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Abstract: Smart Agriculture or Agricultural Internet of things, consists of integrating advanced tech-
nologies (e.g., NFV, SDN, 5G/6G, Blockchain, IoT, Fog, Edge, and AI) into existing farm operations
to improve the quality and productivity of agricultural products. The convergence of Industry 4.0
and Intelligent Agriculture provides new opportunities for migration from factory agriculture to the
future generation, known as Agriculture 4.0. However, since the deployment of thousands of IoT
based devices is in an open field, there are many new threats in Agriculture 4.0. Security researchers
are involved in this topic to ensure the safety of the system since an adversary can initiate many
cyber attacks, such as DDoS attacks to making a service unavailable and then injecting false data to
tell us that the agricultural equipment is safe but in reality, it has been theft. In this paper, we propose
a deep learning-based intrusion detection system for DDoS attacks based on three models, namely,
convolutional neural networks, deep neural networks, and recurrent neural networks. Each model’s
performance is studied within two classification types (binary and multiclass) using two new real
traffic datasets, namely, CIC-DDoS2019 dataset and TON_IoT dataset, which contain different types
of DDoS attacks.

Keywords: deep learning approaches; intrusion detection system; Agriculture 4.0; DDoS attack;
smart agriculture

1. Introduction

The 4th revolution of the industrial era (or Industry 4.0) is the new industry trend
that defines the Smart Factory concept [1]. This concept is based on emerging technologies
such as Fog computing, Cloud computing, Artificial Intelligence, Deep learning. . . etc.
To provide an optimization of operations and reduction of costs, these technologies are
employed to establish a connection between machines and the Internet, through the
Internet-of-Things, to collect information in the Cloud and Edge and then process them
using artificial intelligence algorithms. Industry 4.0 is expected to transform the agricultural
industry and advance the 4th agricultural revolution, known as Agriculture 4.0. The first
three industrial revolutions deeply reshaped the agricultural industries from indigenous
agriculture (Agriculture 1.0) towards mechanized agriculture (Agriculture 2.0) and recent
precision farming (Agriculture 3.0), as presented in Figure 1 [2,3].

In the most recent years, the IoT application has been deployed for Agriculture 4.0
using wireless sensor networks such as, Supply chain management, Smart monitoring,
Smart water, Agrochemicals applications, Disease management, and Smart harvesting.
Figure 2 presents the IoT, IIoT, Industry 4.0, Agriculture 4.0 and the common concepts.
Industry 4.0 focuses primarily on the manufacturing sector, Agriculture 4.0 focuses on the
Agriculture sector, whereas IIoT covers all sectors where industrial/professional equipment
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is used. However, with thousands of IoT-based devices deployed in the open field, there
are many new cyber security threats in Agriculture 4.0. When an adversary attempting
to penetrate Agriculture 4.0 network, it use several different approaches such as DDoS
attacks, scanning attacks, false data injection attacks, to disrupt the functioning of the
IoT-based devices. For example, in the soil pH parameters, if the pH rises excessively,
it means that the farmer will increase ammonium input, and if the pH falls, it indicates
that the farmer will reduce ammonium input. With this information, an adversary can
launch DDoS attacks to disrupt the pH parameters. Hence, this private information (i.e.,
the pH parameters) must be protected from cyber attacks [4]. To protect Agriculture 4.0
from destruction, change, unauthorized access, or attack, Security researchers propose the
use of an intrusion detection system (IDS) beside the authentication, access control, and
integrity techniques [5–7].
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Figure 1. Agricultural revolutions with industrial revolutions and related cyber security threats.

The IDS system is a mechanism monitoring the network traffic, which is used to detect
suspicious or abnormal activities and then enables preventive measure on the intrusion
risks. Therefore, intrusion detection systems can be divided into two major types, namely,
(1) Network Intrusion Detection Systems (NIDS) and (2) Host Intrusion Detection Systems
(HIDS). The NIDS is typically deployed or located at critical network points to ensure
that it covers the locations where the traffic is more susceptible to attacked, while the
HIDS systems works on any device on the network that has Internet access. To detecting
intrusion, there are two main techniques, namely, IDS (1) based on anomalies and (2) IDS
based on signatures [8]. The signature-based IDS (i.e., Misuse Detection or Knowledge-
based Detection) concentrates on identifying a “signature”, patterns of intrusion event, and
it is as efficient as updating the database at a specific moment of time. Based on monitoring
regular activities, the anomaly-based IDS (i.e., Behavior-based Detection) uses machine
learning techniques to compare trustworthy behavioral patterns with new behaviors. When
an administrator receives an alert via the IDS system, it uses Intrusion Prevention Systems
(IPS) to block the threat such as Trojan horse, DDoS attacks, etc. [9].
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Internet of things

Internet of things
The ability to connect physical
objects embedded with sensors,
software, and other technologies to
the Internet, which allows them to
share and access information in
critical and non-critical applications.

Industrial Internet
of Things

Industry 4.0

Agriculture 4.0

Industry 4.0
The 4th revolution of the industrial era
– or Industry 4.0 is the new industry
trend that defines the Smart Factory
concept.

The Industrial Internet of Things
The Industrial Internet of Things consists of the use of IoT
technologies in industrial sectors such as logistics, oil and
gas, transportation, energy/utilities, ...etc.

Agriculture 4.0
Agriculture 4.0 consists of integrating advanced
technologies into existing farm operations to improve the
quality and productivity of agricultural products.

Common Concepts
The emerging technologies such as IoT devices, 5G
communications, Drones, Fog/Edge computing, Cloud
Computing, Artificial Intelligence, Network Function
Virtualization, and Software-Defined Networking

Figure 2. IoT, IIoT, Industry 4.0, Agriculture 4.0 and the common concepts.

This paper focuses on developing and employing deep-learning approaches for detect-
ing cyber threats (i.e., anomaly-based IDS). There are some recently proposed IDS systems
that employ deep learning strategies for IoT applications, such as wireless networks [10],
big data environments [11], industrial cyber–physical systems [12], SCADA systems [13],
smart grids [14], internet of vehicles [15], and cloud computing [16]. Deep learning ap-
proaches are also used in Agriculture 4.0, for crop hail damage, soil and vegetation/crop
mapping, crop monitoring, irrigation, greenhouse monitoring, etc. [17]. However, there are
eight big challenges in the field of intrusion detection systems for Agriculture 4.0: (1) Data
collection that contains IIoT traffics with cyber attacks, (2) Less amount of training data,
(3) Non-representative training data, (4) Poor quality of data, (5) Irrelevant/unwanted
features, (6) Overfitting the training data, (7) Underfitting the training data, (8) Offline
learning & deployment of the model [18]. Our proposed model overcomes these chal-
lenges. The datasets used in our paper are very popular, recent, and used by the scientific
community for developing intrusion detection systems for IIoT networks.

Our contributions in this work are:

• We propose three deep learning-based IDS models, including a convolutional neural
network-based IDS model,a deep neural network-based IDS model, and a recurrent
neural network-based IDS model.

• We provide a performance evaluation and comparative analysis of machine learning
and deep learning approaches for cyber security in agriculture 4.0.

• We review three models of deep learning; namely, convolutional neural networks,
deep neural networks, and recurrent neural networks. Each model’s performance is
studied within two classification types (binary and multiclass) using two new real
traffic datasets, namely, CIC-DDoS2019 dataset and TON_IoT dataset .

• We focus on the following important performance indicators: false alarm rate (FAR),
precision, F-score, detection rate (DR), recall, True Negative Rate (TNR), False Accept
Rate (FAR), ROC Curve, and accuracy.

The rest of this work is structured as follows. Section 2 review the related works.
Section 3 presents the implementation of IDSs. Section 4 provides a comparative study on
Deep Learning based-IDS for Agriculture 4.0. Lastly, Section 5 presents conclusions.

2. Related Work

The popularity of deep learning in different fields of Big Data has created a lot of
attention in the area of cyber security. According to its architectural conception, deep
learning can be categorized in various types, such as generative and discriminative [19].
The intrusion detection systems have been investigated with the use of shallow and deep
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networks to identify anomalous patterns in both network and host-based systems. The
summary of deep learning approaches for network intrusion detection for the IoT networks
is presented in Table 1.

Table 1. Summary of deep learning approaches for network intrusion detection for the IoT networks.

