
electronics

Article

Performance Assessment of Linux Kernels with PREEMPT_RT
on ARM-Based Embedded Devices

George K. Adam 1,* , Nikos Petrellis 2 and Lambros T. Doulos 3

����������
�������

Citation: Adam, G.K.; Petrellis, N.;

Doulos, L.T. Performance Assessment

of Linux Kernels with PREEMPT_RT

on ARM-Based Embedded Devices.

Electronics 2021, 10, 1331. https://

doi.org/10.3390/electronics10111331

Academic Editor: Juan M. Corchado

Received: 2 April 2021

Accepted: 30 May 2021

Published: 1 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CSLab Computer Systems Laboratory, Department of Digital Systems, University of Thessaly,
41500 Larisa, Greece

2 Department of Electrical and Computer Engineering, University of Peloponnese, 26334 Patra, Greece;
npetrellis@uop.gr

3 School of Applied Arts, Hellenic Open University, 26335 Patra, Greece; ldoulos@mail.ntua.gr
* Correspondence: gadam@uth.gr; Tel.: +30-241-0684-596

Abstract: This work investigates the real-time performance of Linux kernels and distributions with
a PREEMPT_RT real-time patch on ARM-based embedded devices. Experimental measurements,
which are mainly based on heuristic methods, provide novel insights into Linux real-time perfor-
mance on ARM-based embedded devices (e.g., BeagleBoard and RaspberryPi). Evaluations of the
Linux real-time performance are based on specific real-time software measurement modules, devel-
oped for this purpose, and the use of a standard benchmark tool, cyclictest. Software modules were
designed upon the introduction of a new response task model, an innovative aspect of this work.
Measurements include the latency of response tasks at user and kernel space, the response on the exe-
cution of periodic tasks, the maximum sustained frequency and general latency performance metrics.
The results show that in such systems the PREEMPT_RT patch provides more improved real-time
performance than the default Linux kernels. The latencies and particularly the worst-case latencies
are reduced with real-time support, thus making such devices running Linux with PREEMPT_RT
more appropriate for use in time-sensitive embedded control systems and applications. Furthermore,
the proposed performance measurements approach and evaluation methodology could be applied
and deployed on other Linux-based real-time platforms.

Keywords: real-time operating systems; PREEMPT_RT; response latency; performance measure-
ments; embedded devices

1. Introduction

The standard Linux kernel initially was designed as a time-sharing system without
taking time-determinism strictly into account. However, over the years, many of the
improvements designed and developed by the PREEMPT_RT project (documentation is
maintained on the Linux Foundation Wiki [1]) are now part of the mainline Linux kernel
according to the Linutronix Co. [2]. In the past, approaches that have been considered in
providing a Linux kernel with real-time capabilities, either improve the Linux kernel itself
so that it provides bounded latencies for real-time applications (e.g., the PREEMPT_RT
project) or add a layer below the Linux kernel (co-kernel approach) that handles all the real-
time requirements separately (e.g., RTLinux, RTAI and Xenomai) [3–5]. Regarding latency
issues, although RTAI and Xenomai offer lower latency than PREEMPT_RT, Linutronix
tests show that the differences are not so significant, especially in real-world scenarios.
Other approaches use specific CPU architectures like the ARM with a programmable
real-time unit subsystem (PRU) [6], or combinations of GPU and FPGA solutions [7].

There is a growing tendency in the use of Linux in the domain of embedded systems
for real-time control applications. The results of an Aspencore survey [8] indicate that
open-source operating systems like Linux and FreeRTOS continue to dominate, while other
platforms are declining. Embedded systems are primarily used in real-world applications.

Electronics 2021, 10, 1331. https://doi.org/10.3390/electronics10111331 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4962-8731
https://orcid.org/0000-0003-3578-8494
https://orcid.org/0000-0003-4038-104X
https://doi.org/10.3390/electronics10111331
https://doi.org/10.3390/electronics10111331
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10111331
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10111331?type=check_update&version=2

Electronics 2021, 10, 1331 2 of 28

Real-time embedded systems are employed by a wide variety of applications ranging
from simple consumer electronics and home appliances to military weapons and space
systems [9]. A VDC Research study [10] suggests that the fast growth of IoT (Internet of
Things) is accelerating the move towards open-source Linux in embedded market share.
Its open-source license, very good performance and ease of adaptation in various hardware
systems, utilizing at the same time the multicore and high-frequency architecture of such
devices, has placed a considerable interest in developing control applications based on such
systems [11–14]. Additionally, the increasing requirements of real-time applications and
the need to reduce development costs and time to market led to an increase in the interest
for employing COTS (commercial off-the-shelf) hardware and software components in
real-time domains, for example, commercially available embedded microcontrollers (by
BeagleBoard, NXP Semiconductors, Texas Instruments, Qualcomm, Intel, etc.) [15–17].
However, despite the continuous increase in the utilization of COTS-based components,
their reliable performance in real-time systems still remains under further research, which
is an objective of this work too.

This research work investigates the Linux kernel real-time capabilities with a PRE-
EMPT_RT patch in handling real-time tasks and operations at user and kernel space. For
this purpose, it explores a variety of popular Linux kernels and distributions (Debian,
Ubuntu, Arch Linux) running in ARM-based embedded platforms, such as Raspberry
Pi (a Raspberry Pi3, referred to from now on as RPi3) and BeagleBoard microcontroller
(a BeagleBone AI-Artificial Intelligence, referred to from now on as BBAI). The choice of
ARM-based microcontrollers is because they are being extensively used for embedded
low-powered control applications, due to their computing power in regard to their price,
their ease of use with peripheral equipment and low-energy consumption [18,19]. Research
shows that such systems are capable of supporting adequate timing for most measurement
purposes [20–23]. Therefore, such ARM-based embedded devices seem to be appropriate
multicore platforms for hosting a real-time system controller, so it was encouraging to
install and test Linux kernels with the PREEMPT_RT patch on such platforms. Although
the Linux kernel distributions for RPis and BBAIs do not currently have any hard real-time
support, this is possible with the installation and configuration of the PREEMPT_RT patch.
However, there is still no sufficient research work in the evaluation of the real-time perfor-
mance of Linux kernels patched with PREEMPT_RT on such development platforms. This
was one of the major motivations to investigate the real-time Linux kernel performance
with the real-time preemption patch. For the purposes of this research, specific software
modules were developed and applied together with the cyclictest standard benchmark
tool [24] to investigate and evaluate the real-time performance of Linux kernels patched
with PREEMPT_RT. Virtual platforms such as the GEM5 simulator [25–27] and the QEMU
emulator [28–30] could have also been used for simulating such ARM multicore architec-
tures, albeit the QEMU emulator is not guaranteeing timing (cycle) accuracy [31]. There
are no free cycle-accurate simulators available for recent ARM cores. Therefore, as the
best solution, it was decided to use an ARM-based development board for Linux OS with
PREEMPT_RT performance evaluation. In any case, in future work, we intend to use the
QUEMU emulator to evaluate OS real-time performance on such embedded platforms.

In real-time systems, low latencies do ensure quicker response times, but the most
important is to be deterministic. The PREEMPT_RT patch improves the Linux kernel itself
by providing bounded latencies and predictability. This is an outcome of this research too.
The experimental measurements do provide some evidence that a latency value of about
150 µs, as an upper bound, could be an acceptable safety margin for real-time embedded
systems based on such devices and connected to various kinds of actuators, which require
guaranteed response times below this threshold value.

This research work contributes on providing new experimental results on real-time
performance and latency metrics for Linux kernels patched with PREEMPT_RT, running
on such embedded devices (RPi3 and BBAI). A new response task model is introduced
upon which novel software real-time measurement modules were designed. Particular

Electronics 2021, 10, 1331 3 of 28

effort was placed on measuring the throughput time delay of response and periodic tasks’
execution at user and kernel space. The measurements include the maximum sustained
frequency, the response latency of user and kernel tasks and general latency performance
metrics using the cyclictest benchmark.

Some of the key features and novel contributions of this research work are the follow-
ing: (1) provides latency measurements based on specific software real-time measurement
modules, designed and developed upon the introduction of a new response task model
and the use of cyclictest standard benchmark, (2) reveals novel insights in Linux real-
time performance on ARM-based development platforms (BeagleBoard and Raspberry
Pi), based on a comparative evaluation of real-time latency measurements at kernels with
and without real-time support and (3) presents a measurements approach and evalua-
tion methodology potentially applicable to other Linux kernels and distributions on such
ARM-based embedded devices.

This paper is structured as follows: Section 2 describes previous related work and
a brief discussion; Section 3 presents some of the background information and terminol-
ogy needed to understand real-time systems; Section 4 presents the methodology and
the performance measurements objectives aimed to be achieved; Section 5 describes the
software modules developed for this purpose; Section 6 presents the experimental plat-
form used as the test bed for the evaluation measurements performed; Section 7 discusses
the experimentations carried out, presents, respectively, the experimental results of the
response and periodic tasks execution outcomes at user and kernel space, the performance
measurements results using the cyclictest benchmark and a brief discussion analysis on
the results of the experimental research and the evaluation of Linux real-time functionality
with the PREEMPT_RT patch; Section 8 provides a summary of the research outcomes and
draws conclusions.

2. Related Work

In the case of real-time systems, their performance is analyzed by many different
approaches depending on the nature of the applications and other factors [32–35]. The
techniques and tools used depend on the aspects of performance targeted, most commonly
schedulability issues in real-time systems [36–41]. In Linux, latency issues, for example,
interrupt latency and scheduling latency, typically are investigated and measured with
benchmark tools, for example, the cyclictest benchmark. Cyclictest is usually used in
scheduling latency measurements in Linux and its principal real-time variant, the PRE-
EMPT_RT patch [42,43]. Nonetheless, latency tracing tools are also being applied [44,45].
Other works use and apply new benchmarks or test modules to investigate such perfor-
mance metrics and provide comparisons of different operating systems with real-time
capabilities [46,47].

In this research work, a combination of software test modules, developed particularly
for latency performance measurements, together with cyclictest standard benchmark tool,
is the approach followed in the investigation of real-time latency issues in Linux kernels
patched with PREEMPT_RT. Regarding latency measurements, the work of Brown and
Martin [48] inspired this work. They compare the performance of Linux kernels with
real-time support such as Xenomai and the PREEMPT_RT patch (2.6.33.7-rt29), using C
software modules to perform timing measurements of responsive and periodic tasks, with
real-time characteristics, at user and kernel space. However, their evaluation is based only
on a BeagleBoard microcontroller and Ubuntu Lucid Linux kernel configuration.

Performance evaluation of different kernel versions with real-time support has been
presented in many cases, but primarily on an x86 platform. In the work of Litayem and
Saoud [49], the authors evaluate the timing performance (latency) and throughput of
PREEMPT_RT with different kernel versions, using cyclictest and unixbench. The platform
is an x86 computer with CoreTM 2 Duo Intel CPU, running Ubuntu Linux 10.10. In the work
of Fayyad-Kazan et al. [50], the authors present experimental measurements and tests that
benchmark RTOSs such as Linux with PREEMPT_RT (v3.6.6-rt17) against two commercial

Electronics 2021, 10, 1331 4 of 28

ones, QNX and Windows Embedded Compact 7. The tests were executed on an x86
platform (ATOM processor). In the work of Cerqueira and Brandenburg [51], a comparison
of scheduling latency in Linux, PREEMPT_RT and LITMUS RT [52] is presented, based
again on a 16-core Intel CPU platform. The majority of these works rely upon x86-based
computer platforms with Ubuntu Linux. This ongoing research shows that the Linux
PREEMPT_RT competes with the tested commercial RTOSs [53]. Lately, some investigation
studies have appeared concerning measurements of latency on Raspbian Linux (version of
Debian) with real-time patch PREEMPT_RT vs. the default Raspbian [54–59]. However,
measurements are performed only with Raspbian Linux and the cyclictest benchmark.
Xenomai has also been used to provide hard real-time support to user space control
applications [60,61]. An interesting performance analysis research work is conducted
by Delgado et al. in [62] where the authors present an open-source EtherCAT Master
implemented on an embedded board using a dual-kernel approach with the latest versions
of Xenomai and embedded Linux.

This research is different from these works with respect to the multiple platforms
and the variety of Linux kernels and distributions upon which it is executed. Several
studies show that such Linux-based systems continue to gain more popularity and play an
increasing role in the embedded systems real-time control field [63–65] and today’s Internet
of Things applications [66,67]. Nevertheless, there is no sufficient research work in the
evaluation of the real-time performance of RPi’s and BBAI’s Linux kernels patched with
PREEMPT_RT. This research work comes to add to this empirical knowledge of latency
measurements and evaluation of real-time execution efficiency in such platforms having
Linux kernels patched with PREEMPT_RT.

3. Background: Real-Time Approaches and Terminology

In this section, we introduce the basic background behind our real-time performance
measurements and analysis framework.

3.1. Real-Time Operating System

Systems are referred to as real-time when their correct behavior depends not only on
the operations they perform being logically correct but also on the time at which they are
performed [63]. Within a real-time system, each real-time task must complete its work
before a deadline.

