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Abstract: Dissolved gas analysis (DGA) is one of the regular routine tests accepted by worldwide
utilities to detect power transformer incipient faults. While the DGA measurement has fully matured
since the development of offline and online sensors, interpretation of the DGA results still calls for
advanced approaches to automate and standardize the process. Current industry practice relies on
various interpretation techniques that are reported to be inconsistent and, in some cases, unreliable.
This paper presents a new application for the advanced logistic regression algorithm to improve the
reliability of the DGA interpretation process. In this regard, regularized logistic regression is used to
improve the accuracy of the DGA interpretation process. Results reveal the superior features of the
proposed logistic regression approach over the conventional and artificial intelligence techniques
presented in the literature.

Keywords: power transformers; dissolved gas analysis; fault diagnosis; logistic regression algorithm

1. Introduction

In electricity chains, power transformers represent vital links that ensure the reliability
of the entire grid. Due to the significant electrical and thermal stress that an operating
power transformer insulation system experiences, global utilities have adopted various
condition monitoring and fault diagnosis schemes to detect incipient faults and take a
corrective action to avoid any potential consequences. Dissolved gas analysis (DGA) is one
of the most reliable measurements conducted on transformer oil samples either offline or
online [1]. The technique was developed based on the fact that under high thermal stress,
insulating oil and paper decompose and release some chemical by-products that dissolve
in the oil and reduce its dielectric stress [2]. These by-products include hydrogen (H2),
methane (CH4), acetylene (C2H2), ethylene (C2H4), ethane (C2H6), carbon monoxide (CO),
and carbon dioxide (CO2) [3]. Moreover, furan compounds are produced due to cellulous
degradation [4,5]. As these by-products are generated at particular temperature ranges,
the amount and type of the dissolved gases in the transformer oil can be used to identify
the health condition of the transformer [6]. For example, increased amount of H2 is an
indication of partial discharge activity while thermal faults can be identified by the amount
of C2H4 [7]. Arcing fault generates all gases, including traceable amounts of C2H2 [8].
Measurement of such gases can be conducted in a laboratory-based environment using
gas chromatography–mass spectroscopy, or through a diverse range of online sensors [9].
While such measurement techniques are fully matured and being improved with the
advancement in electronic sensors technology, analyses of the results are still calling for
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more research in order to standardize and automate the entire DGA process. Current
industry practice relies on some common DGA interpretation techniques that are briefly
presented below.

Key gas method: This method employs the absolute values of the individual gases
along with the total combustible gas concentration (TCGC) to identify the risk level within
the power transformer that is categorized into four conditions as shown in Table 1 [10].
While the application of this method is straightforward, it is not widely accepted due
to its conservative nature, as the gas evolution is not considered. A transformer may be
reported healthy if all gases are less than the threshold limits specified by the normal
condition while a particular gas is evolving rapidly. On the other hand, a transformer may
be classified as being at risk because one individual gas or more exceed the normal limit;
however, the transformer can still be considered as not being at risk as long as this gas is
not continuously increasing.

Table 1. Dissolved key gas concentration limits (ppm).

Status H2 CH4 C2H2 C2H4 C2H6 CO CO2 TDCG

Normal 100 120 35 50 65 350 2500 720

Modest
Concern 101–700 121–400 36–50 51–100 66–100 351–570 2500–4000 721–1920

Major Concern 701–1800 401–1000 51–80 101–200 101–150 571–1400 4001–10,000 1921–4630

Imminent Risk >1800 >1000 >80 >200 >150 >1400 >10,000 >4630

Doernenburg ratio method: This method utilizes four ratios to identify the thermal
partial discharge (PD) and arcing faults within the transformer as per the code in Table 2 [7].
This method cannot be employed unless the concentration of at least one of the gases used
in the ratios (H2, C2H4, CH4, C2H6, and C2H2) exceeds twice the corresponding limit L1
shown in Table 3 [7].

Table 2. Doernenburg-C ratio method.