System Year Network Model Deep Learning Techniques The Basic Idea Dataset Used Performance Metrics

Diro and Chil-
amkurti [20] 2018 Social internet of things

Deep learning approach
with softmax as activation
function

Deploy the distributed attack detection
system at the fog computing layer

NSL-KDD, ISCX, and
KDDCUP99

Accuracy, detection rate,
and false alarm rate

Muna et al. [21] 2018 Industrial internet of things Unsupervised deep auto-
encoder algorithm

The unsupervised deep auto-encoder al-
gorithm is used to learn normal network
behaviors, while a standard supervised
deep neural network model is used to
classify network behaviors

NSL-KDD and UNSW-
NB15

Accuracy, detection rate,
and false positive rate

HaddadPajouh et
al. [22] 2018 Internet of things Deep Recurrent Neural

Network

Detecting IoT malware based on three
stages, namely, collection data, feature
extrication, and deep threat classifier

IoT malware dataset Accuracy, detection rate

Vinayakumar et al.
[23] 2020 The Internet of Things net-

works of smart cities
Cost-sensitive model-
based deep learning,

Uses a two-tier environment for moni-
toring DNS logs AmritaDGA

F1-score, true positive rate,
False positive rate, preci-
sion, accuracy, recall

Parra et al. [24] 2020 Internet of things CNN and LSTM
The CNN is used in an IoT micro-
security add-on, while the LSTM is used
by the back-end server

N-BaIoT dataset
F1 score, True Positive
Rate, True Negative Rate,
precision, Accuracy, recall

Latif et al. [25] 2020 Industrial internet of things Lightweight random neu-
ral network,

Uses a model with 1 input layer, 8 hid-
den layers, and 1 output layer DS2OS dataset Accuracy, precision, recall,

and F1 score

Manimurugan
et al. [26] 2020 Internet of Medical Things Deep belief network tech-

nique
Uses the greedy layer-wise scheme to
optimize the deep learning structure CICIDS 2017 dataset

Accuracy, detection
rate, precision, recall,
F-measure

Koroniotis et al.
[27] 2020 Internet of things Deep Neural Network

Detecting IoT attacks based on three
stages, namely, extracting data, adapt
parameters of deep learning, and iden-
tify the anomalous incidents

Bot-IoT and
UNSW_NB15 datasets

Recall, F-measure, accu-
racy, precision

Zhou et al. [28] 2020 Industry 4.0
Variational long short-
term memory (VLSTM)
learning model

Detecting IoT attacks based a en-
coder–decoder neural network UNSW_NB15 dataset Accuracy, False alarm rate,

F1, Area under curve

NG and Selvaku-
mar [29] 2020 Fog computing-enable Inter-

net of things
Convolutional deep learn-
ing technique

The computations are performed in the
fog nodes

UNSW’s Bot-IoT
dataset

Accuracy, precision, recall,
F-measure

Khoa et al. [30] 2020 IoT industry 4.0 Deep neural networks Uses smart “filters” deployed at the IoT
gateways for detecting network attacks

- KDD, NSL-KDD, and
UNSW
- N-BaIoT dataset

- Accuracy

Ferrag and Lean-
dros [14] 2020 Smart Grids Recurrent neural networks

Employs recurrent neural networks
with blockchain for detecting network
attacks

- Bot-IoT dataset
- CICIDS2017 dataset
- Power system dataset

- False alarm rate, detec-
tion rate, accuracy

Popoola et al. [31] 2020 Internet of Things Deep bidirectional long
short-term memory

Uses deep bidirectional long short-term
memory to identify the traffic of botnet
attacks from benign traffic in IoT net-
works

Bot-IoT dataset Matthews Correlation Co-
efficient

Al-Hawawreh
et al. [32] 2020 Internet of Things Deep learning techniques Uses a deep pattern extractor to identify

the attack types of malicious patterns
- TON-IoT dataset
- N-BAIOT dataset

Accuracy, DR, FPR, FNR,
MCC

Ge et al. [33] 2021 Internet of Things Customised deep learning
technique

Uses the concepts of deep learning and
transfer learning for cyber security in
IoT networks

Bot-IoT dataset Accuracy, Recall, Precision,
and F1 score

Our Work / Agriculture 4.0

Convolutional neural net-
work, Deep neural net-
work, and Recurrent neu-
ral network

Study the performance of three deep
learning models to identify the traffic
of DDoS attacks from benign traffic in
Agriculture 4.0

- CIC-DDoS2019
dataset [34]
- TON_IoT dataset [35]

Detection rate (DR), false
alarm rate (FAR), preci-
sion, F-score, recall, True
Negative Rate(TNR), False
Accept Rate (FAR), ROC
Curve, and accuracy

Diro and Chilamkurti [20] designed a distributed attack detection system based on
deep learning for the IoT networks. The authors proposed to deploy this system at the fog
computing layer for hosting attack detection systems and training models. Three cyber
security datasets are used in the performance evaluation, including, NSL-KDD, ISCX, and
KDDCUP99, in which the results show a precision of 71%, 98.56%, and 97%, for R2L.U2R
attacks, Probe attacks, and DoS attacks, respectively. Muna et al. [21] an anomaly detection
system, named ADS, for detecting cyber attacks in the industrial internet of things. The
ADS system uses deep learning techniques, in which the unsupervised deep auto-encoder
algorithm is used to train network normal patterns of behavior and generate the correct
settings. Both NSL-KDD and UNSW-NB15 are used in the evaluation of performance
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which the results of the experiments demonstrate a detection ratio of 99% and a false
positive ratio of 1.8%.

Based on scanning the DNS services in smart city applications of IoT, Vinayakumar
et al. [23] presented an instruction detection mechanism against botnet attacks. Specifically,
the proposed mechanism uses a two-tier environment for monitoring DNS logs and search-
ing the domain name generated by the domain generation algorithm through deep learning
algorithms to minimize false alarm rates. Latif et al. [25] designed an intrusion detection
mechanism that uses a lightweight random neural network for detecting cyber threats in
the industrial internet of things. Compared to traditional machine learning techniques
such as SVM, ANN, and decision tree, the proposed system shows good performance on
an open-source dataset called DS2OS. The DS2OS dataset contains seven types of attacks,
including, DoS attacks, Scan, Data type probing, Malicious control, Wrong setup, Spying,
and Malicious operation. These attacks are not sufficient to prove the performance of an
intrusion detection mechanism for identifying cyber threats in the industrial IoTs.

To identify an adversary who tries to insert useless data and detecting phishing and
Botnet attack, Parra et al. [24] proposed distributed architecture using two deep learning
approaches, namely, a Distributed CNN scheme and LSTM network. The DCNN is used in
an IoT micro-security add-on, while the LSTM is used by the back-end server. The N-BaIoT
dataset is employed in the evaluation of performance, where outcomes show an accuracy of
98% and 94.30% during the training phase and the testing phase, respectively. To detecting
IoT malware, Haddad Pajouh et al. [22] designed an intrusion detection mechanism using
a recurrent neural network. The proposed mechanism employs three stages; namely,
collection data, feature extrication, and deep threat classifier. The results of the experiments
demonstrate the highest accuracy of 98.18% under the 10-fold cross-validation analysis
and efficient compared to conventional machine learning classifiers such as Naive Bayes,
K-Nearest Neighbor, Random Forest, and Decision Tree. Koroniotis et al. [27] proposed a
network forensics scheme, called PDF, for detecting and monitoring the attack patterns in
IoT based networks. The PDF scheme is based on three stages, namely, (1) extracting data,
(2) adapt parameters of deep learning, and (3) identify anomalous incidents. The particle
swarm optimization algorithm is used in the second stage, whereas the deep neural model
is used in the third stage. The experimental results reveal an accuracy of 99.9% compared
to 93.2% with decision tree and 72.7% with naïve bayes.