A real-time operating system is an operating system intended to serve real-time
applications which have well-defined fixed timing constraints and require timely responses.
Real-time operating systems are designed to run applications with very precise timing,
keeping the amount of error in the timing of a task over subsequent iterations of a program
or loop, between acceptable limits [68]. Guaranteeing real-time performance requires
the use of efficient scheduling policies or algorithms. A scheduling algorithm, among
other features, assigns a priority to each task and defines how tasks are processed by
the operating system. A scheduling algorithm for a real-time system ensures that each
real-time task will always meet its deadlines.

A real-time operating system among other features has a deterministic timing behavior
and preemption capabilities. Deterministic timing behavior ensures time deterministically
bounds on task scheduling, interrupts response latency and random latency or jitter. Jitter is
the delay variation between minimum and maximum response time. In this way, real-time
operating systems provide the required determinism needed by a real-time application in
order to be scheduled and executed in time. Lower latencies contribute substantially to
this direction. That means efficient and low latency interrupt handling, where a higher
priority task can preempt a lower priority task. Such a feature is essential particularly in
hard real-time control systems, where the response to real events, triggered by sensors, is
critical and requires on-time control and response by some actuators [69,70]. Processing
must be done within the defined timing constraints or the system will fail. Therefore, the
goal of a hard real-time system is to ensure that all deadlines are met. On the other hand,

Electronics 2021, 10, 1331 5 of 28

soft real-time systems do not always guarantee that will meet a deadline and a critical
real-time task will complete on time.

A real-time operating system ensures priority inheritance. Priority inheritance enables
a higher priority task, which is awaiting for a lock (mutex) held by a low priority task,
to wake up more quickly and continue execution, since the low priority task inherits its
priority and shortens its execution time. In Linux, since kernel version 2.6.18, mutexes
support priority inheritance.

3.2. Real-Time Approaches in Linux

Linux has been developed as a general-purpose operating system. The Linux kernel is
a low-latency preemptible kernel by default, capable of satisfying soft real-time require-
ments. Preemption at the kernel level is a necessity in order to consider real-time Linux
at any level. Towards this goal, several approaches have been proposed that introduce
actual real-time capabilities in the kernel. Among these, is the PREEMPT_RT patch, capa-
ble of minimizing both operating system overheads and latencies by directly modifying
the existent kernel code. According to Reghenzani et al. [53], the real-time approaches
alternative to the kernel based on the PREEMPT_RT patch are cokernel and single kernel
approaches. A key feature of cokernel approaches is that a second kernel is dedicated to
the management of the real-time applications. This additional kernel is working as a layer
between the hardware and the general-purpose Linux kernel. This layer handles all the
real-time requirements. The most common open-source cokernel approaches are RTLinux,
Xenomai and RTAI.

The PREEMPT_RT patch of the Linux kernel follows a single kernel approach that
aims to improve the Linux kernel itself by providing bounded latencies and predictability.
The PREEMPT_RT patch enables the kernel to be interrupted while executing a system call,
in order to service a higher-priority task. The major goal of the PREEMPT_RT patch is to
increase the degree of kernel code preemption towards a fully preemptible kernel (PRE-
EMPT_RT_FULL). This preemption level allows the real-time tasks to preempt the kernel
everywhere, even in critical sections. However, some regions are still non-preemptible,
like the top half of interrupt handlers and the critical regions protected by raw spinlocks
(raw_spinlock_t). All the sleeping mutexes have been replaced with rt_mutex type that
implements priority inheritance.

3.3. Latency Measurements Approaches—Techniques

Real-time measurements are taken based on the performance of real-time tasks gener-
ated according to the response and periodic task models. In Linux environments, a task is
synonymous with a thread. Therefore, each task is scheduled as a thread, with real-time
SCHED_FIFO policy and high priority. Thus, a higher priority task could block (preempt)
and temporarily suspend the execution of lower priority tasks (preemptive scheduling).
Although a higher priority task would not be delayed by lower priority tasks, however, it
may rarely have to wait within uninterruptible sections of execution. Ideally, each thread
could be given dedicated resources such as CPU and memory. Indeed, for all real-time
tasks current and future memory allocations are locked to prevent the page out of memory,
which improves the determinism. However, processor affinity was intentionally not set,
although each real-time task could easily be assigned to run in a different core to reduce as
much as possible the intercore interferences (interference delay time). Therefore, tasks are
allowed to migrate among all CPU cores (migration overheads). Thus, the CPU is shared
by multiple real-time tasks. Overall, the above may introduce some additional overheads
to the total response latency.

4. Methodology

A primary goal of this research is to measure the real-time responses of Linux kernels
and distributions in ARM-based embedded systems and platforms with the real-time
preemption patch PREEMPT_RT. For this purpose, specific measurement algorithms were

Electronics 2021, 10, 1331 6 of 28

developed and implemented as C threaded software modules. These modules enable
the evaluation of the latency occurring under real-time tasks execution, under idle and
load conditions, at the Linux kernel distributions with real-time support and the default
ones. The measurements platform is based upon a master-slave schema, in which the slave
devices (RPi3 and BBAI) under test are connected to and communicate with a Raspberry
Pi3 (master device) that performs the actual measurements.

The steps of the research process involved the design of the response and periodic
algorithms and models, upon which experimental tests were specified to run specific real-
time measurement tasks. The measurements obtained were validated with an oscilloscope
and compared to cyclictest benchmark results for verification purposes. Finally, an analysis
of the outcomes was performed (Figure 1).

Electronics 2021, 10, x FOR PEER REVIEW 6 of 27

is shared by multiple real-time tasks. Overall, the above may introduce some additional

overheads to the total response latency.

4. Methodology

A primary goal of this research is to measure the real-time responses of Linux kernels

and distributions in ARM-based embedded systems and platforms with the real-time

preemption patch PREEMPT_RT. For this purpose, specific measurement algorithms

were developed and implemented as C threaded software modules. These modules ena-

ble the evaluation of the latency occurring under real-time tasks execution, under idle and

load conditions, at the Linux kernel distributions with real-time support and the default

ones. The measurements platform is based upon a master-slave schema, in which the slave

devices (RPi3 and BBAI) under test are connected to and communicate with a Raspberry

Pi3 (master device) that performs the actual measurements.

The steps of the research process involved the design of the response and periodic

algorithms and models, upon which experimental tests were specified to run specific real-

time measurement tasks. The measurements obtained were validated with an oscilloscope

and compared to cyclictest benchmark results for verification purposes. Finally, an anal-

ysis of the outcomes was performed (Figure 1).

Figure 1. Research process steps.

4.1. Design Approach

According to Davis and Burns [68], the overwhelming majority of the research in

multiprocessor real-time scheduling focuses on two simple task models: the periodic task

model and the sporadic task model. In the periodic task model, the tasks of a job arrive

strictly periodically, separated by a fixed time interval. In the sporadic task model, each

task may arrive at any time once a minimum interarrival time has elapsed since the arrival

of the previous task. This is because real-time tasks are usually activated in response to

external events (e.g., upon sensor triggering) or by periodic timer expirations.

In this research, we adopt a slightly different approach. This is partially based on the

periodic task model and the introduction of a response task model. A job is one unit of

work carried out by a single thread. The tasks that make up a real-time job are imple-

mented based on two task models: the response and the periodic task model. In the peri-

odic task model, each invocation of a task arrives strictly periodically, separated by a fixed

Figure 1. Research process steps.

4.1. Design Approach

According to Davis and Burns [68], the overwhelming majority of the research in
multiprocessor real-time scheduling focuses on two simple task models: the periodic task
model and the sporadic task model. In the periodic task model, the tasks of a job arrive
strictly periodically, separated by a fixed time interval. In the sporadic task model, each
task may arrive at any time once a minimum interarrival time has elapsed since the arrival
of the previous task. This is because real-time tasks are usually activated in response to
external events (e.g., upon sensor triggering) or by periodic timer expirations.

In this research, we adopt a slightly different approach. This is partially based on the
periodic task model and the introduction of a response task model. A job is one unit of
work carried out by a single thread. The tasks that make up a real-time job are implemented
based on two task models: the response and the periodic task model. In the periodic task
model, each invocation of a task arrives strictly periodically, separated by a fixed time
interval. In the response task model, each task may arrive at any time upon the arrival of
the previous task. Each task τi is characterized by: its execution time relative to a deadline
ti, a maximum (or worst case) response latency wcrli and a minimum interval time tirv. A
task’s worst-case response latency wcrli is defined as the overall time elapsed from the
arrival of this task (timer interrupt) to the moment this task is switched to a running state
producing results. The worst-case response latency is a typical metric of the determinism
of a real-time task since most of the real-time applications require upper-bounded response
times. The worst-case response latency may be computed using various methods or by

Electronics 2021, 10, 1331 7 of 28

simple measurement programs. An average value of the response latency wcrlavg for a
number of runs (n iterations) could be calculated using the following equation:

wcrlavg =
∑i

n(trun − tarr)

n
, (1)

where tarr is the task’s arrival time and trun is the task’s run time.
The response latency includes: the interrupt latency tint, that is, the time it takes for

the interrupt to appear (indicated as latency); the interrupt service time tsv (indicated as
service time), the task scheduling latency tsc, that is the time it takes for the scheduler to
run (indicated as latency) and the task scheduling duration time tscd, as shown in Figure 2a.
All of these constitute the kernel’s latency. In addition, some extra time is needed for the
running task to produce results. Therefore, the total response latency is defined as the
overall time tall elapsed between a timer interrupt occurring at the master device (master
triggers output), and the moment the corresponding awaiting user-space task in the slave
device is switched to a running state producing results (enables GPIO output) (GPIO,
General Purpose Input/Output). In the periodic task model, each task runs for a specific
time interval time, semi-period tsm, based on an internal timer. The actual time elapsed for
a whole period (tpd) is the timer period (Figure 2b).

Electronics 2021, 10, x FOR PEER REVIEW 7 of 27

time interval. In the response task model, each task may arrive at any time upon the arrival

of the previous task. Each task τi is characterized by: its execution time relative to a dead-

line ti, a maximum (or worst case) response latency wcrli and a minimum interval time tirv.

A task’s worst-case response latency wcrli is defined as the overall time elapsed from the

arrival of this task (timer interrupt) to the moment this task is switched to a running state

producing results. The worst-case response latency is a typical metric of the determinism

of a real-time task since most of the real-time applications require upper-bounded re-

sponse times. The worst-case response latency may be computed using various methods

or by simple measurement programs. An average value of the response latency wcrlavg for

a number of runs (n iterations) could be calculated using the following equation:

wcrlavg =
∑ (trun−tarr)
i
n

n
, (1)

where tarr is the task’s arrival time and trun is the task’s run time.

The response latency includes: the interrupt latency tint, that is, the time it takes for

the interrupt to appear (indicated as latency); the interrupt service time tsv (indicated as

service time), the task scheduling latency tsc, that is the time it takes for the scheduler to

run (indicated as latency) and the task scheduling duration time tscd, as shown in Figure

2a. All of these constitute the kernel’s latency. In addition, some extra time is needed for

the running task to produce results. Therefore, the total response latency is defined as the

overall time tall elapsed between a timer interrupt occurring at the master device (master

triggers output), and the moment the corresponding awaiting user-space task in the slave

device is switched to a running state producing results (enables GPIO output) (GPIO,

General Purpose Input/Output). In the periodic task model, each task runs for a specific

time interval time, semi-period tsm, based on an internal timer. The actual time elapsed for

a whole period (tpd) is the timer period (Figure 2b).

(a) (b)

Figure 2. Response and periodic tasks: (a) overall response task latency; (b) periodic task time interval.

The algorithms developed implement the above task models as the measurement

software modules designed in a modular mode. Within each module, each task executes

the main measurements loop based on timing data acquired from the device under test

and outputs the results. The measurements include the following:

 The maximum sustained interrupt frequency or frequency limits-stimuli, that is, es-

timate the optimum value for the time interval (tint) between the generated interrupts,

that the system can handle efficiently.

Figure 2. Response and periodic tasks: (a) overall response task latency; (b) periodic task time interval.

The algorithms developed implement the above task models as the measurement
software modules designed in a modular mode. Within each module, each task executes
the main measurements loop based on timing data acquired from the device under test
and outputs the results. The measurements include the following:

• The maximum sustained interrupt frequency or frequency limits-stimuli, that is, esti-
mate the optimum value for the time interval (tint) between the generated interrupts,
that the system can handle efficiently.

• The response latency (including worst-case latency, wcrli), that is, estimate the time
elapsed from a GPIO input level change (IRQ, Interrupt Request) till the response
change of a GPIO output, at user and kernel space.

• In response tasks, measure the time elapsed (total latency, tall) until the (slave) device
under test responds.

• In periodic tasks, measure whether the slave device responds at proper time periods (tpd)
and produces timer interrupts at exact time intervals according to specified frequencies.

• General performance measurements and particularly latency measurements using the
cyclictest benchmark tool.

