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Abstract: Testing at system level is evaluated by measuring the sensitivity of point-of-load (PoL)
converter parameters, submitted to total ionizing dose (TID) irradiations, at both system and com-
ponent levels. Testing at system level shows that the complete system can be fully functional at the
TID level more than two times higher than the qualification level obtained using a standard-based
component-level approach. Analysis of the failure processes shows that the TID tolerance during
testing at system level is increased due to internal compensation in the system. Finally, advantages
and shortcomings of the testing at system level are discussed.

Keywords: total ionizing dose; system-level testing; point-of-load converter; radiation hardness
assurance; system qualification

1. Introduction

The qualification of components that will be used for space missions requires test
standards that allow the selection of components that will make up the on-board sys-
tems [1–3]. With the increasing use of commercial off-the-shelf (COTS) devices or the need
to set up selection methodologies for new fields, such as nuclear decommissioning or
NewSpace, the question of testing no longer at the component level but at the level of a
system arises [4–12]. It is expected that testing at system level may lead to the reduction of
the test effort when compared to testing at the component level of all the parts constituting
the system—therefore, it may also reduce time-to-market for new products. System-level
testing may also provide extended radiation data for some products, e.g., devices that
were too difficult to characterize fully with component-level testing. However, currently
there is no standard that would describe the qualification process of electronics through
radiation testing at system level and this paper aims to evaluate some of the capabilities of
this approach.

In this paper, TID system-level tests are discussed. They are typically easier and
cheaper to perform than single event effect (SEE) system-level tests, due to relatively high
accessibility of the standard test source, the Co60 isotope that emits highly penetrating
gamma rays, which can penetrate whole electronic boards and systems. The test setup
is usually also simpler for TID testing because generally there is no need to monitor the
performance of the system under test (SUT) during irradiation; characterization might be
performed when irradiation is stopped and the SUT removed from the test area (remote
testing), although sometimes it is chosen to perform in situ or even in-flux measurements
with automated test equipment [6,7].
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Fernández [6] presented a method of TID testing at system (equipment) level for
the ITER experiment, where component test standards are followed where applicable
(Test Method 1019 from MIL-STD-750E, Test Method 1019 from MIL-STD-883G and ESCC
22900), due to lack of a standard for system-level testing. Because the SUT has both CMOS
and bipolar parts, low dose rate irradiation is used as the worst case for this scenario.
Irradiation is followed by annealing. The target environment for the system is not very
harsh and the predicted dose level to be achieved during operation in that environment is
100 rad. Therefore, it was possible to perform irradiation with a large margin (300 times) by
testing the system up to 30 krad in a reasonable time of around 120 h. Such a large margin
is favorable for the critical equipment, in the situation when the system-level test is used
experimentally for the system qualification and, e.g., a lot-to-lot variability in the system is
not known. The system was performing typical functions during irradiation (“test as you
fly” approach) and its performance was continuously monitored: an in-flux functional test
was performed every 30 min. Only minor functionality errors were observed at the end of
the test, but due to the SUT complexity, it was not possible to track which exact component
(or group of components) was responsible for this failure (particularly because high-level
function health was monitored and not parameters (e.g., electrical parameters) of specific
components) [6].

Rousselet [7] described board-level TID tests of the COTS single-board computer
(SBC) equipped with an ARM Cortex A8 processor, memories (DDR3, Flash, EEPROM)
and voltage regulators. In this test it was possible to observe degradation of specific
components or subsystems and to identify the most sensitive components, as well as
to define the failure mechanisms—board-level testing enabled better observability than
equipment-level testing described in [6], thus providing more data for analysis. Testing of
four SBC boards was presented in [7], with three biased boards and one unbiased board.
Different functional and electrical parameters were measured (flash memory readout data
rate, DDR3 memory input voltage, MicroProcessor Unit voltage, total current) and the
measurement spread (between specific SBCs) was observed for these parameters. The test
provides information on the dose level for which the SBC (or some of its functions) fail,
but the maximum dose level for which it remains fully (or sufficiently) functional is not
proposed (as a consequence, margins for such a value are not discussed). It is highlighted
that system should be tested in the exact internal configuration in which it will be used in
the target mission; differences between biased and unbiased boards were observed. On the
other hand, testing in different environmental conditions is also proposed, i.e., in low and
high temperatures to assess the worst-case condition for the system [7].

