of the plume generated by the engine directly diffuses to
the array position, and part of the plume is reflected to the antenna position by the lunar
surface. The plume will heat the array rapidly. By the thermal analysis, the maximum
temperature of the antenna may reach 250 ◦C, so the MIMO array should be able to adapt
the temperature from −150 to +250 ◦C. The main design indexes of the MIMO array are
listed in Table 1.
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Table 1. Multiple-input multiple-output (MIMO) array design requirements.

Parameter Value

Operating band 1.0–4.75 GHz
Gain GLF ≥ 1dBi GHF ≥ 6 dBi, increase with frequency

Polarization linear
Match (S11) ≤−10 dB
Beam width ≥50◦, direct to lunar surface

Temperature range −150 to +250 ◦C
Total mass ≤1.6 kg

Volume
Group A: 800 × 120 × 120 mm3

Group B: 300 × 240 × 120 mm3

Group C: 120 × 60 × 120 mm3

3. MIMO Array System Design
3.1. Antenna Element Design

The width and length of a conventional Vivaldi antenna are generally not less than
λ/2 and 2 λ, respectively [9,10]. Since conventional antenna designs cannot meet the strict
weight and volume requirements of space exploration, a miniaturized antenna must be
designed specifically for this purpose. If the miniaturization problem is addressed in
isolation, these weight and volume requirements may be met using current techniques for
the miniaturization of Vivaldi antennas [8,11]. The electrical performance of the antenna is
deteriorated due to the strong coupling between the antenna and the lander which makes
the existing methods difficult to satisfy the mission requirements. Therefore, the impact of
the lander should be properly considered in the design.

The QESA design was developed on the basis of analyses on how the array config-
uration and lander affect antenna performance. The QESAs are made of ceramic filled
polyimide laminate with relative permittivity of 3.8, loss tangent of 0.006 and thickness of
1 mm. The structure of the QESA is shown in Figure 1. The tapering lines represent the
shape of the metallic edge of the radiating area, which can be mathematically expressed as
Formulas (1) and (2) [12].

y = ±
(

w
2
× eαt − 1

eα − 1
+

wthroat
2

)
(1)

z = (l − d − l1 − lthroat)× t (2)
Electronics 2021, 10, x FOR PEER REVIEW 4 of 12 
 

 

wsub

l

d

θ 
lthroat

l1y

z

w

lslot

wslot

 

Figure 1. Geometry of the quarter elliptical slotted antenna (QESA) The yellow area shows the 

copper on the top layer, the green area shows the copper on the bottom layer. The structural pa-

rameters of the QESA are as follows: subw  = l  = 100 mm, w  = 60.8 mm, slotl  = 40 mm, slotw  

= 25 mm, d  = 14 mm, throatl  = 4.27 mm, stubr  = 15 mm,   = 80°, and 1l  = 1.7 mm. 

3.2. Array Design 

The MIMO antenna array consists of 12 elements. To ensure that the MIMO array 

would be able to image the drilling site, the elements layout was optimized such that all 

elements were installed around the driller. Elements 1–10 were placed on the sides of the 

drilling mechanism, while elements 11 and 12 were placed close to the mechanism to en-

hance the imaging capability. All the elements maintain the same polarization and form 

array along the H-plane. The distance between two adjacent antennas is 120 mm. All of 

the antennas’ main beams were directed at the lunar surface. The layout of the antenna 

elements is shown in Figure 2. The 12 elements were divided into three groups: Group A, 

B, and C. Groups A and B were installed on the bottom of the lander, while Group C was 

installed on the side of the lander. The MIMO array has a switch matrix that switches the 

elements between their transmitting and receiving states. In a full scan, each of the 12 

elements will transmit, one after another, while the 11 remaining elements act as receivers 

to receive echo signals. In this way, 132 traces of valid data will be formed, thus allowing 

the MIMO array to probe the structure of the lunar regolith beneath the lander. 

 

(a) 

 
(b) 

Figure 2. Layout of the MIMO array. (a) Oblique view. (b) Bottom view. 