Electronics 2021, 10, 1331 8 of 28

4.2. Measurements Approach

The measurements software was designed as threaded modules in C. These modules
perform the measurements under two modes, at user and kernel space, of the response
and periodic real-time tasks. Some of the underlying principles that govern the design
methodology involve requirements, such as the running tasks to be scheduled as threads,
with real-time SCHED_FIFO policy and high priority (99). Since in PREEMPT_RT patched
Linux all interrupt handlers are switched to threaded (schedulable) interrupts, this feature
adds to its real-time throughput performance. This is because threads can block while usual
interrupt handlers cannot. Real-time application development with PREEMPT_RT requires
the POSIX real-time API (e.g., the pthread library) which is part of the standard C library.
Response and periodic tasks are passed as argument-functions to POSIX threads creation
function calls. From a scheduling point of view, it makes no difference between the initial
thread of a process, for example, executing the main() function and all additional threads
created dynamically. Although real-time application performance is not just a matter of
using a specific scheduling policy, on any system, all user-space processes are scheduled
with real-time scheduling class SCHED_FIFO and high priorities. That aims to ensure
timely execution of the tasks and decreased execution times and latencies. SCHED_FIFO
policy allows multiple tasks with the same priority to be scheduled in order with respect to
the time at which they were enqueued into the ready queue. Scheduling policy, attributes
and priorities were also set per thread upon their creation with POSIX thread scheduling
policy functions calls. Threads must voluntarily yield the processor for other threads, so
the SCHED_FIFO scheduling policy is used. The above approach of the real-time software
design is shown in Figure 3.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 27

 The response latency (including worst-case latency, wcrli), that is, estimate the time

elapsed from a GPIO input level change (IRQ, Interrupt Request) till the response

change of a GPIO output, at user and kernel space.

 In response tasks, measure the time elapsed (total latency, tall) until the (slave) device

under test responds.

 In periodic tasks, measure whether the slave device responds at proper time periods

(tpd) and produces timer interrupts at exact time intervals according to specified fre-

quencies.

 General performance measurements and particularly latency measurements using

the cyclictest benchmark tool.

4.2. Measurements Approach

The measurements software was designed as threaded modules in C. These modules

perform the measurements under two modes, at user and kernel space, of the response

and periodic real-time tasks. Some of the underlying principles that govern the design

methodology involve requirements, such as the running tasks to be scheduled as threads,

with real-time SCHED_FIFO policy and high priority (99). Since in PREEMPT_RT patched

Linux all interrupt handlers are switched to threaded (schedulable) interrupts, this feature

adds to its real-time throughput performance. This is because threads can block while

usual interrupt handlers cannot. Real-time application development with PREEMPT_RT

requires the POSIX real-time API (e.g., the pthread library) which is part of the standard

C library. Response and periodic tasks are passed as argument-functions to POSIX threads

creation function calls. From a scheduling point of view, it makes no difference between

the initial thread of a process, for example, executing the main() function and all addi-

tional threads created dynamically. Although real-time application performance is not

just a matter of using a specific scheduling policy, on any system, all user-space processes

are scheduled with real-time scheduling class SCHED_FIFO and high priorities. That aims

to ensure timely execution of the tasks and decreased execution times and latencies.

SCHED_FIFO policy allows multiple tasks with the same priority to be scheduled in order

with respect to the time at which they were enqueued into the ready queue. Scheduling

policy, attributes and priorities were also set per thread upon their creation with POSIX

thread scheduling policy functions calls. Threads must voluntarily yield the processor for

other threads, so the SCHED_FIFO scheduling policy is used. The above approach of the

real-time software design is shown in Figure 3.

Figure 3. Measurement modules real-time design infrastructure. Figure 3. Measurement modules real-time design infrastructure.

Processor affinity was intentionally not set, although each real-time task could easily be
assigned to run in a different core to reduce as much as possible the intercore interferences.
Such a case, having more than one thread per core, may lead the performance to be
somewhat unpredictable due to potential locks. However, this is not valid, due to the
fact that the amount of threads generated is very small, just a main process with one
thread. Even with two threads of the same priority, the average thread switching latency in
Linux with PREEMPT_RT is negligible, as shown by the work of Fayyad-Kazan et al. [71].
Therefore, tasks are allowed to migrate among all ARM CPU cores. Overall, the above may
introduce some additional overheads to the scheduling operations that affect scheduling
latencies. For this reason, they are also taken into consideration in total response latency.

Precise timing and reliable latency performance metrics and throughput evaluation
of PREEMPT_RT patched Linux kernel require accurate timing source, for example, the
system timer in RPi3, part of the Graphical Processing Unit (GPU). The execution time of

Electronics 2021, 10, 1331 9 of 28

the software modules depends on the processors’ cores’ clock frequency, which is variable.
For example, the hardware 1 MHz system timer on the RPi3 is a dedicated timer that
runs independently from the processor. The system clock on the RPi3 has 1 µs resolution
accuracy. For this reason, in the master software modules that implement the performance
measurements, the system call clock_gettime() (defined in POSIX timers implementation)
is used for measuring time, with the highest possible resolution, and the clock id is set to
CLOCK_MONOTONIC. The execution of this function in RPi3 goes down to the BCM2711
driver to get the time values from the system timer registers. This function gives results
with nanosecond resolution and requires less than a microsecond to execute. Therefore,
for time benchmarking purposes at such resolution, this is sufficient. The actual time
measuring adds almost no overhead since it is in the order of a few tens of nanoseconds.
The same negligible overhead is observed by Garre et al. [72] where they conclude that the
time difference is below 100 nsecs.

Real-time performance metrics were additionally investigated using the cyclictest
benchmark, which is part of the rt-tests repository maintained by Linux kernel developers.
The benchmark was used to investigate further and conclude on the response latency
of the devices under test. All the results obtained by running the cyclictest benchmark
were later on compared to those obtained by the software modules. An oscilloscope
was used to directly measure the output voltages, triggering times and frequencies of
the signals on slave device’s GPIOs, for validation purposes. System tracing tools could
have also been used for some of the measurements, to investigate and analyze kernel
latencies and performance execution issues. However, intentionally, it was decided that
the development of specific algorithms and software modules would be dedicated to the
specific measurements of response and periodic tasks at user and kernel space. These
modules take into consideration specific critical real-time requirements, for example, high
priorities, locks of memory pages and high-resolution timers.

4.3. Response Task Measurements
4.3.1. User Space Measurements

The master RPi3 device performs the measurements. The slave devices were tested
with and without PREEMPT_RT-patched Linux kernels. The master device runs at specific
time intervals a task τi that triggers a GPIO input at the slave device (external interrupt
event), which the slave is polling in an infinite loop. Each running task τi consists of
two subtasks, loops of “1 s” and “0 s”. The master toggles its output value between 0 and 1
(loops of “0 s” and “1 s”) and begins to measure the slave’s response delay and perform
relative measurement metrics. The number of iterations is multiplied with each specific
task execution time ti defines the total duration of the execution. The slave device, upon
reading the change of the input state, sets its output accordingly (on a rising edge sets its
output line, while on a falling edge clears its output line). Then, the master device repeats
the loop for a number of cycles (100 K to 1 M) for sufficient measurements to be collected
for analysis. The average duration of each sample cycle was found to be at about a few
tens of microseconds, as it is documented further on. Measurements are performed on
both edges of the trigger signals (rising and falling). For each task τi, execution time ti is
derived as the sum of the response latency times, that is tlat1 for loop of “1 s” and tlat0 for
loop of “0 s”, plus the time interval tirv in-between the generated subtasks (interrupts). The
above is illustrated in Figure 4.

Electronics 2021, 10, 1331 10 of 28

Electronics 2021, 10, x FOR PEER REVIEW 10 of 27

for analysis. The average duration of each sample cycle was found to be at about a few

tens of microseconds, as it is documented further on. Measurements are performed on

both edges of the trigger signals (rising and falling). For each task τi, execution time ti is

derived as the sum of the response latency times, that is tlat1 for loop of “1 s” and tlat0 for

loop of “0 s”, plus the time interval tirv in-between the generated subtasks (interrupts). The

above is illustrated in Figure 4.

Figure 4. Master-slave inputs-outputs cycles of “1 s” and “0 s”.

Response latency (responsiveness) is one of the substantial measurements the exper-

imental tests aim to investigate. This is defined as the time from when the master device

stimulates an output GPIO pin (master module) until the time the slave device handles

the incoming interrupt event at its input GPIO pin and sets its output GPIO pin accord-

ingly (slave module). The user tasks are scheduled as soon as the interrupt handler re-

turns. Since with PREEMPT_RT (CONFIG_PREEMPT_RT_FULL) virtually all kernel code

can be involuntarily preempted at any time. When a process becomes runnable, there is

no more need to wait for kernel code (typically a system call) to return before running the

scheduler (spinlocks are replaced by real-time mutexes, sleeping spinlocks). So, when an

interrupt comes while the task is executing a system call, there is no need to finish this

system call before another task can be scheduled.

During the experiments, the master device toggles a GPIO pin defined as an output

repeatedly (external interrupt event), with the stimulus time set at 10 ms. At the end of

each measurement cycle, it estimates the mean, minimum and maximum response latency

of the slave device. The slave device was tested continuously with cycles of 1 million (1Μ)

interrupts for each task loop of “1 s” and “0 s”. The average running time of 1Μ samples

cycle for each loop on both the devices under test was about 180 min. The average dura-

tion of each sample cycle was about 120 μs. This is the average time it takes the level of

the input control signal to raise to 3.3 V or fall to 0 V (accordingly for “1 s” and “0 s”). The

tests were executed continuously for several hours with cycles of 1 million (1Μ) interrupts

for each task loop of “1 s” and “0 s”, to obtain a sufficient number of measurements and

extract reliable values. Statistical computations were performed at the end of the meas-

urements.

The experimental software measurements in user space show that an additional de-

lay influences in some cases the maximum values of response latency. This is due to the

time required by the master software module to execute the measurements. Thus, there is

a slight delay of a few microseconds between the activating event and the instant output

when the task starts executing. This is acceptable, since there is always a delay between

Figure 4. Master-slave inputs-outputs cycles of “1 s” and “0 s”.

Response latency (responsiveness) is one of the substantial measurements the experi-
mental tests aim to investigate. This is defined as the time from when the master device
stimulates an output GPIO pin (master module) until the time the slave device handles the
incoming interrupt event at its input GPIO pin and sets its output GPIO pin accordingly
(slave module). The user tasks are scheduled as soon as the interrupt handler returns.
Since with PREEMPT_RT (CONFIG_PREEMPT_RT_FULL) virtually all kernel code can be
involuntarily preempted at any time. When a process becomes runnable, there is no more
need to wait for kernel code (typically a system call) to return before running the scheduler
(spinlocks are replaced by real-time mutexes, sleeping spinlocks). So, when an interrupt
comes while the task is executing a system call, there is no need to finish this system call
before another task can be scheduled.

During the experiments, the master device toggles a GPIO pin defined as an output
repeatedly (external interrupt event), with the stimulus time set at 10 ms. At the end of
each measurement cycle, it estimates the mean, minimum and maximum response latency
of the slave device. The slave device was tested continuously with cycles of 1 million (1M)
interrupts for each task loop of “1 s” and “0 s”. The average running time of 1M samples
cycle for each loop on both the devices under test was about 180 min. The average duration
of each sample cycle was about 120 µs. This is the average time it takes the level of the
input control signal to raise to 3.3 V or fall to 0 V (accordingly for “1 s” and “0 s”). The tests
were executed continuously for several hours with cycles of 1 million (1M) interrupts for
each task loop of “1 s” and “0 s”, to obtain a sufficient number of measurements and extract
reliable values. Statistical computations were performed at the end of the measurements.

The experimental software measurements in user space show that an additional delay
influences in some cases the maximum values of response latency. This is due to the time
required by the master software module to execute the measurements. Thus, there is a
slight delay of a few microseconds between the activating event and the instant output
when the task starts executing. This is acceptable, since there is always a delay between
occurrence and completion of an event, as long as this delay does not exceed a maximum
value, specified by the timing requirements of the real-time application. In our case, this
minor delay does not affect the task’s response times and does not impose a lower bound
on the deadlines that can be supported by the system. However, in determining whether
a system can ensure the required output in a timely manner, it is appropriate to take
into account any additional time required by a task to produce output. In a real-time
system where the interaction with the external world has to be within predictable and
acceptable working limits, the overall response delay is an important factor that is always
being considered.

Electronics 2021, 10, 1331 11 of 28

Both kernels were tested under load too. For this purpose, a custom script was
implemented, running with high priority, in the slave device under test. The custom script
uses rt-tests hackbench to generate synthetic workload by simply copying SD card contents
to/dev/null, to nothing. That is about 8.1 GB and takes about 7 min (423 s) at 19.0 MB/s.

4.3.2. Kernel Space Measurements

At kernel space, the master device performs the measurements in a similar way to the
user space experimentations. However, in this case, the slaves’ software control module is
based on a kernel module. The master device once again at specific time intervals triggers
a GPIO input at the slave device, which the slave is polling in an infinite loop. The slave
device, upon reading the change of the input state, sets its output accordingly, based on a
kernel module developed for this purpose and inserted in the Linux kernel. This module
uses an interrupt handler function (only the top-half) to service the input change and sets
the output accordingly. Then, the master device again repeats the loop and performs the
same measurements for a number of cycles (100 K to 1 M). The overall tests were executed
repeatedly for a few hours.