In order to further evaluate the capabilities of the testing at system level, in this paper
we have performed TID experiments on a point-of-load (PoL) converter manufactured by
3D-Plus. This point-of-load converter has already been qualified using the ESA standard
ECSS-22900 [13]. In addition, all the devices of the complete system have been tested
individually following the standards. The PoL converter has also been qualified for a total
dose of 50 krad(Si). In this work we have performed irradiations of the complete system to
evaluate the total dose that could be reached before failure or being out of specifications and
compared it with the 50 krad obtained using a qualification at component level. We have
shown that the complete system is still functional after a Co60 irradiation at 118 krad(Si).
Some parameters have drifted but the system is largely within the specifications. In order
to reach the failure of the device, X-ray irradiations have then been performed. A total dose
above 400 krad(Si) was necessary to show failures of the tested systems. An analysis has
been conducted to find the process at play leading to the degradation of the system. We
have then shown that two blocks of the system compensate each other, leading to a lower
sensitivity to TID. From this analysis, testing at system level is discussed.
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2. Experiment Description
2.1. System under Test (SUT)

The system under test is a PoL converter developed by 3D-Plus. It is a custom-built
system based on COTS components, with 11 references of active components, (6 discrete
and 5 integrated circuits) from different technologies (bipolar/CMOS). PoL is a space
qualified product available as 3D system-in-package (SiP) module, characterized (based on
component-level tests [14]) up to a TID level of 50 krad. In our work, the original 3D SiPs
as well as 2D prototype boards were tested. The 2D board has size of 85 mm × 95 mm and
is functionally and electrically equivalent to the 3D SiP. Components are on a single layer
for the 2D board whereas components of the SiP are distributed on 3 layers, one above
another, and encapsulated in a 26.5 mm × 25 mm × 10 mm metalized package. Another
difference is that two CMOS ICs on the 2D board have different date codes than for the
3D SiP (but have the same reference and come from the same manufacturer). The PoL
functional block diagram is presented in Figure 1. The photograph of the PoL 3D SiP and
2D boards is given in Figure 2.
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Figure 1. PoL functional block diagram.

2.2. Test at Component Level

TID tests on the 11 references of basic devices were characterized [14] during test
campaigns performed in accordance with ESA Standard ESCC-22900.

Irradiation was performed using the Co60 source GIF at the Université Catholic de
Louvain (UCL) facility in Belgium. The dose rate was between 100 and 360 rad(Si)/h. The
bias conditions during exposure are the worst-case bias as per the PoL design justifica-
tion document.

It was shown in [14] that all the irradiated devices are functional up to 50 krad. In
a first step, parameter drifts under irradiation were evaluated regarding the tolerances
given by the manufacturer datasheet. In a second step, if drift was higher than the initial
tolerance, a specific analysis was performed to evaluate the acceptability of the variation in
the PoL system. A summary of the total dose test results is given in Table 1.
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Figure 2. PoL 3D SiP on the auxiliary board and attached to the motherboard (first plan) and two
PoL 2D boards on their motherboards (second plan).

Table 1. TID status for active devices used in PoL module (from [14]).

Type Results in Accordance with
Manufacturer Datasheet

Results in Accordance with PoL
Design Requirement

Diodes >50 Krad >50 Krad
Transistors >50 Krad >50 Krad

Voltage reference 15.4 Krad >50 Krad
Logic gates 7 Krad >50 Krad

5 Krad >50 Krad
Comparator >50 Krad >50 Krad

Op-amplifiers 9.8 Krad >50 Krad
4.9 Krad >50 Krad

From the TID test campaign and results analysis according to the acceptable drifts for
the PoL system, the PoL converter has been guaranteed for a total dose of 50 krad(Si).

2.3. Test at System Level

All SUTs were supplied during irradiation (5 V); the output voltage of each PoL
(VOUT on Figure 1) was set to 2.5 V and the load connected to VOUT was 8 Ω. After each
irradiation step, each SUT was removed from the irradiator, reconnected to the power
supply and characterized electrically: 29 parameters were measured for 2D boards and 33
for 3D SiP, and both DC and AC parameters were measured. In this paper, only the most
relevant experimental results are presented.

2.3.1. Irradiation with a Co60 Source

In order to achieve a direct comparison with the tests performed at component level
in [14], complete PoL systems were irradiated using a Co60 source. One PoL 3D SiP
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(SUT022) and one PoL 2D (SUT012) board were irradiated using the Co60 source of the
PRESERVE platform at the University of Montpellier. Irradiation was performed up to
125Krad(Si) and the dose rate was 15 rad/h.