Suggested Fault
Diagnosis

CH4/H2 C2H2/C2H4 C2H2/CH4 C2H6/C2H2

Oil Gas Space Oil Gas Space Oil Gas Space Oil Gas Space

Thermal fault >1 >0.1 <0.75 <1 <0.3 <0.1 >0.4 >0.2

PD <0.1 <0.01 Not significant <0.3 <0.1 >0.4 >0.2

Arcing >0.1–<1 >0.01–<0.1 >0.75 >1 >0.3 >0.1 <0.4 <0.2

Table 3. Limit (L1) for the Doernenburg-c ratio method.

Key Gas L1 Concentrations (ppm)

Hydrogen (H2) 100

Methane (CH4) 120

Acetylene (C2H2) 35

Ethylene (C2H4) 50

Ethane (C2H6) 65

Rogers ratio method: This method employs three-key gas ratios as shown in Table 4
and was developed based on Doernenburg’s method [11]. Similarly to the Doernenburg
ratio method, the Rogers ratio method may result in out-of-code values for some DGA
cases when the gases concentration used in the ratios are not large enough.
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Table 4. Faults classification with Rogers’ ratio method.

C2H2/C2H4 CH4/H2 C2H4/C2H6 Range of Gas Ratio

0 1 0 <0.1

1 0 0 0.1–1

1 2 1 1–3

2 2 2 >3

Characteristic Fault

0 0 0 Normal ageing

2 1 0 Partial discharge of low energy density

1 1 0 Partial discharge of high energy density

1–2 0 1–2 Continuous sparking

1 0 2 Discharge of high energy

0 0 1 Thermal fault of low temp <150 ◦C

0 2 0 Thermal fault of low temp between
150–300 ◦C

0 2 1 Thermal fault of medium temp between
300–700 ◦C

0 2 2 Thermal fault of high temp >700 ◦C

IEC ratio method: This method uses the same ratios as Rogers’, but with ratio ranges
and analysis as shown in Table 5 [12]. While this method showed some improvement, it
still suffers from the common drawback of all ratio methods: a significant amount of gases
used in the ratios must exist to result in a valid code; otherwise, interpretation of DGA
results cannot be conducted using this method.

Table 5. IEC ratio method.

Case Characteristic Fault C2H2/C2H4 CH4/H2 C2H4/C2H6

PD Partial discharges NS <0.1 <0.2

D1 Discharges of low energy >1 0.1–0.5 >1

D2 High energy discharges 0.6–2.5 0.1–1 >2

T1 Thermal faults <300 ◦C NS >1 but NS <1

T2 Thermal faults >300 ◦C and
<700 ◦C <0.1 >1 1–4

T3 Thermal faults >700 ◦C <0.2 >1 >4
NS = Not significant whatever the value.

Duval Triangle Method: This is a graphical method developed by Duval to analyze
DGA data using three gases, CH4, C2H2, and C2H4, which are plotted along three sides of
a triangle as shown in Figure 1 [13]. The triangle is divided into seven zones, indicating
various transformer faults including partial discharge, thermal faults at various temper-
atures, and electric arcing. While the Duval triangle provides more accurate diagnoses
than the above ratio methods, it does not encompass a fault-free zone; hence, this method
cannot be used to detect incipient faults.
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As can be seen from the above discussion, all existing DGA interpretation techniques
comprise shortcomings that make them unreliable to some extent. As such, DGA must be
conducted and analyzed by expert personnel. This makes the DGA interpretation process
inconsistent and different conclusions may be reported for the same oil sample if analyzed
by different personnel. This inspired researchers to develop artificial intelligence-based
techniques for DGA interpretation, including fuzzy logic [14], which is also employed
to identify transformer criticality and remnant life based on DGA data [15,16], neural
network [17], gene expression programming [18,19], support vector machine [20], and
particle swarm optimization [21]. While AI-based DGA interpretation techniques published
so far in the literature provide more reliable diagnoses than the conventional interpretation
methods, they fail to diagnose some faults in oil and cellulose, and engineering judgment
is still required [22].

2. Proposed DGA Machine Learning Technique

Logistic regression is widely employed in many applications to improve machine
learning approaches, as it is suitable for systems of discrete and historical data such as
DGA [23]. As the logistic regression is a method for classifying data into discrete outcomes,
it is an ideal method for DGA applications. In supervised learning algorithms, overfitting
is a likely problem with many input features. In un-regularized models such as fuzzy logic
models, tuning is mainly conducted through training-error minimization. On the other
hand, regularized logistic regression methods are widely used to solve problems with
numerous features [24]. In these methods, the outcomes are classified using a cost function
that is solved by logistic regression [25]. The regularization helps to avoid over-fitting due
to either small number of training samples or large number of features, and it is often used
for proper feature selection by filtering out irrelevant features [26].