4.3.3. Measurements Validation

Software modules provide consistent and reliable results based on experimental
iterations. In order to validate further the results obtained by the software modules,
the measurements taken internally are compared to those measured externally with an
oscilloscope. In particular, the slaves’ response delay is measured as the time between the
rising edges of the incoming and the outgoing signals at the slave device. Their properties
such as time intervals and frequencies were analyzed over time, in order to validate the
latencies. The probes were attached in bare metal to the master’s and slave’s GPIO outputs.
In this way, when the master triggers its output, the time delay until the slave enables its
output is measured directly by the oscilloscope.

4.4. Periodic Task Measurements

Periodic task measurements aim to verify that the slave device responds at proper
periods and at the same time to investigate the state in which the slave device cannot
react properly.

4.4.1. User Space Measurements

The slave device at a specific periodic rate, based on an internal timer generates a
periodic square wave that toggles periodically the value of an output configured pin. The
master device that performs the measurements polls an input that connects to the slave’s
output in an infinite loop. Once its state is changed (rising edge of the first interrupt), it
begins to count the time until it is changed again (falling edge of the second interrupt).
Therefore, measurements are performed on both edges. In this way, on every even timer
interrupt at the slave device, the master device measures the actual semi-period between
both edges.

4.4.2. Kernel Space Measurements

The experimental setup and layout of the devices are the same as described earlier.
The master device performs the measurements in a similar way to the user space experi-
mentations. However, in this case, the slaves’ control software is a kernel module that uses
an internal high-resolution timer to produce the periodic interrupts. The slave device at a
specific periodic rate, based on an internal high-resolution timer, toggles the value of an
output pin periodically. The master device polls an input that corresponds to the slave’s
output, in an infinite loop. Once its state is changed (rising edge), it begins to count the
time until it is changed again (falling edge). In other words, measurements are performed
again on both edges. In this way, on every even timer interrupt at the slave device, the
master device measures the actual semi-period between both edges. This experiment is to

Electronics 2021, 10, 1331 12 of 28

verify that the slave device responds at proper periods and at the same time to investigate
the state in which the slave device cannot react properly.

4.5. Cyclictest Measurements

The real-time performance of Linux kernels with PREEMPT_RT support running in
ARM-based devices was additionally investigated using the cyclictest standard benchmark.
This benchmark measures the time from the occurred event (e.g., an interrupt) to the start
of real work. It provides a mechanism to measure the latency of the processor for a number
of times defined by the user. For this purpose, it creates a number of threads (one per core)
that repeatedly checks in a loop how much time the processor takes to respond during a
period of time. On each cycle, the actual time is determined, the maximum difference in
expected versus actual time is calculated and various other statistics are collected.

5. Measurements Software

The experimental tests run for a long duration to evaluate the latency occurring in
real-time tasks execution, under idle and load conditions, at the Linux kernel distributions
with real-time support (patched with PREEMPT_RT) and the default ones. Measurements
include the throughput time delay of response and periodic task execution at user and
kernel space. The results of the experiments performed are reproducible. The experimental
software modules are available as an open-source project at GitHub https://github.com/
gadam2018/RPi-BeagleBone (accessed on 12 February 2021) [73]. The same evaluation
modules and performance measurement methodology could be applied to other Linux-
based systems and platforms.

5.1. Response Task Measurement Algorithm

In user space measurements, the software module in the master device performs
the overall control of execution and metrics measurements. The same master module is
applied for kernel space measurements. This module triggers the slave device at specific
and random time intervals (e.g., 1 ms to 10 ms) in a loop for a number of iterations (e.g.,
100 K to 1 M) and measures the time elapsed (latency) until the slave device under test
responds. In the slave device, the software module responds to GPIO toggle frequency
(e.g., 10 kHz) in an asynchronous manner by activating a GPIO output, as soon as the level
of a GPIO input changes.

In kernel space measurements, in the slave device, the software module is inserted
into the slave’s kernel as a loadable kernel module. This module uses an interrupt handler
function (only the top-half) to service the input change. For real-time critical interrupts, top-
half interrupt handlers are preferred as they are started by the CPU as soon as interrupts
are enabled. On the other hand, a bottom-half starts after all pending top-halves have
completed their execution. In the PREEMPT_RT patch, this is accomplished by forcing
bottom half processing to take place in kernel threads, which can be scheduled such that
they do not delay high-priority real-time tasks.

Both the default Linux kernels and the ones with the PREEMPT_RT patch were tested
under normal and load conditions with a high priority load test script. In real-time patched
Linux kernels the modules run with low latency delays and low signal jitter (period
irregularity), despite the fact that the multicore processor was under load. The kernels with
the PREEMPT_RT patch were capable to maintain low latencies despite the increased load.

C implementations use the kernel’s sysfs interface, although they require calls into
the kernel to change GPIO states and these require costly context switches. The basic
functionality of these modules is shown in Figure 5 and as pseudocode in Appendix A
(Algorithm A1). The master response module performs initializations, sets the scheduling
policy, the events to poll and triggers the device under test (writes GPIO output, gets
clock time and polls input). In user space, the slave software polls the input and writes
accordingly the output, while in kernel space, the slave software (as a kernel module)
services the interrupt by getting the input value and setting the output. Once the desired

https://github.com/gadam2018/RPi-BeagleBone
https://github.com/gadam2018/RPi-BeagleBone

Electronics 2021, 10, 1331 13 of 28

number of loops is reached, the master module performs metrics calculations and outputs
the results.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 27

Both the default Linux kernels and the ones with the PREEMPT_RT patch were tested

under normal and load conditions with a high priority load test script. In real-time

patched Linux kernels the modules run with low latency delays and low signal jitter (pe-

riod irregularity), despite the fact that the multicore processor was under load. The ker-

nels with the PREEMPT_RT patch were capable to maintain low latencies despite the in-

creased load.

C implementations use the kernel’s sysfs interface, although they require calls into

the kernel to change GPIO states and these require costly context switches. The basic func-

tionality of these modules is shown in Figure 5 and as pseudocode in Appendix A (Algo-

rithm A1). The master response module performs initializations, sets the scheduling pol-

icy, the events to poll and triggers the device under test (writes GPIO output, gets clock

time and polls input). In user space, the slave software polls the input and writes accord-

ingly the output, while in kernel space, the slave software (as a kernel module) services

the interrupt by getting the input value and setting the output. Once the desired number

of loops is reached, the master module performs metrics calculations and outputs the re-

sults.

Figure 5. User and kernel space response task measurement algorithm.

Figure 5. User and kernel space response task measurement algorithm.

5.2. Periodic Task Measurement Algorithm

In the master device, the control software monitors whether the slave device under
test responds in proper periods. In particular, whether it produces timer interrupts at exact
time intervals. The same master module is applied for kernel space measurements. In user
space measurements, the control software in the slave device toggles the value (0, 1) of
an output pin, at specific time intervals, based on an internal timer (e.g., with a period of
30,000 µs and decreasing values). In the master device, the control software performs the
measurements of the actual time elapsed (timer period). In kernel space measurements,
the control software in the slave is inserted into the slave’s kernel as a kernel module. The
difference with the slave’s response task module at kernel space is that this module uses an
internal high-resolution timer. A high-resolution timer is usually a requirement in real-time
systems when a task needs to occur more frequently than the 1 millisecond resolution
offered with Linux.

Both the default Linux kernels and the ones with the PREEMPT_RT patch were tested
under load conditions. The results show that despite the stress load, the kernels with the
PREEMPT_RT patch produce timer interrupts at exact time intervals.

Electronics 2021, 10, 1331 14 of 28

At the master device, this periodic task module is similar to the master’s response
module at user and kernel space. A substantial difference is that this module does not
produce any triggering output but reads the input for the interrupts occurred and measures
the time interval in between (half period).

At the slave device, in user space, this periodic task module is similar to the slave’s
response module at user space. The only difference is in the thread’s function structure.
It uses a high-resolution timer to produce timer-based interrupts. In kernel space, it is
similar to the slave’s response kernel module at kernel space, but with the difference that it
uses an internal high-resolution timer (linux/hrtimer.h). The basic functionality of these
modules is shown in Figure 6 and as pseudocode in Appendix A (Algorithm A2). The
master periodic module performs initializations, sets the scheduling policy, the events to
poll and reads the device under test (reads GPIO input, gets clock time and polls input).
In user space, the slave software reads the timer until the time interval is elapsed and
writes the output. In kernel space, the slave software (as a kernel module) in periodic mode
starts the high-resolution timer, services the interrupt and returns. Once again, the master
module performs metrics calculations and outputs the results.

Electronics 2021, 10, x FOR PEER REVIEW 15 of 27

Figure 6. User and kernel space periodic task measurement algorithm.

6. Experimental Platform

A master-slave schema was applied, in which the slave devices (RPi3 and BBAI) un-

der test were connected to and communicating with a Raspberry Pi3 (master device) that

performed the actual measurements. The experimental setup is shown in Figure 7.

Figure 7. The system hardware experimental setup: RPi3 to RPi3 and RPi3 to BBAI.

Figure 6. User and kernel space periodic task measurement algorithm.

6. Experimental Platform

A master-slave schema was applied, in which the slave devices (RPi3 and BBAI) under
test were connected to and communicating with a Raspberry Pi3 (master device) that
performed the actual measurements. The experimental setup is shown in Figure 7.

Electronics 2021, 10, 1331 15 of 28

Electronics 2021, 10, x FOR PEER REVIEW 15 of 27

Figure 6. User and kernel space periodic task measurement algorithm.

6. Experimental Platform

A master-slave schema was applied, in which the slave devices (RPi3 and BBAI) un-

der test were connected to and communicating with a Raspberry Pi3 (master device) that

performed the actual measurements. The experimental setup is shown in Figure 7.

Figure 7. The system hardware experimental setup: RPi3 to RPi3 and RPi3 to BBAI. Figure 7. The system hardware experimental setup: RPi3 to RPi3 and RPi3 to BBAI.

In the majority of the experiments, the stimulus time (the time interval between the
generated interrupts) was set at an optimal value of 10 ms and below for testing and
sensitivity analysis purposes. The basic hardware components of the experimental test
system include an RPi3 that connects in a master-slave schema to another RPi3 and BBAI,
having bidirectional communication. There are a number of GNU/Linux distributions
such as Debian, Ubuntu and Arch Linux running in ARM-based platforms as the RPi3
and BBAI. The experimental tests carried out were based on the communication between
these devices. The devices were connected through GPIOs in a master-slave schema,
as illustrated in Figure 8. For RPi3, GPIO27 (pin 13) in the slave device was defined
as input and connected to GPIO17 (pin 11) defined as output in the master device. For
BBAI, GPIO_76 (P9, pin 15) was defined as input and GPIO_209 (pin 17) as output. The
communication was bidirectional, so the same connection was applied in reverse from the
slave devices to the master.

Electronics 2021, 10, x FOR PEER REVIEW 16 of 27

In the majority of the experiments, the stimulus time (the time interval between the

generated interrupts) was set at an optimal value of 10 ms and below for testing and sen-

sitivity analysis purposes. The basic hardware components of the experimental test sys-

tem include an RPi3 that connects in a master-slave schema to another RPi3 and BBAI,

having bidirectional communication. There are a number of GNU/Linux distributions

such as Debian, Ubuntu and Arch Linux running in ARM-based platforms as the RPi3 and

BBAI. The experimental tests carried out were based on the communication between these

devices. The devices were connected through GPIOs in a master-slave schema, as illus-

trated in Figure 8. For RPi3, GPIO27 (pin 13) in the slave device was defined as input and

connected to GPIO17 (pin 11) defined as output in the master device. For BBAI, GPIO_76

(P9, pin 15) was defined as input and GPIO_209 (pin 17) as output. The communication

was bidirectional, so the same connection was applied in reverse from the slave devices

to the master.

Figure 8. Schematic diagram of system connections: RPi3 to RPi3 and RPi3 to BBAI.

The RPi3 is a low-cost, low-power, portable and stand-alone single-board computer,

which is being extensively used for embedded applications. The RPi3 has integrated an

SoC based on Broadcom BCM2837, which includes an ARM Cortex-A53 quad-core pro-

cessor running at 1200 MHz, and other chips on board supporting interface circuitry with

real-time peripherals (e.g., sensors and actuators). The CPU supports ARMv8-A architec-

ture and is capable of supporting 32-bit and 64-bit instruction sets. Although, primarily,

it is designed to function as a general processing computer, it shares many characteristics

with an embedded system [74]. The BeagleBone AI fills the gap between small single

board computers and more powerful industrial computers. The development board is

based upon a Sitara AM5729 SoC from Texas Instruments having a dual ARM Cortex-A15

processor, which supports ARMv7-A architecture, running at 1 GHz up to 2.5 GHz, with

1 GB RAM and 16 GB eMMC on-board flash storage.

Both the default Linux kernels and with real-time support (patched with

PREEMPT_RT) were tested. For this purpose, different kernel configurations (on microSD

cards) were installed and configured on the slave devices under test. A PicoScope 3206 A

oscilloscope was used to visualize and measure the latencies occurring at the slave devices

under test. For validation purposes, these latency measurements were compared to the

results of the experimental software measurements.