2.3.2. Irradiation with an X-ray Source

One PoL 3D SiP (SUT020) and two PoL 2D boards (SUT010 and SUT011) were irra-
diated using the X-RAD 320 irradiator of the PRESERVE platform at the University of
Montpellier, with potential of the X-ray tube as high as 320 kV/12.5 mA. The dose rate
used was 50 krad/h for all 3 SUTs tested.

3. Experimental Results and Analysis

3.1. Test at System Level Using a Co60 Source

At 118 krad(Si) both SUTs were fully functional. Among the 29 parameters measured,
few of them drifted and the variation remained very small and largely inside the speci-
fications. In Table 2, the parameters presenting the largest variations at 118 Krad(Si) are
reported with their percentage of variation compared to the prerad value: the ON supply
current, the OFF supply current and the oscillator frequency.

Table 2. Percentage of variation compared to the prerad value of parameters at 118 Krad(Si) (Co60

irradiation).

Percentage of Variation Compared to the Prerad Value

3DSip Module 2D Module

ON supply current 0% 1.2%
OFF supply current 6% 25%
Oscillator frequency 1.5% 2.8%

The OFF supply current was measured when all the integrated circuits were supplied
but the oscillator was stopped, therefore the loop controlling the output power was stopped
and VOUT = 0V. The ON supply current was measured when the PoL system supplied
the output.

The important point is then that the PoL system, when evaluated at system level, was
shown to reach 118 krad(Si), whereas testing at component level allowed its qualification
only at 50 krad(Si).

It is also important to note that the dose rate used for the test at system level was at
least 7 times lower than the one used for the test at component level. The 15 rad/h used
is compliant with testing for systems sensitive to ELDRS [13]. This also shows that no
significant ELDRS is at play in the global system functionality.

The higher total dose reached during the test at system level than that using the test at
component level could imply that there is compensation, at circuit level, between some of
the system’s blocks (Figure 1).

3.2. Test at System Level Using X-rays

In order to evaluate the limit of the system and to obtain significant variations of
parameters to attempt an analysis of the possible interactions between the different system
blocks, irradiations were performed using X-rays at a 50 krad/h dose rate. The goal was
not to compare X-rays and Co60 irradiations, but to reach, in a reasonable time, a total
ionizing dose high enough to observe the system’s degradation.

The output voltage of the PoL (VOUT) is reported as a function of TID in Figure 3. For
both 2D boards (SUT010 and SUT011) functional failures were observed, respectively, at
450 and 500 krad (at the end of the irradiation step, the system was disconnected and then
connected to the test bench but did not power up). This means that the last doses for which
the device was functional were, respectively, 400 and 475 krad for SUT 010 and SUT 011.
It is important to note that for the 3D SiP device, no functional failure was observed (the
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irradiation was stopped at 500 krad). This is assumed to be related to the SiP packaging that
mitigates X-rays on the internal circuit. From Figure 3, we can observe a very small drift of
VOUT. The maximum measured drift of VOUT (which is the crucial parameter for the user)
was not different from the initial value by more than 0.4% (SUT020, 500 krad) and the drift
observed for SUT010 and SUT011 just one irradiation step before they failed was less than
0.3%. In Figure 3, two behaviors might be observed: an increase of the measured values up
to level of 50–100 krad and a decrease above 50–100 krad. However, the goal of presenting
the curves in Figure 3 was to show that the observed change of the output voltage was
insignificant during irradiation and could not be used to predict that the system would
soon fail. In this context, the insignificant linear change of the VOUT observed for TID
above 50 krad gives no advantage in predicting when the system may fail.
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In Table 3, the percentages of variation compared to the prerad values are given
at 400 krad(Si) for the ON supply current, the OFF supply current and the oscillator
frequency to be compared to values shown in Table 2. No other parameters have shown a
significant increase.

Table 3. Percentages of variation compared to the prerad values of parameters at 400 krad(Si)
(X-rays irradiation).

Percentage of Variation Compared to the Prerad Value

3DSip Module 2D Module

ON supply current 1% 12.5%
OFF supply current 59% 100%
Oscillator frequency 12.5% 18%

It is shown that the OFF supply current strongly increases for both 2D and 3D systems,
by 100% and 59%, respectively. The ON supply current increase is important for the 2D
board (12.5%).