NG and Selvakumar [29] proposed an anomaly detection framework based on vector
convolutional deep learning technique. The authors proposed also that the computations
are processed at the fog nodes. The experiments conducted on the UNSW Bot-IoT dataset
show an accuracy of 99.71%, 99.80%, 99.92%, 77.22%, for DDoS attacks, DoS attacks,
Reconnaissance attacks, and Theft attacks, respectively. Therefore, to detect cyber attacks
in the Internet-of-Medical-Things (IMoT), Manimurugan et al. [26] introduced an intrusion
detection mechanism using the deep belief network technique. The proposed mechanism
is evaluated using the CICIDS 2017 dataset which shows an accuracy of 97.71% and 96.37%
for PortScan attack and infiltration attack, respectively. Popoola et al. [31] developed a
hybrid intrusion detection mechanism, called LAE-BLSTM, for the detection of botnets
in IoT networks. The LAE-BLSTM mechanism uses deep Bidirectional Long Short-Term
Memory (BLSTM) and Long Short-Term Memory Autoencoder (LAE). The LAE is used
for the dimensionality reduction of the feature, while the BLSTM is used to identify the
traffic of botnet attacks from benign traffic in IoT networks. The Bot-IoT dataset used in the
evaluation of performance, which demonstrates that the LAE-BLSTM mechanism reached
a data size reduction ratio of 91.89%.

3. IDS Implementation

In this section, we propose three deep learning-based IDS models for detection of
cyber attacks in Agriculture 4.0, including recurrent neural network-based IDS model, con-
volutional neural network-based IDS model, and deep neural network-based IDS model.
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3.1. Network Model

The considered network model of Agriculture 4.0 is presented in Figure 3, which is based
on three layers, namely, (1) Agricultural sensors layer, (2) Fog computing layer, and (3) Cloud
computing layer. The agricultural sensors layer consists of various IoT devices and drones
applied to monitor agricultural environment data. Actuators are activated in the agricultural
sensors layer when the data meet specific conditions. New energy technology and smart grid
architecture are placed in the agricultural sensors layer for supplying energy for IoT devices.
In each fog node, a deep learning based-intrusion detection system is placed. The IoT data are
transmitted directly to the fog computing layer from the agricultural sensors layer for analysis
and machine learning algorithms, while Cloud computing nodes provide the storage and
end-to-end services. The computations of deep learning based-intrusion detection systems
are performed in the fog nodes. We consider that there is a group of attackers that launch
DDoS attacks in order to affect the functioning of the network, which can affect food safety,
agri-food supply chain efficiency, and agricultural productivity.

Fog
node

Fog
node

Fog
node

Agricultural sensors layer

Fog computing layer

Cloud
storage

Cloud
storage

Cloud
data
center

Cloud
gateway

Wireless
access point

Fog-Things Interface

Fog-Cloud Interface

Various IoT devices and drones are
applied to monitor agricultural
environment data.
Actuators are activated when the data
meet specific conditions.
New energy technology and smart grid
architecture contribute to supplying
energy for IoT devices.

IoT data are transmitted directly to the fog
computing layer from the agricultural
sensors layer for analysis and machine
learning algorithms.
In each fog node, a deep learning based-
intrusion detection system is placed.
The computations of IDSs are performed
in the fog nodes.

Cloud computing layerCloud
storage

Cloud computing nodes provides the
storage and end-to-end services

Dataset pre-processing

Training
dataset

Test
dataset

Labeling all rows as
Benign or one

category Attack

Normalization

Normalization

IDS model 

Training using
Deep learning
approaches

(Algorithms 1,
2,and 3)

Deep learning-based intrusion
detection system Agriculture 4.0

Figure 3. The proposed deep learning-based IDS for DDoS attack in Agriculture 4.0.

3.2. Rnn-Based Ids

Recurrent neural networks, or RNN, are a category of neural networks for processing
sequential data (i.e., a sequence of values X(1), . . . , X(T)). It allows the previous predictions
to be used as inputs, using hidden states. The RNN is based on the multilayer perceptron
which is an acyclic neural network structured in layers, namely, an input layer, one or more
intermediate layers called hidden layers, and an output layer. The multilayer perceptron is
described by the n layers that compose it and which are successive. The layer L ∈ [[1, N]]
of multilayer perceptron is defined by : T_L = (n_L, σ_L, a_L) where n_L ∈ N is the
number of neurons in the layer L. a_L : Rn_L−1 → Rn_L is the affine transformation defined
by the vector b_L ∈ Rn_L and the matrix W_L ∈ Rn_L−1×n_L . Note that the b_L is a bias
vector, which is an additive set of weights in a neural network that requires no input.

For an input vector sequence x(t) containing the features of an input dataset of attacks
with t ∈ [[1, t_ f ]], we have an output vector sequence o(t) with t ∈ [[1, t_ f ]] by the
initialization of the internal state vectors as follows :
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State_0(t) = x(t), ∀t ∈ [[1, t_ f ]] (1)

and
State_L(0) = x(0), ∀t ∈ [[1, N]] (2)

Then, for each time step, all the layers of the network are recursively applied to the
previous layer’s output vector:

g_L(t) = W_L× h_L− 1(t) + V_L× h_L(t− 1) + b_L (3)

h_L(t) = σ_L(g_L(t)) (4)

o(t) = h_N(t) (5)

To alleviate the vanishing gradient problem, there are two solution, namely, Gated
recurrent units (GRUs) and Long short-term memory (LSTM). We use in our algorithm the
LSTM which is one of the most popular RNN architectures to date. The LSTM is described
as follows [36]:

Cell_t = Forget_t� Cell_t− 1 + Input_t� ˜Cell_t (6)

Forget_t = σ(W_ f hh_t− 1 + W_ f xx_t + b_ f ) (7)

Output_t = σ(W_ohh_t− 1 + W_oxx_t + b_o) (8)

Input_t = σ(W_ihh_t− 1 + W_ixx_t + b_i) (9)

˜Cell_t = tanh(W_chh_t− 1 + W_cxx_t + b_c) (10)

Hidden_t = Output_t� tanh(Cell_t) (11)

Where Forget_t is the forget gate, Cell_t is the memory cell, Input_t is the input gate,
Output_t is the output gate, and Hidden_t is the new hidden state.

The proposed RNN-based IDS architecture for detection of cyber attacks in Agricul-
ture 4.0 is presented in Algorithm 1 which is written in Python language. The description
of each functions used in Algorithms 1–3 are presented in Table 2.

Table 2. Functions used in Algorithms 1–3.

Function Description

model = Sequential() Create a sequential model incrementally via the add() method.

add() The add() method consists of adding layers.

Dropout()
The dropout is a regularization technique for neural networks and
deep learning models, where randomly selected neurons are ignored
during training.

Dense() The dense layer is the regular deeply connected neural network layer.

LSTM() Adding the Long Short-Term Memory layer.

return_sequences Determines whether to return the last output in the output sequence
or the full sequence.

input_shape The shape of our training set.

compile() Compile the model.

model. f it() Train the model, iterating on the data in batches of X samples.

training_loss Get training loss histories.

test_loss Get test loss histories.

plt.show() Visualize the confusion matrix.
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Table 2. Cont.

Function Description

Conv1D()
The Conv1D consists of creating a convolution kernel that is con-
volved with the layer input.

GlobalAveragePooling1D() Convert each feature map into one value.

np.argmax Create the confusion matrix.

SGD()
Implements the stochastic gradient descent optimizer with a learning
rate and momentum.

Accuracy The number of correct predictions made as a ratio of all predictions
made.

AreaUnderROCCurve A plot of the true positive rate and the false positive rate for a given
set of probability predictions.

Con f usionMatrix The confusion matrix is a handy presentation of the accuracy of a
model with two or more classes.

classi f ication_report() function displays the precision, recall, f1-score and support for each
class.

ReLU The rectified linear activation function.

Sigmoid The sigmoid activation function that takes any real value as input
and outputs values in the range 0 to 1.

Tanh The hyperbolic tangent activation function that takes any real value
as input and outputs values in the range −1 to 1.