Some algorithms employ conditional maximum entropy models such as the gen-
eralized iterative scaling (GIS) [27]. However, this algorithm is considered as one-sided
Laplacian prior which can be extended towards the regularized logistic regression. Another
AI-based technique is called grafting, which consists in steadily constructing a subclass of
the parameters [28]. Moreover, the generalized LASSO is an algorithm developed based on
the regularized least squares problem [29].

This paper is taking a forward step into the development of reliable and automated
DGA interpretation techniques that can be continuously enhanced through self-learning
processes based on historical and future DGA data. One of the cutting-edge techniques of
artificial intelligence is deployed to understand the DAG data through machines without
the need of human intervention. The regularized logistic regression is implemented based
on the iteratively reweighted least squares (IRLS). The technique utilizes a one-vs-all
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method in order to analyze and then classify DGA data into one fault out of a set of
possible transformer faults.

Regularized logistic regression is a distinguished tool utilized in machine learning. The
proposed algorithm is designed to classify the condition of DGA oil samples automatically
into designated faults. Classified faults include partial discharge (PD), low and high energy
discharge (D1 and D2, respectively), and low, medium, and high thermal faults (T1, T2, and
T3, respectively). DGA measurements are defined based on five features that are used as
inputs to the proposed machine learning algorithm. DGA results, including H2, CH4, C2H6,
C2H4, and C2H2 are fed into the algorithm as a percentage of the total concentration of
these gases (gas-ratio). The proposed model is developed using 446 DGA samples collected
from the literature and Egypt electric utilities, and are divided into two sets. The first set
(335 samples) is used for training processes including model validation (67 samples), while
the second set (111 samples) is used for testing the developed model. Table 6 shows the
actual fault classifications of the collected 446 DGA samples.

Table 6. Dataset samples per each fault type for training and testing sets.

PD D1 D2 T1 T2 T3 Total

Training set 27 50 79 69 40 70 335
Test set 8 17 26 24 13 23 111

The proposed model is based on a regularized supervised learning approach in which all
data are labelled. The number of labelled samples used in this model is given by m = 446. Each
collected sample is represented by x and y coordinates

[ (
x(i), y(i)

)
; i = 1, · · · , m

]
that

represent the input and output, respectively. Each input is represented as an N-dimensional
vector

[
x(i) ∈ RN

]
, N = 5, that represents the input feature vector of the DGA five-gas

ratios. Moreover, each output is a class labeled
[
y(i) ∈ {1, 2, . . . , 6}

]
that represents one of

the possible six fault types mentioned above.
As shown in Figure 2, the data preparation stage includes two steps: data normaliza-

tion and samples shuffling. In the first step, the collected samples are normalized to ensure
the input features (DGA measurements) have fair influence on the output. In the second
step, the collected samples are shuffled to remove any undesired pre-order effects.

After the preparation stage, the collected samples are divided into three sets as follows:

(1) The training set, consisting of 268 samples or 60% of the entire data set, is utilized to
form the initial model;

(2) The validation set, consisting of 67 samples or 15% of the entire data set, is utilized to
optimize the regularization parameter (λ) to form the final model;

(3) The testing set, consisting of 111 samples or 25% of the entire data set, is utilized for
testing the final model.

It is worth mentioning that while data splitting is performed randomly, all data classes,
i.e., all fault types, are included in each data set. The percentages of data sets were chosen
based on the usual practices used in the literature [30].
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For each output class y(i), the one-vs-all logistic regression method is used to train a
hypothesis classifier h(i)θ (x). In this method, the hypothesis calculates the probability of
the output corresponding to one of the possible faults, e.g., y = i. This process is repeated
for all samples to calculate the probability of each fault corresponding to the used DGA
sample and the output with the highest probability considered as the classified fault. The
cost function for such logistic regression J as a function of model parameters θ is given by:

J(θ) =
1
m

m

∑
i=1

Cost
(

hθ

(
x(i)
)