In Figure 4, the normalized oscillator frequency value is represented as a function
of TID for 2D boards and 3D SiP systems. For the 2D boards (SUT010 and SUT011), the
oscillator frequency value increases by a factor of 1.18. A saturation of the degradation
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is observed after 150 krad. The saturation value is equal to 490 kHz. The 3D SiP system
also shows an increase in the oscillator frequency value by a factor of 1.125. A saturation is
observed after 250 krad. The saturation value is equal to 440 kHz. Notches observed in
each curve (e.g., at 200 krad for SUT 010 curve) are due to annealing, when irradiation had
to be stopped for longer period (e.g., whole night).
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Considering the results for 2D boards, when the PoL system was designed, speci-
fications were given for the irradiation tests at device level. The specification limit for
the oscillator frequency was 450 kHz. Results presented in our work show that oscillator
frequency is 8–9% higher than this limit as soon as the total dose reaches 150 krad but the
PoL remains functional up to a total dose above 400 krad.

During component-level qualification of PoL [14] the Schmitt trigger, being a core part
of the oscillator, was irradiated up to 50 krad with the Co60 source. Acceptability of Schmitt
trigger variations has been verified from results at component level using standards but
also on the PoL system. The maximum frequency drift measured for the oscillator built
with an irradiated component was from 419 to 427 kHz and the part was then accepted. If,
during this component-level qualification, the degradation of frequency had been similar
to the X-ray irradiation test shown in Figure 4, the part would have been rejected, but
the system-level test (Figure 3) shows that, regardless of the degradation of the oscillator
frequency, the system remains functional not only after 50 krad, but also up to 400 krad
under X-rays and 118 krad under Co60 irradiations.

3.3. Tracking of the System Failure Source

From all the measurements made, there is no obvious way to identify the process
at play leading to the 2D board failures above 400 krad. Investigation of the failure
source of 2D boards tested with X-rays was performed and the conducted analysis is
presented hereafter.

Increased current consumption in ON mode (Table 3) suggested that switching time
of the power MOSFET might be longer—this was confirmed by analyzing waveforms of
the MOSFET driver signal recorded at each step of the irradiation (see Figure 5 for example
waveforms recorded for SUT010).
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information about the overcurrent state, but is also the input to the auto-reset circuit of 
the PoL. During normal operation of the PoL, when there is no overcurrent state, this sig-
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Figure 5. SUT010 MOSFET driver waveforms recorded at steps 0, 200 and 400 krad (X-ray irradiation). Black color marks
switching time for each irradiation step. Switching time is approximately 3 times longer for 200 krad (than prerad) and
more than 15 times longer for 400 krad (than prerad).

These waveforms show degradation of the switching threshold and increase of switch-
ing time of the MOSFET. For a high enough degradation, the MOSFET does not open fully
(ON resistance is high), therefore it does not provide enough current to the PoL output.
Because this current is too low, the feedback loop drives the control voltage too high and
the overcurrent protection (OCP, based on the voltage control loop signal) is triggered.
This triggering of the OCP is observed during characterization of failed SUTs (SUT010 at
450 krad and SUT011 at 500 krad) (Figure 6). The OCP signal not only provides information
about the overcurrent state, but is also the input to the auto-reset circuit of the PoL. During
normal operation of the PoL, when there is no overcurrent state, this signal is at the level of
~0.05 V. We can see from Figure 6 that the value of the OCP signal is repeated in the cycle:
(1) slow decrease from ~3 V to around 0.5 V—in the beginning the OCP is in a high logic
state, forcing the reset of the PoL; (2) at some point, the OCP stops resetting the PoL and
the converter starts to operate; (3) the operation of the PoL leads again to the overcurrent
state—the OCP signal from the level of ~0.5 V goes rapidly to the level of ~3 V. The PoL is
again reset.

The switching time variations as a function of the total ionizing dose are shown in
Figure 7 for both 2D boards and 3D SiP systems. It is shown that both 2D boards show a
significant increase of the switching time compared to the 3D SiP systems. Such a difference
is assumed to be due to the SiP packaging that reduces the total ionizing dose received
by the components under X-ray irradiation. It is also shown that both 2D boards have
the same degradation of the switching time up to 250 krad, but for doses above 250 krad,
the SUT 010 systems present a higher degradation of the switching time than the SUT020
system for a given dose.