Algorithm 1 Build the model using RNN
Input: x_train.shape[2] , batch_size = 10, 000
Initialization: Define Sequential model : model = Sequential()

1: model.add(LSTM(67,input_dim=x_train.shape[2], return_sequences=True))

2: model.add(LSTM(300, return_sequences=True))

3: model.add(Dropout(0.2))

4: model.add(LSTM(600, return_sequences=True))

5: model.add(Dropout(0.5))

6: model.add(LSTM(300, return_sequences=True))

7: model.add(Dropout(0.2))

8: model.add(LSTM(67, return_sequences=False))

9: model.add(Dropout(0.1))

10: model.add(Dense(y_train.shape[1], activation=‘softmax’))

11: model.compile(loss=‘categorical_crossentropy’, optimizer=‘adam’, metrics=[“accuracy”,Precision(),Recall()])

12: history=model.fit(x_train1, y_train1, batch_size=batch_size,

13: epochs=15, validation_data=(x_test, y_test), class_weight=

14: class_weights)

15: training_loss = history.history[‘loss’]

16: test_loss = history.history[‘val_loss’]

17: snn_pred = model.predict(d2_x_test,batch_size=10,000, verbose=1)

18: snn_predicted = np.argmax(snn_pred,axis=1)

19: y_eval = np.argmax(y_test,axis=1)

20: cm = confusion_matrix(np.argmax(y_test, axis=1), snn_predicted)

21: snn_cm = (cm.astype(‘float’) / cm.sum(axis=1)[:, np.newaxis])

22: snn_df_cm = pd.DataFrame(snn_cm, target_strings, target_strings)

23: plt.show()
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Algorithm 2 Build the model using CNN
Input: x_train.shape[2] , batch_size = 10, 000
Initialization: Define Sequential model : model = Sequential()

1: model.add(Conv1D(input_shape=(None, 67),filters=64,kernel_size=3,activation=‘relu’,padding=‘same’))

2: model.add(Conv1D(filters=32,kernel_size=3,activation=‘relu’, padding=‘same’))

3: model.add(Conv1D(filters=16,kernel_size=2,activation=‘relu’, padding=‘same’))

4: model.add(GlobalAveragePooling1D())

5: model.add(Dense(52, activation=‘relu’))

6: model.add(Dense(26, activation=‘relu’))

7: model.add(Dense(13, activation=‘softmax’))

8: model.compile(loss=‘categorical_crossentropy’, optimizer=‘adam’, metrics=[“accuracy”,Precision(),Recall()])

9: history = model.fit(x_train1, y_train1, batch_size=batch_size, epochs=35, validation_data=(x_test, y_test))

10: pyplot.plot(history.history[‘acc’])

11: pyplot.show()

12: training_loss = history.history[‘loss’]

13: test_loss = history.history[‘val_loss’]

14: snn_pred = model.predict(d2_x_test,batch_size=10,000, verbose=1)

15: snn_predicted = np.argmax(snn_pred,axis=1)

16: y_eval = np.argmax(y_test,axis=1)

17: cm = confusion_matrix(np.argmax(y_test, axis=1), snn_predicted)

18: snn_cm = (cm.astype(’float’) / cm.sum(axis=1)[:, np.newaxis])

19: snn_df_cm = pd.DataFrame(snn_cm, target_strings, target_strings)

20: plt.show()

Algorithm 3 Build the model using DNN
Input: x_train.shape[2] , batch_size = 10, 000
Initialization: Define Sequential model : model = Sequential()

1: model.add(Dense(134, input_dim=x.shape[1], activation=‘relu’))

2: model.add(Dropout(0.2))

3: model.add(Dense(60, activation=‘relu’))

4: model.add(Dropout(0.2))

5: model.add(Dense(26, activation=‘relu’))

6: model.add(Dropout(0.2))

7: model.add(Dense(13, activation=‘softmax’))

8: sgd = SGD(lr=0.05, momentum=0.8)

9: model.compile(loss=‘categorical_crossentropy’, optimizer=‘adam’, metrics=[“accuracy”,Precision(),Recall()])

10: history = model.fit(d2_x_train,y_train1,validation_data= (d2_x_test,y_test), batch_size=10,000 , verbose=1,epochs=30)

11: pyplot.plot(history.history[‘acc’])

12: pyplot.show()

13: training_loss = history.history[‘loss’]

14: test_loss = history.history[‘val_loss’]

15: snn_pred = model.predict(d2_x_test,batch_size=10,000, verbose=1)

16: snn_predicted = np.argmax(snn_pred,axis=1)

17: y_eval = np.argmax(y_test,axis=1)

18: cm = confusion_matrix(np.argmax(y_test, axis=1), snn_predicted)

19: snn_cm = (cm.astype(‘float’) / cm.sum(axis=1)[:, np.newaxis])

20: snn_df_cm = pd.DataFrame(snn_cm, target_strings, target_strings)

21: plt.show()

3.3. Cnn-Based Ids

Convolutional networks, also known as convolutional neural networks, or CNNs,
represent a dedicated class of neural network for data processing with a familiar network
structure. The name “convolutional neural network” means that the network uses a
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mathematical operation called convolution [37]. Therefore, a convolutional neural network
structure is composed of a set of processing layers, as follows:

• The convolution layer (CONV) that manages the data from a receiver cell. There are
three hyperparameters to dimension the volume of the convolution layer: the depth,
stride, and zero-padding. The formula for calculating the number of neurons in the
output volume W_o is described as follows:

W_o =
W_i− S + 2M

P
+ 1 (12)

where W_i is the size of the input volume, S is the kernel field size of the convolutional
layer neurons, M is the amount of zero padding, and P is the stride.

• The pooling layer (POOL), which enables to reduce the size of the intermediate image
by compressing the information and operates on each feature map independently.

• The correction layer (Rectified Linear Unit, ReLU), which is often referred to as the
“ReLU” in reference to the activation function. The ReLU applies the non-saturating
activation function, which is described as follows:

f unction(x) = max(0, x) (13)

Note that there are other functions that can be used to increase nonlinearity, such as
the sigmoid function, which is described as follows:

S(x) =
ex

ex + 1
(14)

• The “fully connected” (FC) layer is a perceptron-type layer.
• The loss layer as the final layer of a neural network. Different loss functions can be

used such as Euclidean loss, Softmax loss, and Sigmoid cross-entropy loss.

The proposed CNN-based IDS architecture for detection of cyber attacks in Agricul-
ture 4.0 is presented in Algorithm 2 which is written in Python language.

3.4. Dnn-Based Ids

A deep neural network (DNN) is an artificial neural network (ANN) with more layers
intermediate between input and output layers. The DNN consist of five-part: neurons,
weights, synapses, biases, and functions. The inputs (X = x_1, . . . , x_n) are linked with
weights (W = w_1 . . . w_n). The full-fledged deep learning system is based on multilayer
perception (defined in RNN-based IDS) with the application of various activation functions
that produce real values, rather than Boolean values as in the classical perceptron. To help
to adjust the input weights and minimize the “loss”, the backpropagation algorithm is
applied to performs iterative backward passes. The proposed DNN-based IDS architecture
for detection of cyber attacks in Agriculture 4.0 is presented in Algorithm 3 which is
written in Python language based on the following packages Pandas (https://pandas.
pydata.org/pandas-docs/stable/ (accessed on 1 April 2021 )), NumPy (https://numpy.
org (accessed on 1 April 2021)), SciPy (https://scipy.org (accessed on 1 April 2021)),
TensorFlow (https://tensorflow.org/ (accessed on 1 April 2021)), and Keras (https://
keras.io/ (accessed on 1 April 2021)).

4. Performance Evaluation

Agriculture 4.0 consists of integrating advanced technologies into existing farm opera-
tions to improve the quality and productivity of agricultural products. These advanced tech-
nologies include IoT devices, 5G communications, Drones, Fog/Edge computing, Cloud
Computing, Artificial Intelligence, Network Function Virtualization, and Software-Defined
Networking. Based on these technologies, we used and selected the most recent data sets
that contain DDoS attack scenarios against these technologies used by Agriculture 4.0.

https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://numpy.org
https://numpy.org
https://scipy.org
https://tensorflow.org/
https://keras.io/
https://keras.io/
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Specifically, we used the following two new real traffic datasets, namely, CIC-DDoS2019
dataset [34] and TON_IoT dataset [35]. They are chosen for three reasons: (1) because they
were built for a TCP/IP communication stack, (2) contain DDoS attacks, and (3) represent
the nature of Agriculture 4.0 (in particular its IoT and IIoT sensors and cloud-edge traffic).
The TON_IoT dataset was designed based on interacting network elements and IoT/IIoT
systems with the three layers of Edge, Fog, and Cloud to simulate a real-world execu-
tion of current production IoT/IIoT networks. The NSX-VMware platform was utilized as
Software-Defined Network (SDN) and Network Function Virtualisation (NFV) technologies
to facilitate the management of the interaction between these three layers. The experiment
is conducted on Google Colaboratory (https://colab.research.google.com (accessed on 1
April 2021 )) using python 3 with the Graphics Processing Unit (GPU) and TensorFlow.