7. Results and Discussion

7.1. Estimation of Maximum Sustained Frequency

A number of tests were executed with variable frequency values to estimate an opti-

mum value for the time interval between the generated interrupts (stimulus time at the

master device). Indicative results for some of these tests, for example, for 1 million (1 M)

interrupts, show that the slave devices with PREEMPT_RT can handle all the generated

interrupts if the time interval in between is above 10 ms (GPIO toggle frequency greater

than 10 kHz). Therefore, the safe maximum sustained frequency under which the system

Figure 8. Schematic diagram of system connections: RPi3 to RPi3 and RPi3 to BBAI.

The RPi3 is a low-cost, low-power, portable and stand-alone single-board computer,
which is being extensively used for embedded applications. The RPi3 has integrated an SoC
based on Broadcom BCM2837, which includes an ARM Cortex-A53 quad-core processor
running at 1200 MHz, and other chips on board supporting interface circuitry with real-
time peripherals (e.g., sensors and actuators). The CPU supports ARMv8-A architecture
and is capable of supporting 32-bit and 64-bit instruction sets. Although, primarily, it
is designed to function as a general processing computer, it shares many characteristics
with an embedded system [74]. The BeagleBone AI fills the gap between small single
board computers and more powerful industrial computers. The development board is
based upon a Sitara AM5729 SoC from Texas Instruments having a dual ARM Cortex-A15

Electronics 2021, 10, 1331 16 of 28

processor, which supports ARMv7-A architecture, running at 1 GHz up to 2.5 GHz, with 1
GB RAM and 16 GB eMMC on-board flash storage.

Both the default Linux kernels and with real-time support (patched with PREEMPT_RT)
were tested. For this purpose, different kernel configurations (on microSD cards) were
installed and configured on the slave devices under test. A PicoScope 3206 A oscilloscope
was used to visualize and measure the latencies occurring at the slave devices under test.
For validation purposes, these latency measurements were compared to the results of the
experimental software measurements.

7. Results and Discussion
7.1. Estimation of Maximum Sustained Frequency

A number of tests were executed with variable frequency values to estimate an
optimum value for the time interval between the generated interrupts (stimulus time at the
master device). Indicative results for some of these tests, for example, for 1 million (1 M)
interrupts, show that the slave devices with PREEMPT_RT can handle all the generated
interrupts if the time interval in between is above 10 ms (GPIO toggle frequency greater
than 10 kHz). Therefore, the safe maximum sustained frequency under which the system
does not miss any of the generated interrupts would be appropriate if the time interval
is set above 10 ms. For the majority of the experiments, the stimulus time was set at this
optimal value of 10 ms and below for testing and sensitivity analysis purposes. That means
that we could toggle the pin, for example, with a low frequency of 1000 Hz, for a period of
several hours (1 M interrupts) and above and get reliable responses. It was also observed
that for intervals less than 1 ms, the slave device under test could not always respond
efficiently, since in some cases long delays (above 1 ms) begin to appear.

7.2. Periodic Task User Space Measurements

Measurements were performed for a variable number of time samplings starting at
10,000 and decreasing, with a semi-period at 15,000 µs (30,000 µs period) and decreasing.
The results obtained show that the slave devices generate the timer interrupts at exact time
intervals, both at PREEMPT_RT-patched Linux kernels and without real-time support. In
other words, the master device measures the same semi-period length as the one produced
by the slaves’ internal timer. However, it was also observed that as the semi-period gets
smaller and at the same time the quantity of samples increases, the slave devices cannot
respond satisfactorily. For example, when the number of samples is increased above
10,000 with a semi-period less than 2000 µs, then longer delays start to appear.

The fully preempted kernels and without PREEMPT_RT support were also tested
under load by using the same aforementioned custom script, running with a high priority
set on 99, on the slave devices under test. The results show that the custom load makes
almost no difference to the performance since the timer interrupts were measured to be at
exact time intervals with minor variations.

7.3. Periodic Task Kernel Space Measurements

Measurements were performed again for the same quantity of samples starting at
10,000 and decreasing, with a semi-period at 15,000 µs (30,000 µs period) and decreasing.
In general, it was observed that the slave devices under test produce the timer interrupts at
exact time intervals since the master device measures the same length of the semi-period.
Furthermore, it was also noticed that as the semi-period gets smaller and the quantity of
samples increases, the slave devices again cannot respond satisfactorily.

7.4. Latency Measurements with Cyclictest

Cyclictest options, such as the behavior of each thread, the priority, the number of
loops, the thread base interval and the same priority for all threads, were tuned to match
the required measurements. Cyclictest measurements were performed for all Linux kernels
and distributions with and without the PREEMPT_RT patch, using the same execution run

Electronics 2021, 10, 1331 17 of 28

parameters, for example, with locked current and future process memory allocations and
standard SMP option for equal priority across all threads (e.g., #cyclictest –l 500,000 -n –t 1
–p 99 –i 400 - -smp). A representative sample output of the performance measured with this
benchmark (e.g., for 500,000 loops) for kernel version 4.19.67-2 under a Debian distribution
of Linux OS running on Raspberry Pi variants (used by many of the approaches that
examine RPi’s real-time properties with cyclictest) shows an average latency of about 10
µs, while the worst-case latency reached about 83 µs, as shown in Table 1.

Table 1. Cyclictest latency of Debian Linux kernel version 4.19.67-2 with the PREEMPT_RT patch.

Thread Priority Thread Base Interval (µs) Number of Loops Time (µs) Max Difference

Min Actual Avg

T: 0 (1153) 99 400 500,000 6 6 7 72
T: 1 (1154) 99 900 24,298 11 16 15 74
T: 2 (1155) 99 1400 142,859 6 10 8 76
T: 3 (1156) 99 1900 105,264 6 16 10 83

The results show the latency statistics in microseconds for each core in the slave device.
Avg represents the average latency being measured on the system, while Max represents
the maximum latency detected on the system.

Further on, cyclictest measurements were executed using mlockall (additional option
–m) to lock current and future process’s memory allocations, in order to ensure reliable
and fast response in time. Data automatically generated were collected for plotting a chart
of latency data using the gnuplot utility. The result of each execution is a histogram of
latencies, where the x-axis represents the measured latency delay (in µs) and the y-axis the
absolute frequency of the corresponding value. An indicative outcome of the experiments
is compared and depicted in Figure 9. Results at instant measurements show that for a
small number of samples (e.g., 0.5–1 M) there are no particular differences.

Electronics 2021, 10, x FOR PEER REVIEW 18 of 27

the absolute frequency of the corresponding value. An indicative outcome of the experi-

ments is compared and depicted in Figure 9. Results at instant measurements show that

for a small number of samples (e.g., 0,5 M–1 M) there are no particular differences.

(a) (b)

Figure 9. Cyclictest latency with and without mlockall: (a) latency normal distribution; (b) latency maximum.

Table 1. Cyclictest latency of Debian Linux kernel version 4.19.67-2 with the PREEMPT_RT patch.

Thread Priority
Thread Base

Interval (μs)

Number

of Loops
Time (μs) Max Difference

 Min Actual Avg

T: 0 (1153) 99 400 500,000 6 6 7 72

T: 1 (1154) 99 900 24,298 11 16 15 74

T: 2 (1155) 99 1400 142,859 6 10 8 76

T: 3 (1156) 99 1900 105,264 6 16 10 83

The histogram has a normal distribution centered on 12 μs to 13 μs. The maximum

latency observed with PREEMPT_RT support is quite low at 83 μs, with a considerable

amount of samples below 50 μs.

The results obtained for all kernel versions and Linux distributions are summarized

and examined further in Table 3. Nevertheless, they all reconfirm that the Linux kernels

with the PREEMPT_RT patch can achieve sufficiently lower real-time responses, within

acceptable limits, well suited in many cases of real-time applications. In the majority of

cyclictest measurements, the minimum latency is below 50 μs and the maximum below

100 μs. This indicates that Linux kernels with real-time support provide better responses

with lower latencies than the default kernels.

7.5. Latency Measurements

As examined earlier in the related work section, most of the approaches on measur-

ing Linux OS real-time performance and particularly latency are based on x86 CPU archi-

tectures and the use of benchmark tools like cyclictest. There are a few approaches based

on ARM architectures, and particularly Raspberry Pi platforms, with PREEMPT_RT

patched kernel (under a Debian Linux version), however all of them are using only cy-

clictest standard benchmark for latency measurements. A summary of the results

achieved compared to our approach is provided in Table 2.

Figure 9. Cyclictest latency with and without mlockall: (a) latency normal distribution; (b) latency maximum.

The histogram has a normal distribution centered on 12 µs to 13 µs. The maximum
latency observed with PREEMPT_RT support is quite low at 83 µs, with a considerable
amount of samples below 50 µs.

The results obtained for all kernel versions and Linux distributions are summarized
and examined further in Table 3. Nevertheless, they all reconfirm that the Linux kernels
with the PREEMPT_RT patch can achieve sufficiently lower real-time responses, within
acceptable limits, well suited in many cases of real-time applications. In the majority of
cyclictest measurements, the minimum latency is below 50 µs and the maximum below

Electronics 2021, 10, 1331 18 of 28

100 µs. This indicates that Linux kernels with real-time support provide better responses
with lower latencies than the default kernels.

7.5. Latency Measurements

As examined earlier in the related work section, most of the approaches on measuring
Linux OS real-time performance and particularly latency are based on x86 CPU architec-
tures and the use of benchmark tools like cyclictest. There are a few approaches based on
ARM architectures, and particularly Raspberry Pi platforms, with PREEMPT_RT patched
kernel (under a Debian Linux version), however all of them are using only cyclictest stan-
dard benchmark for latency measurements. A summary of the results achieved compared
to our approach is provided in Table 2.

Table 2. Cyclictest latency results comparison for Raspberry Pi with Linux kernels with PREEMPT_RT.

Hardware (Raspberry Pi) Real-Time Kernel (Debian
Version)

Cyclictest Latency (µs) (Min,
Avg, Max)

Our approach
RPi3 Model B

64-bit ARM Cortex-A53 quad core,
1200 MHz

4.4.16-rt17-v7+ <50, 53, 80

Molloy [20]
RPi2 Model B

32-bit ARM Cortex-A7 quad core,
900 MHz

3.18.16-rt13-v7+ 9, 12, 98

EMLID [54] RPi Model B+
32-bit ARM1176JZFS, 700 MHz 3.18.7-rt1-v7+ 12, 27, 77

Durr [55] RPi Model B
32-bit ARM1176JZFS, 700 MHz 4.4.9-rt17-v7+ 23, 37, 156

Benway [56] RPi Model B+
32-bit ARM1176JZFS, 700 MHz 4.4.9-rt17-v7+ 20, 36, 105

Balci [57]
RPi3 Model B

64-bit ARM Cortex-A53 quad core,
1200 MHz

4.9.47-rt37-v7+ <50, <50, 91

Autostatic [58]
RPi3 Model B

64-bit ARM Cortex-A53 quad core,
1200 MHz

4.9.33-rt23-v7+ -, 40–70, 75–100

Riva [59]
RPi3 Model B

64-bit ARM Cortex-A53 quad core,
1200 MHz

4.14.27-rt21-v7+ -, 50–150, 147

Although the above cyclictest latency results of Linux kernels with the PREEMPT_RT
are based only on Raspberry Pi, they do reconfirm that our measurements approach
provides valid results, approximately within the same range (min: <50 µs, max: 150 µs).

Regarding latency measurements with specific software, very few works, like the work
of Brown and Martin [48], proceed into the development of certain software measurement
modules particularly for ARM-based Linux platforms patched with PREEMPT_RT. Table 3
provides a summary of the results obtained by this work compared to their results for
Ubuntu Linux kernels with PREEMPT_RT. The intention is to reconfirm the results obtained
with PREEMPT_RT rather than providing a fair comparison since the kernel versions are
significantly different.

Electronics 2021, 10, 1331 19 of 28

Table 3. Software modules latency results for both approaches under Ubuntu Linux kernels with PREEMPT_RT.

Hardware
Linux OS with
PREEMPT_RT

Periodic Tasks
Period (µs)

Response Tasks Latency (µs)

User Space (Min, Max) Kernel Space (Min, Max)

RaspberryPi3 Model B 64-bit ARM
Cortex-A53 quad core, 1200 MHz (our

platform approach)

Ubuntu Mate,
kernel 30.000 49, 147 50, 67

4.14.74-rt44-v7 jitter = 0 90% of the latencies << 147 95% of the latencies << 67

BeagleBone AI 32-bit ARM Cortex-A15
1000 MHz (our platform approach)

Ubuntu, kernel 30.000 48, 142 46, 72

4.14.74-rt44-v7 jitter = 0 90% of the latencies << 142 95% of the latencies << 72

BeagleBoard C4, OMAP3520 SoC,
32-bit ARM Cortex-A8, 720 MHz

(Brown and Martin [48])

Ubuntu Lucid
Linux, kernel 7.071 157 (max) for 95% of the

time
43 (max) for 95% of the

time

2.6.33.7-rt29 jitter = 0 796 (max) for 100% of the
time

336 (max) for 100% of the
time

In RPi3 with the PREEMPT_RT patched kernel, the minimum latency is measured
to be below 50 µs, both at user and kernel spaces. In user space, 90% of the latencies fall
below the maximum of 140 µs, while in kernel space, 95% of the latencies fall below the
maximum of 67 µs. In BeagleBone AI, again the minimum latency is measured to be below
50 µs, both at user and kernel spaces. In user space, 90% of the latencies fall below the
maximum of 142 µs, while in kernel space, 95% of the latencies fall below the maximum of
72 µs. In BeagleBoard C4, at user space, for 95% of the time, the maximum latency does not
exceed the value of 157 µs, while in kernel space, this value is lower at 43 µs. Figure 10
illustrates the maximum and minimum response latencies and averages at user and kernel
space for both approaches and kernels with PREEMPT_RT in all devices (Raspberry Pi3,
BeagleBone AI and BeagleBoard C4).