.y(i)
)
+ λ

n

∑
j=1

θ2
j (1)

Cost(hθ(x).y) =

{
− log(hθ(x)) y = i
− log(1− hθ(x)) y 6= i

(2)

The hypothesis classifier defines the probability distribution for each class label y = i
given a feature vector x as follows:

hθ(x) = p(y = i|x; θ) = g
(

θTx
)
=

1
1 + e−θT x

(3)

The classifier is trained for each output class i by utilizing the training sample set.
Therefore, for a given input feature x, the algorithm optimizes the classifier to predict a
class i that maximizes the hypothesis max

θ
h(i)θ . A developed MATLAB code is utilized to

train the classifier by minimizing the cost function J(θ).
The first term is always positive since the hypothesis classifier goes only from 0 to 1.

The second term in Equation (1) represents the regularization term that is used to avoid
model overfitting. This term is optimized using the validation sample set. In Equation (3),
all model parameters are penalized with a ratio that minimizes the cost function with
the λ parameter. After spanning through a range of values for λ from 0.001 to 10, the
obtained optimum value is λ = 1 as shown in Table 7 and Figure 3. The training error is
still acceptable at this value while a significant reduction is achieved in the validation error.
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Table 7. Selection of the regularization parameter (λ) using cross validation samples.

λ Training % Error Validation % Error

0.000 3.358 13.433

0.001 3.358 14.925

0.003 3.731 13.433

0.010 4.104 13.433

0.030 3.731 11.940

0.100 4.478 11.940

0.300 5.224 11.940

1.000 6.343 8.955

3.000 11.194 11.940

10.000 13.806 16.418
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The algorithm process goes through three main steps. Firstly, the training sample set is
used to train the model and find the model parameter θj that correlates the input and output
factors. Secondly, the validation sample set is utilized to find the proper regularization
parameter (λ). Thirdly, the test sample set is used to test the model which was kept apart
from the system modeling to ensure proper independent validation.

3. Results and Nonlinear Approximation

The prediction accuracy (η) can be estimated as follows:

%η =
Total number o f correct predicting samples

Total number o f samples used
× 100 (4)

Using the basic input five features, the algorithm can be used to predict the output
fault with an accuracy of 82.9% (λ = 0). After initial tuning of the regularization parameter,
the system accuracy is slightly increased to 83.8% (λ = 0.01). When the inputs are used as
percentages instead of absolute values, the accuracy (for test samples) is improved as can
be seen in Table 8. The polynomial regression shows an increase in the accuracy up to 86%.
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Table 8. Error corresponding to different polynomial orders.

p Number of Features Percentage Error

4 80 17.9%

6 180 16.4%

8 320 9.0%

10 500 21.0%

12 720 16.4%

The learning curves with the prediction error (Error = 1− η) for the linear approxi-
mation of the proposed model is shown in Figure 4a. At the beginning, the training set
comprises low error since the system can easily approximate the function over very few
samples, but as the number of samples increases, the training error also increases but settles
at a level of less than 20% when the number of samples increases to 100. On the other hand,
the error of the validation set is high when a few samples are used, but it drops as the
number of samples increases.
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Figure 4a,b show the linear and polynomial learning profiles for the logistic regression;
respectively. The error results shown in this figure reveal the nonlinear characteristic
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of the investigated problem. Hence, it is not accurate to express the system using a
linear combination of the features. One way to approximate the nonlinear feature of the
investigated problem is through using polynomials. As noticed, by increasing the number
of samples, the cross-validation error decreases. Moreover, the training error curve shows
that the model is biased and, therefore, additional features are required where the nonlinear
combination of features is considered. To select an optimum polynomial order, p is changed
in the range 4–12 and the number of features along with the corresponding error are
recorded in Table 8. It can be seen that for p = 8, the lowest percentage error is obtained.
For values of p above 8, the error increases, again showing an overfitting problem at p = 10.

The regularization term is more prominent when the number of features increases as in
the polynomial features case. The total number of features for 8th order polynomial (npoly)
with five independent variables (n = 5) including homogeneous (n0 = n× p = 5× 8 = 40)
and nonhomogeneous nx terms is calculated as follows:

npoly = n0 + nx (5)

nx =
p−1

∑
j=1

j×
n−1

∑
i=1

i (6)

The nonhomogeneous term is given by nx = 28× 10 = 280 and hence the total npoly
reaches 320 features.