Figure 1. Geometry of the quarter elliptical slotted antenna (QESA) The yellow area shows the copper
on the top layer, the green area shows the copper on the bottom layer. The structural parameters of
the QESA are as follows: wsub = l = 100 mm, w = 60.8 mm, lslot = 40 mm, wslot = 25 mm, d = 14 mm,
lthroat = 4.27 mm, rstub = 15 mm, θ = 80◦, and l1 = 1.7 mm.
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In these equations, t varies from 0 to 1, and α = 6.2 defines the taper profile in y
direction. According to Figure 1, l is the total length of the antenna along axis z, wsub is the
total width of the antenna along axis y, wthroat is the gap between the two tapered curves
at the feed point, and lthroat is the length of parallel line at the feed point, lslot and wslot are
the sizes of the quarter elliptical slots which are symmetrically distributed on both sides of
the antenna.

The QESA uses a microstrip-to-slotline transition as its feed. To create a broadband
matching antenna, the slotline and microstrip terminals were designed as wideband short
stub and open stub, respectively. The characteristic impedances of the slotline and mi-
crostrip are 71 and 50 Ω.

3.2. Array Design

The MIMO antenna array consists of 12 elements. To ensure that the MIMO array
would be able to image the drilling site, the elements layout was optimized such that all
elements were installed around the driller. Elements 1–10 were placed on the sides of
the drilling mechanism, while elements 11 and 12 were placed close to the mechanism
to enhance the imaging capability. All the elements maintain the same polarization and
form array along the H-plane. The distance between two adjacent antennas is 120 mm.
All of the antennas’ main beams were directed at the lunar surface. The layout of the
antenna elements is shown in Figure 2. The 12 elements were divided into three groups:
Group A, B, and C. Groups A and B were installed on the bottom of the lander, while
Group C was installed on the side of the lander. The MIMO array has a switch matrix that
switches the elements between their transmitting and receiving states. In a full scan, each
of the 12 elements will transmit, one after another, while the 11 remaining elements act as
receivers to receive echo signals. In this way, 132 traces of valid data will be formed, thus
allowing the MIMO array to probe the structure of the lunar regolith beneath the lander.
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In the process of lunar landing, the plume of the engine may heat the antenna to
250 ◦C. At the same time, the plume will stir up charged lunar dust. If a large amount of
lunar dust adheres to the elements, the performance of the antenna will be affected. In
order to protect the array, ultra-light radomes with high transmission rate are designed for
each group of elements. The radomes are made of polyimide composite with a density of
1.8 g/cm3 and temperature resistance of 350 ◦C. In the 1–5 GHz frequency band, the relative
permittivity of the radome is between 3.6 and 4.2, and the loss tangent is between 0.012
and 0.016. The test results are shown in Figure 3. The dielectric properties were measured
by the syntonic cavity method. In the production of the radomes, three standard size test
pieces with size of Ø162 × 3 mm were produced at the same time with the same raw
materials and techniques. The test error is better than 10% in the 1–1.7 GHz band and better
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than 5% in the 1.7–5 GHz band. Through the mechanical analysis, the radome is designed
as a 0.6 mm thick thin-walled cavity structure, and the lightweight design is realized. The
transmission rate of the radome is tested, and the result is better than 97%. The measured
results are shown in Figure 3. The radome can effectively isolate the lunar dust and prevent
the engine plume from directly splashing onto the elements, which reduces the heating
rate of the array. In order to verify the protective effect of the radome, an engine plume
test was carried out. The array was installed on a plate to simulate the real installation
position. The test device was placed in a vacuum tank, and the ambient temperature was
−60 ◦C. The engine ignited in pulse mode for 3 s. The temperature response data is shown
in Figure 4. When the engine works for a short time, the maximum temperature of the
core components of the array is effectively reduced, and the temperature adaptability of
the array is improved. In order to verify the extreme temperature tolerance of the array,
a 250 ◦C storage test was carried out. The high temperature lasted for 30 min. After the
test, the color of the radome and elements changed slightly, but the electrical properties
remained. The MIMO array with the radomes installed is shown in Figure 5.
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3.3. Simulation and Measurement

As displayed in Figure 6, whether it is an individual antenna or an element in the
array, the S11 shows excellent performance in the range of 1.0 to 4.75 GHz, which ensures
that the antenna will not produce impedance mismatch in the array. The test status and
results of the QESA are shown in Figures 7 and 8, respectively. The realized gain fluctuates
between 2 and 8 dBi through the measurement of the QESA in a microwave anechoic
chamber. By and large, the gain of QESA increases with the frequency.