Electronics 2021, 10, x FOR PEER REVIEW 20 of 27

maximum of 142 μs, while in kernel space, 95% of the latencies fall below the maximum

of 72 μs. In BeagleBoard C4, at user space, for 95% of the time, the maximum latency does

not exceed the value of 157 μs, while in kernel space, this value is lower at 43 μs. Figure

10 illustrates the maximum and minimum response latencies and averages at user and

kernel space for both approaches and kernels with PREEMPT_RT in all devices (Rasp-

berry Pi3, BeagleBone AI and BeagleBoard C4).

Figure 10. Maximum, minimum latencies and averages for preempted kernels at user and kernel

space in all devices.

Both approaches use similar software modules for measurements and the communi-

cation structure of the devices. However, the hardware development platforms and Linux

kernel versions are different. On the other hand, they are both ARM-based CPU architec-

tures running among other versions of Linux, both Ubuntu too. Nevertheless, the results

on the real-time performance with PREEMPT_RT are quite close. In all experimental test

platforms, the real-time patched Linux kernels produce exact time periods (jitter is zero)

based on their internal timer.

7.6. Overall Response Latency Results

The measurements software runs on a master RPi3 that connects to and communi-

cates with the slave devices (Raspberry Pi3 and BeagleBone AI) under test. Measurements

include: the throughput time delay or response latency of response tasks execution at user

and kernel space, the response time at specific periodic rates of periodic tasks execution

at user and kernel space, the maximum sustained frequency and general latency perfor-

mance metrics using the cyclictest benchmark. All experimental software measurements

are validated with an oscilloscope.

A summary of the response latency results for Raspberry Pi3 and BeagleBone AI run-

ning Linux kernels with the PREEMPT_RT patch is provided in Table 4. Information on

variance and standard deviations is also provided. Overall, latency results, and particu-

larly maximum values on both the slave devices with preemption support, are lower. In

the Linux kernels patched with PREEMPT_RT, the oscilloscope measurements reconfirm

the results produced with the software measurements modules. Cyclictest results recon-

firm that Linux kernels with the PREEMPT_RT patch maintain much lower latencies than

the default Linux kernels.

Figure 10. Maximum, minimum latencies and averages for preempted kernels at user and kernel space in all devices.

Both approaches use similar software modules for measurements and the commu-
nication structure of the devices. However, the hardware development platforms and
Linux kernel versions are different. On the other hand, they are both ARM-based CPU
architectures running among other versions of Linux, both Ubuntu too. Nevertheless, the
results on the real-time performance with PREEMPT_RT are quite close. In all experimental
test platforms, the real-time patched Linux kernels produce exact time periods (jitter is
zero) based on their internal timer.

Electronics 2021, 10, 1331 20 of 28

7.6. Overall Response Latency Results

The measurements software runs on a master RPi3 that connects to and communicates
with the slave devices (Raspberry Pi3 and BeagleBone AI) under test. Measurements
include: the throughput time delay or response latency of response tasks execution at user
and kernel space, the response time at specific periodic rates of periodic tasks execution at
user and kernel space, the maximum sustained frequency and general latency performance
metrics using the cyclictest benchmark. All experimental software measurements are
validated with an oscilloscope.

A summary of the response latency results for Raspberry Pi3 and BeagleBone AI
running Linux kernels with the PREEMPT_RT patch is provided in Table 4. Information on
variance and standard deviations is also provided. Overall, latency results, and particularly
maximum values on both the slave devices with preemption support, are lower. In the
Linux kernels patched with PREEMPT_RT, the oscilloscope measurements reconfirm the
results produced with the software measurements modules. Cyclictest results reconfirm
that Linux kernels with the PREEMPT_RT patch maintain much lower latencies than the
default Linux kernels.

7.6.1. Results at User Space

The majority of the Linux kernels’ measurements with PREEMPT_RT-patched kernel,
have shown the minimum response latency to be below 50 µs. The maximum worst-case
response latency (wcrl), which indicates the longest time it takes the slave device to respond
to an event, reached about 118 µs as an average value (for RPi3 and BBAI). The majority of
the latencies (about 90%) on the RPi3 and BBAI with preemption support are quite below
this maximum. However, on some occasions, maximum latency exceeded one millisecond.
In general, maximal latencies do not often cross that value with the PREEMPT_RT patched
kernel. The same measurements without PREEMPT_RT support (default Linux kernels)
have shown the minimum response latency to be about the same and below 55 µs, however
the maximum at about 329 µs. This maximum observed latency is significantly higher than
the one observed under the PREEMPT_RT-patched Linux kernels. Figure 11 illustrates the
maximum worst-case response latencies and how measurements are spread out from the
average (stdev, as a stacked area) at user space for both kernels (default and preempted)
and devices (RPi3 and BBAI).

Electronics 2021, 10, 1331 21 of 28

Table 4. Overall response latency results with and without the PREEMPT_RT patch.

Raspberry
Pi3/BeagleBone AI

Linux Kernel
Version

Samples Space PREEMPT_RT

Latency (µs)

Software Modules Oscilloscope
Min/Max/Avg

Cyclictest
Min/MaxMin/Max (wcrl) Stdev/Variation

RPi3 Ubuntu Mate
4.14.74-rt44-v7

1 M

user
yes 49/147 65/4261 49/128/105 <50/61

no 53/360 33/1137 51/370/109 <50/305

kernel
yes 50/67 20/417 42/56/50 -

no 51/81 15/233 44/93/70 -

BBAI Ubuntu
4.14.74-rt44-v7

1 M

user
yes 48/142 63/4122 49/105/98 <51/57

no 52/290 11/197 51/354/109 <51/280

kernel
yes 46/72 21/453 47/67/60 -

no 50/73 24/578 51/67/55 -

RPi3 Arch Linux
4.19.10-1-ARCH

1 M

user
yes 42/122 67/2336 44/129/98 <50/67

no 54/330 32/990 51/350/111 <50/310

kernel
yes 51/56 20/411 40/51/51 -

no 51/79 17/788 43/89/65 -

BBAI Arch Linux
4.19.10-1-ARCH

1 M

user
yes 52/114 57/965 50/124/93 <50/72

no 54/341 29/622 53/371/111 <50/355

kernel
yes 55/65 20/298 50/71/68 -

no 57/88 15/239 50/87/73 -

RPi3 Debian (Buster)
4.19.67-2

1 M

user
yes 40/90 79/6336 41/98/95 <50/80

no 53/343 34/1190 53/310/101 <50/290

kernel
yes 48/53 19/383 42/50/49 -

no 48/60 13/2988 44/76/59 -

BBAI Debian 4.19.67-2 1 M

user
yes 47/91 68/3450 49/94/90 <50/69

no 54/310 29/978 54/351/112 <50/369

kernel
yes 51/65 24/531 50/69/62 -

no 55/77 12/165 51/76/71 -

Electronics 2021, 10, 1331 22 of 28

Electronics 2021, 10, x FOR PEER REVIEW 22 of 27

Figure 11. Maximum worst-case latencies and standard deviation for both default and preempted

kernels at user space.

For real-time systems with strict timing constraints, this worst-case latency needs to

be considered. The experimental results indicate that a value of about 150 μs, as an upper

bound, could be an acceptable safety margin for such low frequencies in most real-time

systems running in such a cooperative way, as long as the frequency time step value is

higher.

7.6.2. Results at Kernel Space

Measurements with PREEMPT_RT-patched Linux kernels have shown the minimum

response latency to be again below 50 μs with a maximum of 72 μs. A considerable

amount of latencies (about 95%) are below this maximum. Interrupt service time meas-

ured at the slave devices was found to be very small (about 2–5 μs). The same measure-

ments without PREEMPT_RT support have shown the minimum response latency to be

about the same and below 57 μs with a maximum of 88 μs.

8. Conclusions

This research work presents the experimental evaluation of Linux real-time perfor-

mance, and particularly latency issues, in kernels and distributions with the real-time var-

iant PREEMPT_RT on Raspberry Pi3 Model B and BeagleBone AI ARM-based microcon-

trollers. The choice is based on the fact that such microcontroller units have sufficient pro-

cessing power, are low cost, quite flexible and used extensively in various embedded con-

trol applications. Currently, there is limited research investigating the real-time perfor-

mance of such ARM-based embedded platforms running Linux patched with

Figure 11. Maximum worst-case latencies and standard deviation for both default and preempted kernels at user space.

For real-time systems with strict timing constraints, this worst-case latency needs to
be considered. The experimental results indicate that a value of about 150 µs, as an upper
bound, could be an acceptable safety margin for such low frequencies in most real-time
systems running in such a cooperative way, as long as the frequency time step value
is higher.

7.6.2. Results at Kernel Space

Measurements with PREEMPT_RT-patched Linux kernels have shown the minimum
response latency to be again below 50 µs with a maximum of 72 µs. A considerable amount
of latencies (about 95%) are below this maximum. Interrupt service time measured at the
slave devices was found to be very small (about 2–5 µs). The same measurements without
PREEMPT_RT support have shown the minimum response latency to be about the same
and below 57 µs with a maximum of 88 µs.

8. Conclusions

This research work presents the experimental evaluation of Linux real-time perfor-
mance, and particularly latency issues, in kernels and distributions with the real-time
variant PREEMPT_RT on Raspberry Pi3 Model B and BeagleBone AI ARM-based microcon-
trollers. The choice is based on the fact that such microcontroller units have sufficient pro-
cessing power, are low cost, quite flexible and used extensively in various embedded control
applications. Currently, there is limited research investigating the real-time performance of

Electronics 2021, 10, 1331 23 of 28

such ARM-based embedded platforms running Linux patched with PREEMPT_RT. Lately,
a few studies have appeared to tackle such issues, although measurements are based
primarily only on the cyclictest benchmark.

Experimental measurements provide novel insights on Linux real-time performance
on ARM-based devices. The experimental results show that Linux kernels with the PRE-
EMPT_RT patch provide better guarantees of hard real-time performance than the default
ones. The majority of latencies on kernels with real-time support are considerably lower
compared to those in the default kernels and are below 50 µs. The average maximum
observed latency of 118 µs is still significantly lower than the one observed under the
default Linux kernels. In real-time embedded devices running in such a master-slave mode
(such as RPi and BBAI), a response latency value of about 150 µs, as an upper bound, could
be an acceptable safety margin. Overall, the latencies and particularly the maximums are
reduced in kernels with real-time support, thus making Linux with PREEMPT_RT more
suitable for use in time-sensitive embedded control systems, as this experimental research
provides evidence.

Real-time performance evaluations are based on the development of new specific real-
time software measurement modules designed upon the introduction of a new response
task model, an innovative aspect of this work. Some of the key features and contributions
of this research work are the following:

• Provides latency measurements based on specific software real-time measurement
modules, designed upon the introduction of a new response task model;

• Reveals novel insights on Linux real-time performance on ARM-based development
platforms (BeagleBoard and Raspberry Pi), based on a comparative evaluation of
real-time latency measurements at kernels with and without real-time support;

• Presents a measurements approach and evaluation methodology potentially applicable
in other Linux kernels and distributions on such ARM-based embedded devices.

In our future work, we will extend our measurements methodology and evaluation
analysis and provide further comparisons with other real-time OS such as Xenomai, etc.

Author Contributions: Conceptualization, G.K.A.; methodology, G.K.A.; software, G.K.A.; valida-
tion, G.K.A., N.P. and L.T.D.; formal analysis, G.K.A.; data curation, G.K.A.; writing—original draft
preparation, G.K.A.; writing—review and editing, G.K.A., N.P. and L.T.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The experimental software modules are available as an open-source
project at GitHub https://github.com/gadam2018/RPi-BeagleBone (accessed on 12 February 2021) [73].