Results of the algorithm using the polynomial features can achieve an accuracy of
86%, as shown in the training curve in Figure 4b. The last column of Table 9 demon-
strates the predicted faults using polynomial features for logistic regression with testing
dataset samples.

Table 9. Error of the linear and polynomial regression models.

Sample Set Training Error Validation Error Testing Error

Linear regression 15.2% 13.4% 17.1%

Polynomial regression 6.3% 9.0% 14.4%

Table 10 presents a summary of the obtained results for each fault using the testing
dataset (111 samples). In order to highlight the system capability to detect various faults
using DGA results, the predicted fault types using polynomial regression are compared
with the actual faults. Results attest the capability of the proposed model in detecting
different fault types, especially low and high thermal faults (T1 and T3) with a high degree
of accuracy. As can be seen in Table 10, the overall prediction accuracy of the testing
samples is 85.6%.

Table 10. Results of the proposed model using 111 testing samples.

Actual PD D1 D2 T1 T2 T3 %η

PD 8 7 0 0 0 1 0 87.5
D1 17 1 12 3 1 0 0 70.6
D2 26 0 4 21 1 0 0 80.5
T1 24 0 0 0 23 0 1 95.8
T2 13 0 0 0 2 11 0 84.6
T3 23 0 0 0 0 2 21 91.3
All 111 8 16 24 28 13 22 85.6

4. Model Validation

The proposed model is validated by comparing its output (for the 111 testing samples)
with conventional and AI-based techniques recently published in the literature. Conven-
tional methods include the Duval triangle, IEC, and Rogers 4-ratio methods. AI methods



Electronics 2021, 10, 1206 10 of 11

include the clustering method [30], conditional probability [31], and modified IEC and
Rogers 4-ratio methods [32]. Table 11 indicates the number of samples successfully pre-
dicted by each method and the actual number of samples for each fault. Overall, the
proposed method in this paper achieves the highest prediction accuracy (85.6%), when
compared to all other methods investigated in the table.

Table 11. Comparison between the proposed model and other methods.

PD D1 D2 T1 T2 T3 %η
Actual 8 17 26 24 13 23

Duval 6 16 23 13 7 22 78.4
IEC 4 10 16 16 12 18 68.5
Rog 4 0 19 21 7 13 57.7

Mod-Rog 7 11 22 21 12 21 84.7
Mod-IEC 7 9 22 21 12 23 84.7

Prob. 8 7 23 20 13 21 82.9
Cluster 7 10 20 23 4 21 76.6

Proposed 7 12 21 23 11 21 85.6

5. Conclusions

A logistic regression algorithm is implemented in this paper to improve the reliability
and accuracy of the DGA interpretation process. The comparison between linear and
polynomial logistic regression algorithms for predicting transformer fault types based
on DGA results shows the better performance of the polynomial algorithm. The logistic
regression parameter is estimated to obtain high prediction accuracy during training and
testing stages. The proposed model is designed based on 335 training and 111 testing DGA
samples of pre-known fault types. Two validation techniques are used for the proposed
model. These are the cross-validation technique during the training stage and a comparison
with other methods in the literatures. The results reveal the high prediction accuracy of the
proposed logistic regression technique (85.6%) over conventional and recently published
techniques in the literature.

Author Contributions: Y.D.A.: Software, Validation, Conceptualization, Methodology, and visual-
ization. I.B.M.T.: Conceptualization, Software, Validation, Formal analysis, Writing original draft.
M.I.M.: Methodology, Software, Validation, Investigation, Resources, Data curation, Writing-review
& editing. L.N.: Investigation, editing. A.A.-S.: Methodology, Software, Validation, Investigation, Re-
sources, Data curation, Writing-review & editing. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors would like to acknowledge the financial support received from Taif University
Researchers Supporting Project Number (TURSP-2020/61), Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Norazhar, A.B.; Abu-Siada, A.; Islam, S. A Review of Dissolved Gas Analysis Measurement and Interpretation Techniques. IEEE

Electr. Insul. Mag. 2014, 30, 39–49.
2. STM. Standard Test Method for Analysis of Gases Dissolved in Electrical Insulating Oil by Gas Chromatography; ASTM D3612-02;

American Society for Testing and Materials: West Conshohocken, PA, USA, 2009.
3. Abu-Siada, A.; Islam, S. A new approach to identify power transformer criticality and asset management decision based on

dissolved gas-in-oil analysis. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1007–1012. [CrossRef]
4. Abu-Siada, A. Correlation of furan concentration and spectral response of transformer oil-using expert systems. IET Sci. Meas.