The details of the IDS experiment methodology are shown in Figure 4 and an overview
of pre-processing of CIC-DDoS2019 dataset [34] and TON_IoT dataset [35] with the Deep
learning-based IDS deployment is presented in Figure 5. More precisely, the approach is
composed of four steps: (1) datasets step, (2) pre-processing step, (3) training step, and (4)
testing step. The hyperparameters employed in deep learning strategies are shown in Table 3.

CICDDoS2019 dataset

Dataset_2_class
Dataset_7_class Dataset_13_class

Dataset pre-processing

Multi-class classification
Multi-class classification

Binary classification

Training
dataset

Test
dataset

Labeling all rows as
Benign or one

category Attack

Normalization

Training using
Deep learning
approaches

(Algorithms 1, 2,
and 3)

IDS model

Normalization

Visualize the performance indicators,
including, detection rate, false alarm rate,
precision, F-score, recall, TNR, FAR, ROC

Curve, and accuracy

Training
dataset

Test
dataset

Training
dataset

Test
dataset

Labeling all rows as
Benign or Attack

Normalization

Training using
Deep learning
approaches

(Algorithms 1, 2,
and 3)

Normalization

IDS model

Labeling all rows as
Benign or one

category Attack

Normalization

Training using
Deep learning
approaches

(Algorithms 1, 2,
and 3)

IDS model

Normalization

Figure 4. Flowchart of the cyber security intrusion detection methodology.

https://colab.research.google.com
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CICDDoS2019
dataset

50063112 rows, including,
50006249 rows for DDoS

attacks and 56863 rows for
benign traffic. Each row

having 86 features

Training dataset contains 12
DDoS attacks including,

NTP, DNS, LDAP, MSSQL,
NetBIOS, SNMP, SSDP,

UDP, UDP-Lag, WebDDoS,
SYN and TFTP

Test dataset contains 7
attacks including PortScan,
NetBIOS, LDAP, MSSQL,

UDP, UDP-Lag and SYN in
testing day

CIC-DDoS2019 dataset

Label encoding phase

Duplicate rows, empty
columns, and unnecessary
Label columns are dropped

Each row having 67 features

reshaping phase
x_train = np.reshape(x_train,

(x_train.shape[0], 1,
x_train.shape[1]))

x_test = np.reshape(x_test,
(x_test.shape[0], 1,
x_test.shape[1]))

Normalization
scaler = StandardScaler()
x = scaler.fit_transform(x)

Dataset_2_class

Dataset_13_class

Dataset_7_class

Data-set Pre-processing

Build the model using
RNN

Build the model
using CNN

Build the model
using DNN

Visualize the performance
indicators,including,

detection rate, false alarm
rate,precision, F-score,

recall, TNR, FAR,
ROCCurve, and accuracy

Deep learning-based IDS
deployment

Label encoding phase

Duplicate rows, empty
columns, and unnecessary
Label columns are dropped

Uses the same features
presented in the original

dataset

reshaping phase
x_train = np.reshape(x_train,

(x_train.shape[0], 1,
x_train.shape[1]))

x_test = np.reshape(x_test,
(x_test.shape[0], 1,
x_test.shape[1]))

Normalization
scaler = StandardScaler()
x = scaler.fit_transform(x)

Train_Test_IoT_WeatherTrain_Test_IoT_Fridge

Data-set Pre-processing

TON_IoT
dataset

Normal (35000 rows), DDoS
(5000 rows), Injection (5000),

Password (5000 rows),
Backdoor (5000 rows),

Ransomware (2865 rows) , XSS
(866 rows), and Scanning (529

rows). Each row having 7
features.

Normal (35000 rows), DDoS
(5000 rows), Injection (5000),

Password (5000 rows), Backdoor
(5000 rows), Ransomware (2902

rows),  and XSS (2942 rows).
Each row having 6 features.

TON_IoT dataset

Normal (70000 rows), DDoS
(10000 rows), Injection (10000),

Password (10000 rows),
Backdoor (10000 rows),

Ransomware (5804 rows), XSS
(2312 rows), and Scanning

(1058 rows). Each row having 6
features.

Normal (35000 rows), DDoS
(5000 rows), Injection (5000),

Password (5000 rows), Backdoor
(5000 rows), Ransomware (2833

rows), XSS (577 rows), and
Scanning (550 rows). Each row

having 6 features.

Normal (35000 rows), Injection
(5000), Password (5000 rows),

Backdoor (5000 rows), XSS (577
rows), and Scanning (529 rows).

Each row having 7 features.

Normal (70000 rows), DDoS
(10000 rows), Injection (10000),

Password (10000 rows),
Backdoor (10000 rows),

Ransomware (4528 rows), XSS
(898 rows), and Scanning (3550

rows). Each row having 6
features.

Normal (35000 rows), Injection
(5000), Password (5000 rows),

Backdoor (5000 rows),
Ransomware (2264 rows), XSS
(449 rows), and Scanning (61

rows). Each row having 7
features.

Train_Test_IoT_GPS_TrackerTrain_Test_IoT_Garage_Door

Train_Test_IoT_Motion_Light
Train_Test_IoT_Modbus

Train_Test_IoT_Thermostat

Figure 5. Overview of pre-processing of CIC-DDoS2019 dataset [34] and TON_IoT dataset [35] with
Deep learning-based IDS deployment.
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Table 3. The hyperparameters employed in deep learning approaches.

Hyperparameter Value

Activation function Sigmoid

Classification function SoftMax

Batch size 10,000

Hidden nodes (HN) 15–100

Number of epoch 100

Learning rate (LR) 0.01–0.5

4.1. Pre-Processing of the Cic-Ddos2019 Dataset

The CIC-DDoS2019 dataset [34] includes 50,063,112 records, including, 50,006,249
rows for DDoS attacks and 56,863 rows for benign traffic. Each row having 86 features.
The statistics for attacks in training and testing for the dataset are summarized in Table 4.
The training dataset contains 12 DDoS attacks including, Network Time Protocol (NTP),
Domain Name System (DNS), Lightweight Directory Access Protocol (LDAP), Microsoft
SQL Server (MSSQL), NETwork Basic Input Output System (NetBIOS), Simple Network
Management Protocol (SNMP), Simple Service Discovery Protocol (SSDP), User Datagram
Protocol (UDP), UDP-Lag, WebDDoS, SYN and TFTP, while the test dataset contains seven
attacks, namely, MSSQL, NetBIOS, PortScan, LDAP, UDP, UDP-Lag and SYN in testing day.

• NTP-based attack: is a DDoS attack based on a reflection where an attacker uses
Network Time Protocol (NTP) server functionality to flood a specific client-server or
other networks with an increased quantity of UDP data traffic. This attack can make
the destination and its network infrastructure unavailable to normal traffic.

• DNS-based attack: is a DDoS attack based on a reflection where an attacker uses a
Botnet to create a large number of resolution requests to a targeted IP address.

• LDAP-based attack: is a DDoS attack based on a reflection where an attacker sends
requests to a publicly available vulnerable LDAP server to generate large responses
(amplified), reflected to a target server.

• MSSQL-based attack: is a DDoS attack based on a reflection where an attacker exploits
the Microsoft SQL Server Resolution Protocol (MC-SQLR) by executing scripted
requests using a forged IP address in order to appear as coming from the target server.

• NetBIOS-based attack: is a DDoS attack based on a reflection where an attacker sends
spoofed “Name Release” or “Name Conflict” messages to a victim machine in order
to refuse all NetBIOS network traffic.

• SNMP-based attack: This attack is a volumetric DDoS threat that uses the Simple
Network Management Protocol (SNMP) to generate attack volumes of hundreds of
gigabits per second in order to clog the target’s network pipes.

• SSDP-based attack: is a DDoS attack based on a reflection where an attacker sends an
amplified amount of traffic to a targeted victim using Universal Plug and Play (UPnP)
networking protocols.

• UDP-Lag-based attack: This attack aims to slow down/interrupt the targeted host
with IP packets containing UDP datagrams.

• WebDDoS-based attack: This threat takes advantage of legitimate HTTP GET or POST
queries to compromise a Web server or application.