Acknowledgments: The authors would like to thank the Computer Systems Laboratory (CSLab,
https://cslab.ds.uth.gr/) (accessed on 15 January 2021) [75] for the technical support and the re-
sources provided for this experimental research.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/gadam2018/RPi-BeagleBone
https://cslab.ds.uth.gr/
https://cslab.ds.uth.gr/

Electronics 2021, 10, 1331 24 of 28

Appendix A

Algorithm A1 User and kernel space response task measurement algorithm

Master response task module at user and kernel space
scheduling is SCHED_FIFO at priority 99← set thread’s scheduling algorithm to real-time
events is POLLIN or POLLPRI← set the events to poll until there is data to read
loops← set by command line argument
no_of_iterations is below or equal to loops
while no_of_iterations is below or equal to loops, do
setting← 1
write fd_output setting← set the value of output pin that triggers the slave
clock_gettime begin_time
poll fd_input for events← await for interrupt infinitely
clock_gettime end_time
read fd_input← read input once enabled by the slave
setting← 0
end
Slave response task module at user space
scheduling is SCHED_FIFO at priority 99← set thread’s scheduling algorithm to real-time
events is POLLPRI← set the events to poll until there is data to read
while 1 do
read fd_input← read input once enabled by the master
poll fd_input for events← await for interrupt infinitely
write fd_output setting← set the value of output pin accordingly (to 0 or 1)
end
Slave response task module at kernel space
function kgpio_init← uses the GPIO kernel interface
gpio_request gpio_out← request GPIO output
gpio_direction output← set up as output
gpio_request gpio_in← request GPIO input
gpio_direction input← set up as input
gpio_to_irq irqNumber←maps GPIO to IRQ number
irq_request irq_handler← request an interrupt line
end function kgpio_init
function gpio_irq_handler← uses an interrupt handler function (only the top-half) to
service the input change
gpio_get_value gpio_in← gets GPIO input value
gpio_set_value gpio_out to gpio_in← sets GPIO output accordingly
return IRQ_HANDLED← interrupt serviced
end function gpio_irq_handler

Electronics 2021, 10, 1331 25 of 28

Algorithm A2 User and kernel space periodic task measurement algorithm

Slave periodic task module at user space
timerfd_create is CLOCK_MONOTONIC← set the clock to mark the timer’s progress
timerfd_settime is ABSTIME← start the timer
semi_period_interval← set by command line argument
no_of_iterations is below or equal to semi_period_interval
while no_of_iterations is below or equal to semi_period_interval, do
read timer_fd← read the timer until the time interval is elapsed
write fd_output setting← set the value of output pin accordingly (to 0 or 1)
end
Slave periodic task module at kernel space
function kgpio_init← uses an internal high resolution timer
hr_timer_init high_res_timer
hr_timer_set CLOCK_MONOTONIC
hr_timer_mode HRTIMER_MODE_REL
hr_timer_function timer_func
end function kgpio_init
function gpio_irq_handler← the GPIO IRQ handler function
hrtimer_start high_res_timer← starts high resolution timer
return IRQ_HANDLED← interrupt serviced
end function gpio_irq_handler

References
1. The Linux Foundation: Real Time Linux. Available online: https://wiki.linuxfoundation.org/realtime/start (accessed on 4

December 2020).
2. Linutronix Linux for Industry: Real-Time. Available online: https://linutronix.de/en/ (accessed on 14 June 2020).
3. Regnier, P.; Lima, G.; Barreto, L. Evaluation of interrupt handling timeliness in real-time Linux operating systems. SIGOPS Oper.

Syst. Rev. 2008, 42, 52–63. [CrossRef]
4. Dellinger, M.; Garyali, P.; Ravindran, B. ChronOS Linux: A best-effort real-time multiprocessor Linux kernel. In Proceedings of the

48th Design Automation Conference (DAC ’11), San Diego, CA, USA, 5–10 June 2011; ACM: New York, NY, USA, 2011; pp. 474–479.
[CrossRef]

5. Sousa, P.B.; Pereira, N.; Tovar, E. Enhancing the real-time capabilities of the Linux kernel. SIGBED Rev. 2012, 9, 45–48. [CrossRef]
6. Texas Instruments: Programmable Real-Time Unit Subsystem and Industrial Communication SubSystem (PRU-ICSS). Available

online: http://processors.wiki.ti.com/index.php/PRU-ICSS/ (accessed on 14 January 2021).
7. Open Source Summit Tokyo Japan: The Many Approaches to Real-Time and Safety-Critical Linux. Available online: http:

//events17.linuxfoundation.org/sites/events/files/slides/talk_10.pdf (accessed on 12 November 2020).
8. AspenCore Electronics Industry Media: Embedded Markets Study -Integrating IoT and Advanced Technology Designs, Applica-

tion Development & Processing Environments. Available online: https://m.eet.com/media/1246048/2017-embedded-market-
study.pdf (accessed on 23 November 2020).

9. Sheikh, S.Z.; Pasha, M.A. Energy-Efficient Multicore Scheduling for Hard Real-Time Systems—A Survey. ACM Trans. Embed.
Comput. Syst. 2019, 17, 26. [CrossRef]

10. Walbrecht, A. Growing, IoT Next Big Win. Full Circle Mag. 2015, 96, 9.
11. Lee, I.; Leung, J.Y.-T.; Son, S.H. Handbook of Real-Time and Embedded Systems, 1st ed.; Chapman & Hall/CRC: New York, NY, USA,

2007. [CrossRef]
12. Kopetz, H. Real-Time Systems—Design Principles for Distributed Embedded Applications, 2nd ed.; Springer Publishing Company:

Boston, MA, USA, 2011. Available online: https://link.springer.com/book/10.1007/978-1-4419-8237-7 (accessed on 11 March
2019).

13. Adam, G.K. DALI LED Driver Control System for Lighting Operations Based on Raspberry Pi and Kernel Modules. Electronics
2019, 8, 1021. [CrossRef]

14. Adam, G.K.; Kontaxis, P.A.; Doulos, L.T.; Madias, E.-N.D.; Bouroussis, C.A.; Topalis, F.V. Embedded Microcontroller with a CCD
Camera as a Digital Lighting Control System. Electronics 2019, 8, 33. [CrossRef]

15. Radojkovic, P.; Girbal, S.; Grasset, A.; Quinones, E.; Yehia, S.; Cazorla, F.J. On the evaluation of the impact of shared resources in
multithreaded COTS processors in time-critical environments. ACM Trans. Archit. Code Optim. 2012, 8, 25. [CrossRef]

16. Rahman, M.; Ismail, D.; Modekurthy, V.P.; Saifullah, A. Implementation of LPWAN over white spaces for practical deployment.
In Proceedings of the International Conference on Internet of Things Design and Implementation (IoTDI ’19), Montreal, QC, Canada, 15–18
April 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 178–189. [CrossRef]

17. Bundalo, Z.; Bundalo, D. Embedded Systems Based on Open Source Platforms. Introduction to Data Science and Machine Learning;
IntechOpen: London, UK, 2019. [CrossRef]

https://wiki.linuxfoundation.org/realtime/start
https://linutronix.de/en/
http://doi.org/10.1145/1453775.1453787
http://doi.org/10.1145/2024724.2024836
http://doi.org/10.1145/2452537.2452546
http://processors.wiki.ti.com/index.php/PRU-ICSS/
http://events17.linuxfoundation.org/sites/events/files/slides/talk_10.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/talk_10.pdf
https://m.eet.com/media/1246048/2017-embedded-market-study.pdf
https://m.eet.com/media/1246048/2017-embedded-market-study.pdf
http://doi.org/10.1145/3291387
http://doi.org/10.1201/9781420011746
https://link.springer.com/book/10.1007/978-1-4419-8237-7
http://doi.org/10.3390/electronics8091021
http://doi.org/10.3390/electronics8010033
http://doi.org/10.1145/2086696.2086713
http://doi.org/10.1145/3302505.3310080
http://doi.org/10.5772/intechopen.85806

Electronics 2021, 10, 1331 26 of 28

18. Nayyar, A.; Puri, V. A Review of Beaglebone Smart Board’s-A Linux/Android Powered Low Cost Development Platform Based
on ARM Technology. In Proceedings of the 9th International Conference on Future Generation Communication and Networking
(FGCN ’15), Jeju, Korea, 25–28 November 2015; pp. 55–63. [CrossRef]

19. Ardito, L.; Torchiano, M. Creating and evaluating a software power model for linux single board computers. In Proceedings of the
6th International Workshop on Green and Sustainable Software (GREENS ’18), Gothenburg, Sweden, 27 May 2018; ACM: New York, NY,
USA, 2018; pp. 1–8. [CrossRef]

20. Molloy, D. Exploring Raspberry Pi Interfacing to the Real World with Embedded Linux; John Wiley & Sons, Inc.: Indianapolis, IN, USA,
2016.

21. Yan, Y.; Gokul, G.; Dantu, K.; Ko, S.Y.; Ziarek, L.; Vitek, J. Can Android Run on Time? ACM Trans. Embed. Comput. Syst. 2019, 17,
1–26. [CrossRef]

22. Adam, G.K.; Petrellis, N.; Garani, G.; Stylianos, T. COTS-Based Architectural Framework for Reliable Real-Time Control
Applications in Manufacturing. Appl. Sci. 2020, 10, 3228. [CrossRef]

23. Adam, G.K.; Petrellis, N.; Kontaxis, P.A.; Stylianos, T. COTS-Based Real-Time System Development: An Effective Application in
Pump Motor Control. Computers 2020, 9, 97. [CrossRef]

24. The Linux Foundation: Cyclictest. Available online: https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/
cyclictest/start (accessed on 11 October 2020).

25. Binkert, N.; Beckmann, B.M.; Black, G.; Reinhardt, S.; Saidi, A.; Basu, A.; Hestness, J.; Hower, D.; Krishna, T.; Sardashti, S.; et al.
The gem5 simulator. SIGARCH Comput. Archit. News 2011, 39, 1–7. [CrossRef]

26. Soto-Camacho, R.; Vergara-Limon, S.; Vargas-Treviño, M.A.D.; Paic, G.; López-Gómez, J.; Vargas-Treviño, M.; Gutierrez-Gutierrez,
J.; Martínez-Solis, F.; Patiño-Salazar, M.E.; Velázquez-Aguilar, V.M. A Current Monitor System in High-Voltage Applications in a
Range from Picoamps to Microamps. Electronics 2021, 10, 164. [CrossRef]

27. Bick, K.; Nguyen, D.T.; Lee, H.-J.; Kim, H. Fast and Accurate Memory Simulation by Integrating DRAMSim2 into McSimA+.
Electronics 2018, 7, 152. [CrossRef]

28. Bellard, F. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of the USENIX Annual Technical Conference, Anaheim,
CA, USA, 10–15 April 2005; pp. 41–46.

29. Diaz, E.; Mateos, R.; Bueno, E.J.; Nieto, R. Enabling Parallelized-QEMU for Hardware/Software Co-Simulation Virtual Platforms.
Electronics 2021, 10, 759. [CrossRef]

30. Kirova, V.; Karpov, K.; Siemens, E.; Zander, I.; Vasylenko, O.; Kachan, D.; Maksymov, S. Impact of Modern Virtualization Methods
on Timing Precision and Performance of High-Speed Applications. Future Internet 2019, 11, 179. [CrossRef]

31. Bismarck, J.L.; Morales, F. Evaluating Gem5 and QEMU Virtual Platforms for ARM Multicore Architectures. Master’s Thesis,
KTH Royal Institute of Technology, Stockholm, Sweden, 25 September 2016.

32. Halang, W.A.; Gumzej, R.; Colnaric, M.; Druzovec, M. Measuring the performance of real-time systems. Springer Real-Time
Systems 2000, 18, 59–68. [CrossRef]

33. Tan, S.L.; Nguyen, B.A.T. Survey and performance evaluation of real-time operating systems (RTOS) for small microcontrollers.
IEEE Micro 2009, 99, 1. [CrossRef]

34. Marieska, M.D.; Hariyanto, P.G.; Fauzan, M.F.; Kistijantoro, A.I.; Manaf, A. On performance of kernel based and embedded
real-time operating system: Benchmarking and analysis. In Proceedings of the International Conference on Advanced Computer Science
and Information Systems (ICACSIS’11), Jakarta, Indonesia, 17–18 December 2011; IEEE Press: Piscataway, NJ, USA, 2011; pp. 401–406.

35. Marieska, M.D.; Kistijantoro, A.I.; Subair, M. Analysis and benchmarking performance of real time patch Linux and Xenomai in
serving a real time application. In Proceedings of the IEEE Electrical Engineering and Informatics (ICEEI’11), Bandung, Indonesia, 17–19
July 2011; IEEE Press: Piscataway, NJ, USA, 2011; pp. 1–6. [CrossRef]

36. Bini, E.; Buttazzo, G.C. Measuring the performance of schedulability tests. Springer Real-Time Syst. 2005, 30, 129–154. [CrossRef]
37. Gardner, K.; Harchol-Balter, M.; Hyytia, E.; Righter, R. Scheduling for efficiency and fairness in systems with redundancy. Perform.