Technol. 2011, 5, 183–188. [CrossRef]
5. Norazhar, A.B.; Abu-Siada, A.; Islam, S. A Review on Chemical Diagnosis Techniques for Transformer Paper Insulation

Degradation. In Proceedings of the Australasian Universities Power Engineering Conference, AUPEC’13, Hobart, Australia, 29
September–3 October 2013.

http://doi.org/10.1109/TDEI.2012.6215106
http://doi.org/10.1049/iet-smt.2011.0017


Electronics 2021, 10, 1206 11 of 11

6. IEEE. IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers; IEEE Std C57.104-1991; IEEE: Piscataway, NJ,
USA, 1992.

7. IEEE. IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers; IEEE Std C57.104-2008 (Revision of IEEE Std
C57.104-1991); IEEE: Piscataway, NJ, USA, 2019; p. C1-27.

8. IEEE. IEEE Guide for the Detection and Determination of Generated Gases in Oil-Immersed Transformers and Their Relation to the
Serviceability of the Equipment; ANSI/IEEE Std C57.104-1978; IEEE: Piscataway, NJ, USA, 1978.

9. Bakar, N.A.; Abu-Siada, A. A New Method to Detect Dissolved Gases in Transformer Oil using NIR-IR Spectroscopy. IEEE Trans.
Dielectr. Electr. Insul. 2017, 24, 409–419. [CrossRef]

10. Muhamad, N.A.; Phung, B.T.; Blackburn, T.R.; Lai, K.X. Comparative Study and Analysis of DGA Methods for Transformer
Mineral Oil. In Proceedings of the 2007 IEEE in Power Tech, Lausanne, Switzerland, 1–5 July 2007; pp. 45–50.

11. Rogers, R.R. IEEE and IEC Codes to Interpret Incipient Faults in Transformers, Using Gas in Oil Analysis. IEEE Trans. Electr.
Insul. 1978, EI-13, 349–354. [CrossRef]

12. De Pablo, A.; Ferguson, W.; Mudryk, A.; Golovan, D. On-line condition monitoring of power transformers: A case history. In
Proceedings of the Electrical Insulation Conference (EIC), Annapolis, MD, USA, 5–8 June 2011; pp. 285–288.

13. Duval, M. A review of faults detectable by gas-in-oil analysis in transformers. IEEE Electr. Insul. Mag. 2002, 18, 8–17. [CrossRef]
14. Abu-Siada, A.; Hmood, S.; Islam, S. A New Fuzzy Logic Approach for Consistent Interpretation of Dissolved Gas-in-Oil Analysis.

IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2343–2349. [CrossRef]
15. Abu-Siada, A.; Hmood, S.; Islam, S. Fuzzy Logic Approach to Identify Transformer Criticality using Dissolved Gas Analysis. In

Proceeding of the 2010 IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010.
16. Bakar, N.A.; Abu-Siada, A. Fuzzy Logic Approach for Transformer Remnant Life Prediction and Asset Management Decision.

IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3199–3208. [CrossRef]
17. Miranda, V.; Castro, A. Improving the IEC Table for Transformer Failure Diagnosis With Knowledge Extraction From Neural

Networks. IEEE Trans. Power Deliv. 2005, 20, 2509–2516. [CrossRef]
18. Abu-Siada, A. Improved Consistent Interpretation Approach of Fault Type within Power Transformers Using Dissolved Gas

Analysis and Gene Expression Programming. Energies 2019, 12, 730. [CrossRef]
19. Abu-Siada, A.; Lai, S.P.; Islam, S. Remnant Life Estimation of Power Transformer using Oil UV-Vis Spectral Response. Presented

at the 2009 IEEE PES Power Systems Conference & Exhibition (PSCE), Seattle, WA, USA, 15–18 March 2009.
20. Bacha, K.; Souahlia, S.; Gossa, M. Power transformer fault diagnosis based on dissolved gas analysis by support vector machine.