Considering the dose leading to the system failure (Figure 3), for SUT010 failure is
observed after 400 krad and for SUT011 failure is observed after 475 krad. In both cases,
failure is observed when a 1 µs value of the switching time is reached. We then have a
direct correlation between the failure of the system and the switching time parameter that
allows us to identify the process at play leading to the device failure.
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Let us now consider the fact that the system survived to a total dose significantly higher
than 50 krad, which was the qualified level after the test at component level. Although
the system failure was finally tracked down to the failure of a single component, it is
worth noting that several parameters of the system were changed because of the MOSFET
degradation: current consumption, parameters of the voltage control loop (compensating
MOSFET degradation to retain a good level of VOUT) and MOSFET driver fall time.
Particularly, it might be observed that the duty cycle of the MOSFET driver is changed by
the PoL feedback mechanism, in order to compensate for the degradation of the MOSFET
(see Figure 8). The related effects are presented in the block diagram in Figure 9: (1) the
reduced output voltage is detected by the voltage control block; (2) the correction signal
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is sent to the PWM generation block; (3) the duty cycle of the MOSFET driver signal
is modified.
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is modified.

In other words, the MOSFET degradation is compensated by the voltage control loop,
extending the TID tolerance of the system.
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4. Discussion

Testing at system level allows us, for this specific system, to show that the system can
reach a higher total ionizing dose before failure than a test at component level, but the
testing at system level could also be more difficult to qualify a system.

In our case, the system was shown to be more tolerant to TID, but if a failure had
been observed during this test before 50 krad, the difficulty would have been to find the
origin of the failure in order to improve the system and make corrections to the design.
It is then very important to have a high observability during the testing, which means
there are many system parameters to monitor. In our case, such a strong observability was
possible due to the fact that SUT was a “white box”. Full design information, as well as
the placement of specific test points, were known during test preparation and during SUT
characterization, which may not always be the case for other systems (e.g., COTS systems).

It was shown (Figure 7) that the two 2D boards have different kinetics for switching
time degradation. SUT010 degrades more rapidly than SUT011. Such a difference is
assumed to be induced by the part-to-part variations of the basic devices. Once again, in
our case, this is not a problem as the system is shown to be tolerant for high total doses, but
this will not be always the case. If we consider that the PoL system should be qualified for
a 450 krad total dose, the difference between the two 2D boards generates an uncertainty
as SUT010 will pass the test whereas SUT011 will not. A statistical approach would then be
necessary in order to minimize the error induced by the component part-to-part difference.

It is also important to consider if the test performed at system level is conservative
or not. In our case, the failure was shown to have been induced by the increase in the
switching time leading to a decrease in the output current. This will then depend on the
load at the output of the PoL. It is then expected that by decreasing the load (8 ohms during
our test), the degradation will also increase, leading to a lower tolerance to TID. Our test
was not performed in the worst-case conditions, but defining the worst-case conditions
was difficult when the failure source at system level was not known before the test. Such
a remark goes in the direction towards testing at system level “as your mission”. The
obtained results might be also interpreted in the way that for the given system configuration
(i.e., output voltage, output load), there was a margin given by the design that could be
used to increase tolerance to TID. For another configuration (particularly the worst-case
configuration), there might be not as large a margin to be used.

5. Conclusions

One of the advantages of the testing at system-level approach is the possibility to
obtain more realistic results because the influence of the component’s degradation on
the system health is already included in system-level test results. In order to evaluate
such an approach, experiments were performed on a system-in-package point-of-load
converter to evaluate its sensitivity to the TID. Two different approaches were used. The
PoL converter was evaluated through tests at component level using standards and by a
complete system-level approach.

The main results show that using standards leads to a qualification of the PoL at
50 krad(Si), whereas testing at system level shows that the PoL is fully functional at 118
krad(Si). Both approaches were performed using a classical Co60 source.

The test at system level was stopped at 118 Krad(Si) for experimental duration reasons
and the PoL was still fully functional. X-rays were then used to go further in a short time
irradiation. The TID level observed was higher than 400 krad before system failures.

Analysis of the results has shown that the extension of the TID tolerance of the system
is related to compensations between some electrical blocks in the complete system.

In the discussion, it was clearly shown that the results obtained for this particular
system cannot be generalized to others. The results were shown to represent an ideal case
when testing at system level and points that have to be considered in a more general case
were raised. The first point is related to the observability when performing tests at system
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level; the second one deals with the part-to-part variations; and the last one relates to the
difficulty in defining the worst-case conditions when irradiating at system level.
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