Eval. 2017, 116, 1–25. [CrossRef]
38. Slanina, Z.; Srovnal, V. Embedded Systems Scheduling Monitoring. In Proceedings of the Third International Conference on Systems

(ICONS’08), Cancun, Mexico, 13–18 April 2008; IEEE Press: Piscataway, NJ, USA, 2008; pp. 124–127. [CrossRef]
39. Bertogna, M.; Cirinei, M.; Lipari, G. Schedulability Analysis of Global Scheduling Algorithms on Multiprocessor Platforms. IEEE

Trans. Parallel Distrib. Syst. 2009, 20, 553–566. [CrossRef]
40. Garre, C.; Mundo, D.; Gubitosa, M.; Toso, A. Performance comparison of real-time and general-purpose operating systems in

parallel physical simulation with high computational cost. In Proceedings of the SAE World Congress & Exhibition, Detroit, MI, USA,
8–10 April 2014; SAE International: Warrendale, PA, USA, 2014. [CrossRef]

41. Mejia-Alvarez, P.; Moncada-Madero, D.; Aydin, H.; Diaz-Ramirez, A. Evaluation framework for energy-aware multiprocessor
scheduling in real-Time systems. J. Syst. Archit. 2019, 98, 388–402. [CrossRef]

42. Koolwal, K. Investigating latency effects of the linux real-time preemption patches (PREEMPT_RT) on AMD’s GEODE LX
platform. In Proceedings of the 11th Real-Time Linux Workshop (OSADL’09), Dresden, Germany, 28–30 September 2009; OSADL:
Heidelberg, Germany, 2009; pp. 131–146.

43. Emde, C. Long-term monitoring of apparent latency in PREEMPT_RT Linux real-time systems. In Proceedings of the 12th Real-Time
Linux Workshop (OSADL’10), Nairobi, Kenya, 25–27 October 2010; OSADL: Heidelberg, Germany, 2010; pp. 1–6.

http://doi.org/10.1109/FGCN.2015.23
http://doi.org/10.1145/3194078.3194079
http://doi.org/10.1145/3289257
http://doi.org/10.3390/app10093228
http://doi.org/10.3390/computers9040097
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
http://doi.org/10.1145/2024716.2024718
http://doi.org/10.3390/electronics10020164
http://doi.org/10.3390/electronics7080152
http://doi.org/10.3390/electronics10060759
http://doi.org/10.3390/fi11080179
http://doi.org/10.1023/A:1008102611034
http://doi.org/10.1109/MM.2009.56
http://doi.org/10.1109/ICEEI.2011.6021563
http://doi.org/10.1007/s11241-005-0507-9
http://doi.org/10.1016/j.peva.2017.07.001
http://doi.org/10.1109/ICONS.2008.47
http://doi.org/10.1109/TPDS.2008.129
http://doi.org/10.4271/2014-01-0200
http://doi.org/10.1016/j.sysarc.2019.01.018

Electronics 2021, 10, 1331 27 of 28

44. Beamonte, R.; Giraldeau, F.; Dagenais, M. High performance tracing tools for multicore linux hard real-time systems. In
Proceedings of the 14th Real-Time Linux Workshop (OSADL’12), Chapel Hill, VA, USA, 18–20 October 2012; OSADL: Heidelberg,
Germany, 2012; pp. 1–7.

45. Beamonte, R.; Dagenais, M.R. Linux Low-Latency Tracing for Multicore Hard Real-Time Systems. Hindawi Adv. Comput. Eng.
2015, 8. [CrossRef]

46. Barbalace, A.; Luchetta, A.; Manduchi, G.; Moro, M.; Soppelsa, A.; Taliercio, C. Performance comparison of vxworks, linux, rtai,
and xenomai in a hard real-time application. IEEE Trans. Nucl. Sci. 2008, 55, 435–439. [CrossRef]

47. Arm, J.; Bradac, Z.; Kaczmarczyk, V. Real-time capabilities of Linux RTAI. In Proceedings of the14th IFAC Conference on Programmable
Devices and Embedded Systems (PDES’16), Brno, Czech Republic, 5–7 October 2016; IFAC-PapersOnLine: Geneva, Switzerland, 2016;
Volume 49, pp. 401–406. [CrossRef]

48. Brown, J.; Martin, B. How fast is fast enough. Choosing between Xenomai and Linux for real-time applications. In Proceedings of
the 12th Real-Time Linux Workshop (OSADL’10), Nairobi, Kenya, 25–27 October 2010; OSADL: Heidelberg, Germany, 2010; pp. 1–17.

49. Litayem, N.; Saoud, S.B. Impact of the Linux Real-time Enhancements on the System Performances for Multi-core Intel Architec-
tures. Int. J. Comput. Appl. 2011, 17, 17–23. [CrossRef]

50. Fayyad-Kazan, H.; Perneel, L.; Timmerman, M. Linux PREEMPT-RT vs. Commercial RTOSs: How Big is the Performance Gap.
GSTF J. Comput. 2013, 3, 135–142. [CrossRef]

51. Cerqueira, F.; Brandenburg, B. A Comparison of Scheduling Latency in Linux, PREEMPT_RT, and LITMUS RT. In Proceedings of
the 9th Annual Workshop on Operating Systems Platforms for Embedded Real-Time applications (OSPERT’13), Paris, France, 9 July 2013;
SYSGO: Mainz, Germany, 2013; pp. 19–29.

52. Calandrino, J.; Leontyev, H.; Block, A.; Devi, U.C.; Anderson, J. LITMUS: A testbed for empirically comparing real-time
multiprocessor schedulers. In Proceedings of the 27th IEEE Real-Time Systems Symposium (RTSS’06), Rio de Janeiro, Brazil, 5–8
December 2006; IEEE Press: Piscataway, NJ, USA, 2006; pp. 111–123. [CrossRef]

53. Reghenzani, F.; Massari, G.; Fornaciari, W. The Real-Time Linux Kernel: A Survey on PREEMPT_RT. ACM Comput. Surv. 2019, 52,
36. [CrossRef]

54. EMLID Raspberry Pi Real-Time Kernel. Available online: https://emlid.com/raspberry-pi-real-time-kernel/ (accessed on 7
November 2020).

55. Raspberry Pi Going Realtime with RT Preempt. Available online: http://www.frank-durr.de/?p=203 (accessed on 3 October
2020).

56. Real-Time on Raspberry Pi. Available online: https://www.distek.com/blog/part-2-real-time-on-raspberry-pi/ (accessed on 4
December 2020).

57. Latency of Raspberry Pi3 on Standard and Real-Time Linux 4.9 Kernel. Available online: https://metebalci.com/blog/latency-
of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/ (accessed on 20 October 2020).

58. AUTOSTATIC RPi3 and the Real Time Kernel. Available online: https://autostatic.com/2017/06/27/rpi-3-and-the-real-time-
kernel/ (accessed on 25 October 2020).

59. Raspberry Pi: Preempt-RT vs. Standard Kernel 4.14.y. Available online: https://lemariva.com/blog/2018/02/raspberry-pi-rt-
preempt-vs-standard-kernel-4-14-y (accessed on 24 October 2020).

60. Delgado, R.; You, B.-J.; Choi, B. Real-time Control Architecture Based on Xenomai Using ROS Packages for a Service Robot. J.
Syst. Softw. 2019, 151, 8–19. [CrossRef]

61. Delgado, R.; Park, J.; Choi, B.W. Open Embedded Real-time Controllers for Industrial Distributed Control Systems. Electronics
2019, 8, 223. [CrossRef]

62. Delgado, R.; Hong, C.; Shin, W.; Choi, B. Implementation and performance analysis of an etherCAT master on the latest real-time
embedded linux. Int. J. Appl. Eng. Res. 2015, 10, 44603–44609.

63. Princy, S.E.; Nigel, K.G.J. Implementation of cloud server for real time data storage using Raspberry Pi. In Proceedings of the Online
International Conference on Green Engineering and Technologies (IC-GET’15), Coimbatore, India, 27 November 2015; IEEE: Piscataway,
NJ, USA, 2015; pp. 1–4. [CrossRef]

64. Bokingkito, P.B.; Llantos, O.E. Design and Implementation of Real-Time Mobile-based Water Temperature Monitoring System. In
Proceedings of the 4th Information Systems International Conference (ISICO’17), Bali, Indonesia, 6–8 November 2017; Elsevier Procedia
Computer Science: Amsterdam, The Netherlands, 2017; Volume 124, pp. 698–705. [CrossRef]

65. Guravaiah, K.; Thivyavignesh, R.G.; Velusamy, R.L. Vehicle monitoring using internet of things. In Proceedings of the 1st
International Conference on Internet of Things and Machine Learning (IML’17), Liverpool, UK, 17–18 October 2017; ACM Press: New
York, NY, USA, 2017; pp. 1–7. [CrossRef]

66. Kruger, C.P.; Hancke, G.P. Benchmarking Internet of Things devices. In Proceedings of the 12th IEEE International Conference
on Industrial Informatics (INDIN’14), Porto Alegre, Brazil, 27–30 July 2014; IEEE Press: Piscataway, NJ, USA, 2014; pp. 611–616.
[CrossRef]

67. Kurkovsky, S.; Williams, C. Raspberry Pi as a Platform for the Internet of Things Projects: Experiences and Lessons. In Proceedings
of the 22nd Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE ’17), Bologna, Italy, 3–5 July 2017;
ACM Press: New York, NY, USA, 2017; pp. 64–69. [CrossRef]

68. Davis, R.I.; Burns, A. A survey of hard real-time scheduling for multiprocessor systems. ACM Comput. Surv. 2011, 43, 44.
[CrossRef]

http://doi.org/10.1155/2015/261094
http://doi.org/10.1109/TNS.2007.905231
http://doi.org/10.1016/j.ifacol.2016.12.080
http://doi.org/10.5120/2202-2796
http://doi.org/10.5176/2251-3043_3.1.244
http://doi.org/10.1109/RTSS.2006.27
http://doi.org/10.1145/3297714
https://emlid.com/raspberry-pi-real-time-kernel/
http://www.frank-durr.de/?p=203
https://www.distek.com/blog/part-2-real-time-on-raspberry-pi/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://autostatic.com/2017/06/27/rpi-3-and-the-real-time-kernel/
https://autostatic.com/2017/06/27/rpi-3-and-the-real-time-kernel/
https://lemariva.com/blog/2018/02/raspberry-pi-rt-preempt-vs-standard-kernel-4-14-y
https://lemariva.com/blog/2018/02/raspberry-pi-rt-preempt-vs-standard-kernel-4-14-y
http://doi.org/10.1016/j.jss.2019.01.052
http://doi.org/10.3390/electronics8020223
http://doi.org/10.1109/GET.2015.7453790
http://doi.org/10.1016/j.procs.2017.12.207
http://doi.org/10.1145/3109761.3109785
http://doi.org/10.1109/INDIN.2014.6945583
http://doi.org/10.1145/3059009.3059028
http://doi.org/10.1145/1978802.1978814

Electronics 2021, 10, 1331 28 of 28

69. National Instruments: What Is a Real-Time Operating System (RTOS)? Available online: http://www.ni.com/white-paper/3938
/en/ (accessed on 12 November 2020).

70. Chakraborty, S.; Eberspacher, J. Advances in Real-Time Systems; Springer: Berlin/Heidelberg, Germany, 2012; Available online:
https://link.springer.com/book/10.1007/978-3-642-24349-3 (accessed on 16 September 2018).

71. Fayyad-Kazan, H.; Perneel, L.; Timmerman, M. Linux PREEMPT-RT v2.6.33 versus v3.6.6: Better or worse for real-time
applications? ACM SIGBED Rev. 2014, 11, 26–31. [CrossRef]

72. Garre, C.; Mundo, D.; Gubitosa, M.; Toso, A. Real-Time and Real-Fast Performance of General-Purpose and Real-Time Operating
Systems in Multithreaded Physical Simulation of Complex Mechanical Systems. Hindawi Math. Probl. Eng. 2014, 14. [CrossRef]

73. RPi-BeagleBone. Available online: https://github.com/gadam2018/RPi-BeagleBone (accessed on 12 February 2021).
74. Holt, A.; Huang, C.-Y. Embedded Operating Systems A Practical Approach; Springer International Publishing: Cham, Switzerland,

2014. [CrossRef]
75. Computer Systems Laboratory. Available online: https://cslab.ds.uth.gr/ (accessed on 15 January 2021).

http://www.ni.com/white-paper/3938/en/
http://www.ni.com/white-paper/3938/en/
https://link.springer.com/book/10.1007/978-3-642-24349-3
http://doi.org/10.1145/2597457.2597460
http://doi.org/10.1155/2014/945850
https://github.com/gadam2018/RPi-BeagleBone
http://doi.org/10.1007/978-3-319-72977-0
https://cslab.ds.uth.gr/

	Introduction
	Related Work
	Background: Real-Time Approaches and Terminology
	Real-Time Operating System
	Real-Time Approaches in Linux
	Latency Measurements Approaches—Techniques

	Methodology
	Design Approach
	Measurements Approach
	Response Task Measurements
	User Space Measurements
	Kernel Space Measurements
	Measurements Validation

	Periodic Task Measurements
	User Space Measurements
	Kernel Space Measurements

	Cyclictest Measurements

	Measurements Software
	Response Task Measurement Algorithm
	Periodic Task Measurement Algorithm

	Experimental Platform
	Results and Discussion
	Estimation of Maximum Sustained Frequency
	Periodic Task User Space Measurements
	Periodic Task Kernel Space Measurements
	Latency Measurements with Cyclictest
	Latency Measurements
	Overall Response Latency Results
	Results at User Space
	Results at Kernel Space

	Conclusions
	
	References