Electr. Power Syst. Res. 2012, 83, 73–79. [CrossRef]
21. Taha, I.B.M.; Hoballah, A.; Ghoneim, S.S.M. Optimal ratio limits of rogers’ four-ratios and IEC 60599 code methods using particle

swarm optimization fuzzy-logic approach. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 222–230. [CrossRef]
22. Abu-Siada, A.; Hmood, S. Fuzzy Logic Approach for Power Transformer Asset Management Based on Dissolved Gas-in-Oil

Analysis. In Proceedings of the Prognostics and System Health Management Conference, Gaithersburg, ML, USA, 8–11 September
2013. Available online: https://www.aidic.it/cet/13/33/167.pdf (accessed on 1 May 2021).

23. Lee, S.I.; Lee, H.; Abbeel, P.; Ng, A.Y. Efficient L1 regularized logistic regression. Am. Assoc. Artif. Intell. 2006, 6, 401–408.
24. Ng, A.Y. Feature selection, L1 vs. L2 regularization, and rotational invariance. In Proceedings of the twenty-first international

conference on Machine learning, Banff, AB, Canada, 4–8 July 2004.
25. Goodman, J. Exponential priors for maximum entropy models. In Proceedings of the Human Language Technology Conference

of the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004, Boston, MA, USA, 2–7 May
2004; pp. 305–312.

26. Perkins, S.; Theiler, J. Online feature selection using grafting. In Proceedings of the 20th International Conference on Machine
Learning (ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 592–599.

27. Roth, V. The Generalized LASSO. IEEE Trans. Neural Netw. 2004, 15, 16–28. [CrossRef] [PubMed]
28. Shadabi, F.; Sharma, D. Comparison of Artificial Neural Networks with Logistic Regression in Prediction of Kidney Transplant

Outcomes. In Proceedings of the 2009 International Conference on Future Computer and Communication, Kuala Lumpar,
Malaysia, 3–5 April 2009; pp. 543–547.

29. Plan, Y.; Vershynin, R. The Generalized Lasso with Non-Linear Observations. IEEE Trans. Inf. Theory 2016, 62, 1528–1537.
[CrossRef]

30. Ghoneim, S.S.; Taha, I.B. A new approach of DGA interpretation technique for transformer fault diagnosis. Int. J. Electr. Power
Energy Syst. 2016, 81, 265–274. [CrossRef]

31. Taha, I.B.; Mansour DE, A.; Ghoneim, S.S.; Elkalashy, N. Conditional probability-based interpretation of dissolved gas analysis
for transformer incipient faults. IET Gener. Transm. Distrib. 2017, 11, 943–951. [CrossRef]

32. Hoballah, A.; Mansour, D.-E.A.; Taha, I.B.M. Hybrid Grey Wolf Optimizer for Transformer Fault Diagnosis Using Dissolved
Gases Considering Uncertainty in Measurements. IEEE Access 2020, 8, 139176–139187. [CrossRef]

http://doi.org/10.1109/TDEI.2016.006025
http://doi.org/10.1109/TEI.1978.298141
http://doi.org/10.1109/MEI.2002.1014963
http://doi.org/10.1109/TDEI.2013.6678888
http://doi.org/10.1109/TDEI.2016.7736886
http://doi.org/10.1109/TPWRD.2005.855423
http://doi.org/10.3390/en12040730
http://doi.org/10.1016/j.epsr.2011.09.012
http://doi.org/10.1109/TDEI.2019.008395
https://www.aidic.it/cet/13/33/167.pdf
http://doi.org/10.1109/TNN.2003.809398
http://www.ncbi.nlm.nih.gov/pubmed/15387244
http://doi.org/10.1109/TIT.2016.2517008
http://doi.org/10.1016/j.ijepes.2016.02.018
http://doi.org/10.1049/iet-gtd.2016.0886
http://doi.org/10.1109/ACCESS.2020.3012633

	Introduction 
	Proposed DGA Machine Learning Technique 
	Results and Nonlinear Approximation 
	Model Validation 
	Conclusions 
	References