• SYN-based attack: This attack exploits the normal TCP three-way handshake (i.e.,
sending SYN (synchronize), sending SYN-ACK (synchronize-acknowledge), and
responds with an ACK (acknowledge)) to use resources on the targeted network
server and make it unresponsive.

• TFTP-based attack: This attack exploits the Trivial File Transfer Protocol (TFTP) by
employing TFTP servers connected to the internet. Specifically, an attacker performs
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a request by default for a file, and the victim TFTP server sends the data back to the
requesting target host.

• PortScan-based attack: This attack performs a network security audit by conducting
port scanning on a specific machine or on an entire network. The scanning is done
using queries to determine which services are running on a remote host.

Table 4. Attack types in CICDDoS2019 dataset.

Attack Type Flow Count

Benign 56,863

DDoS_DNS 5,071,011

DDoS_LDAP 2,179,930

DDoS_MSSQL 4,522,492

DDoS_NetBIOS 4,093,279

DDoS_NTP 1,202,642

DDoS_SNMP 5,159,870

DDoS_SSDP 2,610,611

DDoS_SYN 1,582,289

DDoS_TFTP 20,082,580

DDoS_UDP 3,134,645

DDoS_UDP-Lag 366,461

DDoS_WebDDoS 439

To analyze the efficiency of machine learning and deep learning strategies in terms of
binary classification (i.e., Classification tasks with two classes) and multi-class classification
(i.e., Classification tasks with more than two classes), We create three different datasets,
named Dataset_2_class, Dataset_7_class, and Dataset_13_class. The statistics for attacks in
training and testing for each dataset are summarized in Tables 5–7, respectively.

Table 5. Attack types in Dataset_2_class.

Category Training Test

Benign 56,101 17,146

Attack 997,054 314,716

Table 6. Attack types in Dataset_7_class.

Category Type of Attack Training Test

Reflection-based attacks
DrDoS_NetBIOS 619,700 136,729

DrDoS_MSSQL 619,446 157,076

DrDoS_LDAP 619,251 150,701

Exploitation-based attacks
DrDoS_UDP 618,696 150,706

UDP-lag 183,662 1873

Syn 790,662 150,416

Exploitation/Reflection
-based attacks Others DoS attacks 938,733 28,127

Benign Benign 56,101 17,146
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Table 7. Attack types in Dataset_13_class.

Category Type of Attack Flow Count Training/ Test

BENIGN BENIGN 56,101

Splitiing the data
between train / test

x_train, x_test, y_train, y_test
= train_test_split( x, y,

test_size = 0.25, stratify = y)

Reflection
-based attacks

DrDoS_LDAP 99,943

DrDoS_SSDP 98,576

DrDoS_DNS 96,567

DrDoS_MSSQL 95,700

DrDoS_NetBIOS 93,560

DrDoS_SNMP 91,578

DrDoS_NTP 76,457

TFTP 72,116

WebDDoS 439

Exploitation
-based attacks

DrDoS_UDP 97932

Syn 99983

UDP-lag 74203

4.2. Pre-Processing of the Ton_iot Dataset

The TON_IoT dataset [35] is a new testbed for an IIoT network that contains three
types of data, namely, network data, operating systems data, and telemetry data [38]. The
telemetry datasets of IoT and IIoT sensors are presented in 7 files as presented in Table 8.
The contents of these files are described as following:

• File 1 “Train_Test_IoT_Weather”: It contains Normal (35,000 rows), DDoS (5000 rows),
Injection (5000), Password (5000 rows), Backdoor (5000 rows), Ransomware (2865 rows),
XSS (866 rows), and Scanning (529 rows). The file presents the IoT data of temperature
measurements, pressure readings, and humidity readings of a weather sensor linked
to the network.

• File 2 “Train_Test_IoT_Fridge”: It contains Normal (35,000 rows), DDoS (5000 rows),
Injection (5000), Password (5000 rows), Backdoor (5000 rows), Ransomware (2902 rows),
and XSS (2942 rows). The file presents the IoT data of temperature measurements and
temperature conditions of a fridge sensor linked to the network.

• File 3 “Train_Test_IoT_Garage_Door”: It contains Normal (70,000 rows), DDoS
(10,000 rows), Injection (10,000), Password (10,000 rows), Backdoor (10,000 rows), Ran-
somware (5804 rows), XSS (2312 rows), and Scanning (1058 rows). The file presents
the IoT data of a door sensor linked to the network where the door is closed or open.

• File 4 “Train_Test_IoT_GPS_Tracker”: It contains Normal (35,000 rows), DDoS
(5000 rows), Injection (5000), Password (5000 rows), Backdoor (5000 rows), Ran-
somware (2833 rows), XSS (577 rows), and Scanning (550 rows). The file presents
the IoT data of latitude value and longitude value of GPS tracker sensor linked to
the network.

• File 5 “Train_Test_IoT_Modbus”: It contains Normal (35,000 rows), Injection (5000),
Password (5000 rows), Backdoor (5000 rows), XSS (577 rows), and Scanning (529 rows).
The file presents the IoT data of Modbus function code that is responsible for reading
an input register.

• File 6 “Train_Test_IoT_Motion_Light”: It contains Normal (70,000 rows), DDoS
(10,000 rows), Injection (10,000), Password (10,000 rows), Backdoor (10,000 rows),
Ransomware (4528 rows), XSS (898 rows), and Scanning (3550 rows). The file presents
the IoT data of a light sensor that is either on or off.

• File 7 “Train_Test_IoT_Thermostat”: It contains Normal (35,000 rows), Injection
(5000), Password (5000 rows), Backdoor (5000 rows), Ransomware (2264 rows), XSS
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(449 rows), and Scanning (61 rows). The file presents the IoT data of the current
temperature reading of a thermostat sensor connected with the network.

Table 8. Attack types in TON_IoT dataset.

TON_IoT Dataset Attack Type Flow Count

Train_Test_IoT_Weather

Normal 35,000

DDoS 5000

Injection 5000

Password 5000

Backdoor 5000

Ransomware 2865

XSS 866

Scanning 529

Train_Test_IoT_Fridge

Normal 35,000

DDoS 5000

Injection 5000

Password 5000

Backdoor 5000

Ransomware 5000

XSS 2942

Train_Test_IoT_Garage_Door

Normal 70,000

DDoS 10,000

Injection 10,000

Password 10,000

Backdoor 100,000

Ransomware 5804

XSS 2312

Scanning 1058

Train_Test_IoT_GPS_Tracker

Normal 35,000

DDoS 5000

Injection 5000

Password 5000

Backdoor 5000

Ransomware 2833

XSS 577

Scanning 550
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Table 8. Cont.

TON_IoT Dataset Attack Type Flow Count

Train_Test_IoT_Modbus

Normal 35,000

Injection 5000

Password 5000

Backdoor 5000

XSS 577

Scanning 529

Train_Test_IoT_Motion_Light

Normal 70,000

DDoS 10,000

Injection 10,000

Password 10,000

Backdoor 10,000

Ransomware 4528

XSS 898

Scanning 3550

Train_Test_IoT_Thermostat

Normal 35,000

Injection 5000

Password 5000

Backdoor 5000

Ransomware 2264

XSS 449

Scanning 61

4.3. Performance Metrics
The performance metrics chosen to evaluate machine learning and deep learning

strategies is very important. In our study, we focus on the following important perfor-
mance metrics: detection rate (DR), false alarm rate (FAR), precision, F-score, recall, TNR,
FAR, ROC Curve, and accuracy. Table 9 illustrates four possibilities for both correct and
erroneous classification.

TNR_BENIGN =
TN_BENIGN

TN_BENIGN + FP_BENIGN
(15)

FAR =
FP_BENIGN

TN_BENIGN + FP_BENIGN
(16)

Precision =
TP_Attack

TP_Attack ∗ FP_BENIGN
(17)

Recall =
TP_Attack

TP_Attack ∗ FN_Attack
(18)

DR_Attack =
TP_Attack

TP_Attack + FN_Attack
(19)

F− score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(20)

Accuracy =
TP_Attack + TN_BENIGN

TP_Attack + FN_Attack + TN_BENIGN + FP_BENIGN
(21)
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DR_Overall = ∑ TP_Each− Attack− Type
∑ TP_Each− Attack− Type + ∑ FN_Each− Attack− Type

(22)

where TP, TN, FP, and FN denote true positive, true negative, false positive, and false
negative, respectively. The False Positive (FP) indicates the benign data that is incorrectly
classified as an attack, while the True Negative (TN) indicates the benign data that is
correctly classified as benign. The True Positive (TP) indicates the attack data that is
correctly classified as an attack. The False Negative (FN) indicates the attack data that is
incorrectly classified as benign.