It can be observed from Figure 9 that the simulated and measured forward radiation
patterns of the antenna are in good agreement. In order to reduce the influence of the
turntable, the absorber is used during the test to block the mechanism which results in
obvious difference between the measured and simulated backward radiation. When the
QESA was excited by a monocycle pulse with width of 0.5 ns, it exhibited an excellent
waveform with a short tail (see Figure 10).
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4. Calibration and Experimental Validation

It is necessary to calibrate the system to ensure the detection effect of the MIMO array.
The system calibration is designed as two parts: internal calibration and external calibration.
In the internal calibration, an attenuator is used to loop back the transmitting and receiving
ports. By switching the switch matrix, the characteristics of delay and insertion loss of each
channel are tested respectively. The signal of each channel is calibrated with the measured
data, and the calibration method is shown in the Formula (3) [13]:

finternal(t) = a × fmea(t + τshi f t) (3)

where finternal(t) is a signal after internal calibration, fmea(t) is a measured signal, a is an
amplitude calibration factor, τshi f t is a delay calibration factor.

The external calibration of the system is also needed. Strong crosstalk exists due to the
short distance between antenna elements. In addition, there are complex metal structures
near the array, and the multiple reflections will make the received signals messy and have
a long tail. If the external calibration is not carried out, the weak reflected signals from
subsurface may be masked by clutter. The core of external calibration is to remove the
background signal, and the method is as Formula (4) [13]:

fexternal(t) = finternal(t)− f f reespace(t) (4)

where fexternal(t) is the measured signal after external calibration, f f reespace(t) is the signal
in free space after internal calibration.

The signal in free space is obtained by testing in the microwave anechoic chamber. The
lander and MIMO array are lifted to 1.5 m high. At the same time, the ground and walls
are paved with absorbing materials to simulate the free space; the test status is shown in
Figure 11. After calibration, the background signal caused by crosstalk and lander coupling
can be removed well, while retaining the effective signal. Figure 12 shows the result of
background removal.
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Figure 12. The results of removing the background signal.

Because the dielectric constant and loss tangent of dry volcanic ash are similar to lunar
regolith, a simulated test site filled with volcanic ash with a relative permittivity of about 3
was established. The site area is 5 × 9 m2, and a 7 × 3 × 2.5 m3 pool is set in the central
position. In order to reduce the interference of walls and other structures, the surrounding
walls are covered with absorber. Several targets at different depths, such as basalt blocks
and granite slabs, are embedded in volcanic ash. The site layout and targets distribution
are shown in Figure 13.

The lander was placed above the volcanic ash pool to detect embedded targets. The
back projection (PB) imaging method is used in the calibration and imaging process. Before
calibration, it is difficult to distinguish the locations of shallow targets in the image, as
shown in Figure 14a. As displayed in Figure 14b, after internal calibration, the image
quality is slightly improved, but the shallow targets are still covered by coupling signals
and multiple reflection signals and cannot be identified. After the external calibration, all
embedded targets can be clearly distinguished, and the pool bottom with a depth of 2.5 m
can be clearly identified (see Figure 14c). More details of experimental validation were
given by Li and Lu [13,14].
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5. Discussion

The proposed MIMO array is suitable for stationary detection of subsurface targets
and layered structures, especially for deep space exploration, such as Lunar exploration,
Mars exploration and asteroid exploration, because many probes for deep space exploration
are difficult to move. Due to the limitation of array length and number of elements, the
detection capability of static MIMO system is slightly insufficient compared with the GPR
system of mobile detection mode. However, it is still of great significance to study the
subsurface structures and mineral composition of the moon and planets.

6. Conclusions

In this study, an ultra-wideband MIMO array capable of sub-surface probing from
a stationary position was designed for the LRPR of the CE-5 lander. The elements of the
array were designed as miniaturized QESAs. Ultra-light and high temperature resistant
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radomes with high transmission rate were designed to protect the array. Through effective
calibration, the MIMO array system can detect lunar regolith structures and targets within
2.5 m depth below the lander, which can achieve the scientific goals of LRPR. In the near
future, CE-5 LRPR data will be widely available via the Data Publishing and Information
Service System of China’s Lunar Exploration Program (http://moom.bao.ac.cn).
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