Table 9. Confusion matrix.

Predicted Class

Negative Class Positive Class

Class
Negative class True negative (TN) False positive (FP)

Positive class False negative (FN) True positive (TP)

4.4. Results

The performance of deep learning strategies relative to other machine learning strate-
gies (i.e., DT: Decision Tree, RF: Random forests, NB: Naive Bayes, LR: Logistic Regression)
in terms of Precision, Recall, and F-score are shown in Figure 6. In term of Precision,
the deep learning techniques give good results in comparison to other machine learning
strategies, namely, decision tree, random forests, naive bayes, and logistic regression, and
the convolutional neural network model provides the higher ratio with 91%. Both in
terms of Recall and F-score, deep learning techniques give good results in comparison
to other machine learning strategies, in which the convolutional neural network model
provides the higher ratio with 90% and 89%, respectively. The results show that deep
learning techniques can provide better performance in cyber security intrusion detection
for Agriculture 4.0.

The performance experimental results of deep learning techniques in term of Precision
under binary classification and multiclass classification are shown in Figure 7. The results
show that deep learning techniques give a higher positive prediction in terms of binary
classification compared to multiclass classification. Specifically, the convolutional neural
network model achieves a precision of 99% in binary classification compared to 90% in
multiclass classification. Therefore, the performance experimental results of deep learning
techniques in term of Recall with binary classification compared to multiclass classification
are shown in Figure 8. The results show that deep learning techniques give a higher
positive prediction in terms of binary classification compared to multiclass classification.
Specifically, the deep neural network model achieves a recall of 99% in binary classification
compared to 83% and 62% in multiclass classification. In addition, the recurrent neural
network model achieves an F-score of 99% in binary classification compared to 88% and
56% in multiclass classification.
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Figure 6. The performance experimental results of deep learning approaches relative to other machine
learning strategies in terms of Precision, Recall, and F-score.
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Figure 7. The performance experimental results of deep learning approaches in term of Precision
with binary classification and multiclass classification.
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Figure 8. The performance experimental results of deep learning approaches in term of Recall with
binary classification and multiclass classification.

Table 10 presents the performance of deep learning approaches relative to benign
and various types of attacks in Dataset_7_class (i.e., multi-class classification). We can
observe that the convolutional neural network model provides the higher true negative rate
with 99% and the highest detection rate for two attacks type, namely, DrDoS_LDAP and
Syn. The deep neural network model gives the higher detection ratio for two attack types,
namely, DrDoS_MSSQL and Syn. The recurrent neural network model gives the higher
detection ratio for four attack types, namely, DrDoS_LDAP, DrDoS_NetBIOS, DrDoS_UDP,
and Syn. In addition, we observe a low detection of UDP-lag attack and this is due to the
low learning rate of this attack.

Table 10. The performance experimental results of deep learning approaches relative to benign and
various types of attacks in Dataset_7_class (Multi-class classification ).

DNN RNN CNN

TNR (BENIGN) 95% 98% 99%

DrDoS_LDAP 96% 98% 97%

DrDoS_MSSQL 96% 94% 95%

DrDoS_NetBIOS 69% 99% 94%

DrDoS_UDP 60% 71% 71%

Syn 100% 100% 100%

UDP-lag 0% 0% 0%

Table 11 presents the performance of deep learning approaches relative to normal
and various types of attacks in TON_IoT dataset (i.e., multi-class classification). We can
observe that all three deep learning techniques provide a higher true negative rate. The
recurrent neural network model gives a higher detection ratio for three attack types, namely,
Injection, Password, and Scanning. The convolutional neural network gives the higher
detection ratio for five attacks, namely, DDoS, Backdoor, Ransomware, XSS, and Scanning.
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Table 11. The performance experimental results of deep learning approaches relative to normal and
various types of attacks in TON_IoT dataset (Multi-class classification).

DNN RNN CNN

Normal 93% 97% 96%

DDoS 94% 95% 98%

Injection 92% 97% 94%

Password 91% 97% 93%

Backdoor 93% 95% 96%

Ransomware 94% 96% 97%

XSS 94% 96% 97%

Scanning 94% 97% 97%

Table 12 presents the performance of deep learning approaches relative to benign
and various types of attacks in Dataset_13_class (i.e., multi-class classification). We can
observe that all three deep learning techniques provide the higher true negative rate. The
deep neural network model gives the higher detection ratio for five attack types, namely,
DrDoS_DNS, DrDoS_NTP, DrDoS_SSDP, TFTP, and UDP-lag. The recurrent neural network
model gives the higher detection ratio for four attack types, namely, DrDoS_MSSQL,
DrDoS_NTP, DrDoS_NetBIOS, and DrDoS_UDP. The convolutional neural network gives
the higher detection ratio for Syn attack with 65%. Therefore, we observe a low detection
of WebDDoS attack and this is due to the low learning rate of this attack. For binary
classification, we can be seen that that all three deep learning techniques provide the higher
true negative rate with 99% and the highest detection rate with 100%, as presented in
Table 13.

Table 12. The performance experimental results of deep learning approaches relative to benign and
various types of attacks in Dataset_13_class (Multi-class classification).

DNN RNN CNN

TNR (BENIGN) 100% 100% 100%

DrDoS_DNS 61% 56% 58%

DrDoS_LDAP 47% 47% 47%

DrDoS_SNMP 67% 67% 67%

DrDoS_SSDP 61% 58% 52%

DrDoS_UDP 47% 48% 46%

DrDoS_NetBIOS 93% 97% 73%

DrDoS_MSSQL 55% 56% 55%

Syn 64% 64% 65%

TFTP 100% 99% 94%

DrDoS_NTP 91% 91% 90%

WebDDoS 23% 24% 20%

UDP-lag 99% 98% 97%
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Table 13. The performance experimental results of deep learning approaches relative in Dataset_2_class
(Binary classification).

DNN RNN CNN

TNR (BENIGN) 96% 99% 99%

Attack 100% 100% 100%

The performance experimental results of deep learning approaches in term of F-score
with binary classification and multiclass classification are presented in Figure 9. The results
show that deep learning techniques can provide better performance in cyber security
intrusion detection for Agriculture 4.0. The Receiver Operating Characteristic (ROC) curve
for Dataset_13_class is depicted in Figure 10, which is a plot of intrusion detection accuracy
against the false positive probability. We can identify the obvious better performance of
both deep learning techniques, namely, convolutional neural network and recurrent neural
network, since all the values of AUC (Area Under Curve) for three classes, including, class
0: BENIGN, class 1: DrDoS_DNS, and class 2: DrDoS_LDAP, are between 0.94 and 1.00.
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Dataset_7_class Dataset_2_class Dataset_13_class TON_IoT Dataset

Figure 9. The performance experimental results of deep learning approaches in term of F-score with
binary classification and multiclass classification.

(a) Convolutional neural network (CNN) (b) Recurrent neural network (RNN)

Figure 10. The Receiver Operating Characteristic (ROC) for Dataset_13_class. class 0: BENIGN,
class 1: DrDoS_DNS, class 2: DrDoS_LDAP.

Table 14 presents the accuracy, FAR, and training time of deep learning approaches
with different hidden nodes and learning rates in four datasets; namely, Dataset_2_class,
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Dataset_7_class, Dataset_13_class, and TON_IoT dataset. In binary class classification (i.e.,
Dataset_2_class) and TON_IoT dataset, the convolutional neural network achieves high
accuracy of 99.95% compared to both recurrent neural network and deep neural network,
when the number of hidden nodes is 100 and the learning rate is 0.5. In multi-class
classification (i.e., Dataset_7_class), the recurrent neural network achieves high accuracy of
93.88% compared to both deep neural network and convolutional neural network, when
the learning rate is 0.5 and the number of hidden nodes is 30. In multi-class classification
(i.e., Dataset_13_class), the convolutional neural network achieves high accuracy of 95.12%
compared to both recurrent neural network and deep neural network, when the number
of hidden nodes is 100 and the learning rate is 0.5. These results show that the recurrent
neural network is efficient compared to the convolutional neural network with a lower
number of hidden nodes.

Table 14. The accuracy, FAR, and training time of deep learning approaches with different hidden
nodes and learning rate in four datasets, namely, Dataset_2_class, Dataset_7_class, Dataset_13_class,
and TON_IoT dataset.

Dataset_2_Class Dataset_7_Class Dataset_13_Class TON_IoT Dataset
Parameters Performance

Metrics DNN RNN CNN DNN RNN CNN DNN RNN CNN DNN RNN CNN

ACC 99.92% 99.93% 99.90% 93.53% 93.88% 93.48% 75.26% 78.29% 72.28% 98.91% 98.92% 98.89%

FAR 1.14% 1.13% 1.15% 2.14% 2.12% 2.15% 3.14% 3.11% 3.16% 1.12% 1.11% 1.13%HN = 30
LR = 0.01

Time 31 60 30 122 142 120 193 211 181 33 63 34

ACC 99.92% 99.93% 99.90% 93.53% 93.88% 93.48% 75.26% 78.29% 72.28% 98.02% 98.03% 98.00%

FAR 1.14% 1.13% 1.15% 2.14% 2.12% 2.15% 3.14% 3.11% 3.16% 1.13% 1.12% 1.14%HN = 30
LR = 0.1

Time 34 66 35 134 123 125 199 223 191 35 67 36

ACC 99.92% 99.93% 99.90% 93.53% 93.88% 93.48% 75.26% 78.29% 72.28% 98.92% 98.91% 98.81%

FAR 1.14% 1.13% 1.15% 2.14% 2.12% 2.15% 3.14% 3.11% 3.16% 1.15% 1.14% 1.16%HN = 30
LR = 0.5

Time 38 69 39 138 128 130 211 228 196 49 79 48

ACC 99.93% 99.94% 99.94% 93.53% 93.88% 93.89% 75.99% 78.29% 78.92% 98.92% 98.93% 98.83%

FAR 1.14% 1.13% 1.13% 2.14% 2.12% 2.08% 3.02% 2.11% 2.08% 1.20% 1.18% 1.19%HN = 60
LR = 0.01

Time 32 61 31 123 144 122 194 214 183 52 71 94

ACC 99.93% 99.94% 99.94% 93.53% 93.88% 93.89% 75.99% 78.29% 78.92% 98.90% 98.93% 98.90%

FAR 1.14% 1.13% 1.13% 2.14% 2.12% 2.08% 3.02% 2.11% 2.08% 1.29% 1.23% 1.24%HN = 60
LR = 0.1

Time 39 63 34 126 147 125 199 217 186 79 93 94

ACC 99.93% 99.94% 99.95% 93.53% 93.88% 93.90% 75.99% 78.29% 80.02% 98.93% 98.94% 98.94%

FAR 1.14% 1.13% 1.10% 2.14% 2.12% 2.05% 3.02% 2.11% 2.08% 1.94% 1.93% 1.90%HN = 60
LR = 0.5

Time 42 69 40 140 130 132 199 217 186 72 89 80

ACC 99.93% 99.94% 99.94% 94.52% 94.89% 94.91% 85.99% 88.22% 90.99% 98.93% 98.94% 98.94%

FAR 1.14% 1.13% 1.13% 1.99% 1.80% 1.78% 2.22% 2.08% 2.01% 1.94% 1.83% 1.73%HN = 100
LR = 0.01

Time 42 72 42 123 144 132 222 250 241 82 92 94

ACC 99.93% 99.94% 99.94% 94.52% 94.89% 94.91% 89.99% 91.32% 92.24% 98.93% 98.95% 98.95%

FAR 1.14% 1.13% 1.13% 1.99% 1.80% 1.78% 2.04% 2.01% 1.90% 1.84% 1.73% 1.72%HN = 100
LR = 0.1

Time 60 102 80 152 170 182 231 282 271 90 129 92

ACC 99.93% 99.94% 99.95% 94.91% 94.99% 95.90% 93.98% 94.88% 95.12% 98.93% 98.94% 99.92%

FAR 1.14% 1.13% 1.10% 1.80% 1.78% 1.50% 2.02% 1.99% 1.77% 1.94% 1.82% 0.80%HN = 100
LR = 0.5

Time 102 151 120 180 191 221 252 302 311 172 261 220

Table 15 compares the performance of our work with other state-of-the-art methods
that are tested under the CIC-DDoS2019 dataset and the TON_IoT dataset. The comparison
is conducted with respect to network model, dataset, task, machine learning model, and
accuracy. We can observe that our IDS model based on CNN incur the best results in terms
of accuracy. This is due to the strategy of our pre-processing for both datasets that reduce
the computation complexity and due to the use of simple deep learning models with larger
batch sizes and fewer layers.
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Table 15. Comparison with related work tested on CIC-DDoS2019 dataset and TON_IoT dataset.

IDS Model Year Network Model Dataset Task Model Accuracy

Jia et al. [39] 2020 IoT application CIC-DDoS2019 dataset Multiclass (13 class) LSTM 98.9%

Li et al. [40] 2020 IoT application CIC-DDoS2019 dataset Multiclass (13 class) LSTM N/A

de Assis et al. [41] 2020 SDN environments in IoT net-
works CIC-DDoS2019 dataset Multiclass (13 class) CNN 95.4%

Alamri et al. [42] 2020 SDN environments in IoT net-
works CIC-DDoS2019 dataset Multiclass (13 class) Extreme gradient

boosting algorithm 91.26%

Zhang et al. [43] 2020 SDN environments in IoT net-
works TON_IoT dataset Multiclass Random Forest 99.68%

Kumar et al. [44] 2021 IoT application TON_IoT dataset Multiclass Extreme gradient
boosting algorithm 97.45%

Pontes et al. [45] 2021 N/A CIC-DDoS2019 dataset Multiclass (13 class) Energy-based flow
classifier 98.1%

Binary (2 class) 99.6%
Assis et al. [46] 2021 SDN environments CIC-DDoS2019 dataset Multiclass (13 class)

Gated Recurrent
Units (GRU) ∼99%

Kumar et al. [47] 2021 IoT application TON_IoT dataset Multiclass Extreme gradient
boosting algorithm 96.35%

Javeed et al. [48] 2021 SDN environments in IoT net-
works CIC-DDoS2019 dataset Multiclass (13 class) LSTM and GRU 99.74%

Nie et al. [49] 2021 IoT application CIC-DDoS2019 dataset Multiclass (13 class) Generative adver-
sarial network 98.35%

Kumar et al. [50] 2021 Smart agricultural Unmanned
Aerial Vehicles TON_IoT dataset Multiclass Stacked Long-Short-

Term Memory 88.82%

CNN 99.95%

RNN 99.94%
Binary (2 class)

DNN 99.93%

CNN 95.90%

RNN 94.99%
Multiclass (7 class)

DNN 94.91%

CNN 95.12%

RNN 94.88%

CIC-DDoS2019 dataset

Multiclass (13 class)
DNN 93.88%

CNN 99.92%

RNN 98.94%

Our model

-

Agriculture 4.0 based
on the following IoT

technologies,
including, IoT devices,
5G communications,

Drones,Fog/Edge computing,
Cloud Computing,

NFV, and SDN

TON_IoT dataset Multiclass
DNN 98.93%

5. Conclusions

In this paper, we proposed three deep learning-based IDS models, including a convo-
lutional neural network-based IDS model, a deep neural network-based IDS model, and
a recurrent neural network-based IDS model. Specifically, we provided a performance
evaluation and comparative analysis of machine learning and deep learning approaches
for cyber security in agriculture 4.0. Each model’s performance is studied within two
classification types (binary and multiclass) using two new real traffic datasets; namely, CIC-
DDoS2019 dataset and TON_IoT dataset. The results show that deep learning techniques
give good results in comparison to other machine learning strategies (e.g., decision tree,
random forests, naive bayes, and logistic regression) in terms of important performance
indicators, including detection rate, false alarm rate, precision, F-score, recall, true negative
rate, false accept rate, ROC Curve, and accuracy. In addition, the IDS model based on
CNN outperforms the state-of-the-art deep learning IDS methods, which were tested under
the CIC-DDoS2019 dataset and TON_IoT dataset, by recording an accuracy of 99.95% for
binary traffic detection and 99.92% for multiclass traffic detection.
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