
electronics

Article

Botnet Attack Detection Using Local Global Best Bat Algorithm
for Industrial Internet of Things

Abdullah Alharbi 1, Wael Alosaimi 1, Hashem Alyami 2, Hafiz Tayyab Rauf 3,* and Robertas Damaševičius 4

����������
�������

Citation: Alharbi, A.; Alosaimi, W.;

Alyami, H.; Rauf, H.T.; Damaševičius,

R. Botnet Attack Detection Using

Local Global Best Bat Algorithm for

Industrial Internet of Things.

Electronics 2021, 10, 1341. https://

doi.org/10.3390/electronics10111341

Academic Editors:

Constantinos Kolias, Georgios

Kambourakis and Weizhi Meng

Received: 9 March 2021

Accepted: 29 March 2021

Published: 3 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Technology, College of Computers and Information Technology, Taif University,
P. O. Box 11099, Taif 21944, Saudi Arabia; amharbi@tu.edu.sa (A.A.); w.osaimi@tu.edu.sa (W.A.)

2 Department of Computer Science, College of Computers and Information Technology, Taif University,
P. O. Box 11099, Taif 21944, Saudi Arabia; hyami@tu.edu.sa

3 Centre for Smart Systems, AI and Cybersecurity, Staffordshire University, Stoke-on-Trent ST4 2DE, UK
4 Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland;

robertas.damasevicius@polsl.pl
* Correspondence: hafiztayyabrauf093@gmail.com

Abstract: The need for timely identification of Distributed Denial-of-Service (DDoS) attacks in the
Internet of Things (IoT) has become critical in minimizing security risks as the number of IoT devices
deployed rapidly grows globally and the volume of such attacks rises to unprecedented levels. Instant
detection facilitates network security by speeding up warning and disconnection from the network
of infected IoT devices, thereby preventing the botnet from propagating and thereby stopping
additional attacks. Several methods have been developed for detecting botnet attacks, such as Swarm
Intelligence (SI) and Evolutionary Computing (EC)-based algorithms. In this study, we propose a
Local-Global best Bat Algorithm for Neural Networks (LGBA-NN) to select both feature subsets and
hyperparameters for efficient detection of botnet attacks, inferred from 9 commercial IoT devices
infected by two botnets: Gafgyt and Mirai. The proposed Bat Algorithm (BA) adopted the local-global
best-based inertia weight to update the bat’s velocity in the swarm. To tackle with swarm diversity of
BA, we proposed Gaussian distribution used in the population initialization. Furthermore, the local
search mechanism was followed by the Gaussian density function and local-global best function to
achieve better exploration during each generation. Enhanced BA was further employed for neural
network hyperparameter tuning and weight optimization to classify ten different botnet attacks with
an additional one benign target class. The proposed LGBA-NN algorithm was tested on an N-BaIoT
data set with extensive real traffic data with benign and malicious target classes. The performance
of LGBA-NN was compared with several recent advanced approaches such as weight optimization
using Particle Swarm Optimization (PSO-NN) and BA-NN. The experimental results revealed the
superiority of LGBA-NN with 90% accuracy over other variants, i.e., BA-NN (85.5% accuracy) and
PSO-NN (85.2% accuracy) in multi-class botnet attack detection.

Keywords: botnet attacks; intrusion detection; heuristic optimization; neural networks; bat algorithm;
Internet-of-Things security

1. Introduction

An increase in cyber-crimes has made the detection of intrusions in the network a
vital research area [1]. Traditionally, personal computers (PC) and computer networks have
been the subject of cyber-attack, but recently, cyber-physical systems [2], Internet of Things
(IoT) [3], internet of medical things (IoMT) [4], Internet of Connected Vehicles [5], smart
factories [6], and 5G communication infrastructures [7] have become targets of numerous
attacks as well. Several studies have been carried out to suggest remarkable strategies to
fight against cyber actions [8,9]. Previous strategies are not able to resolve complex cyber-
attacks. Common preventive approaches such as authentication, firewalls, and antivirus
are not sufficient for complicated cyber-attacks [10]. Algorithms used for classification

Electronics 2021, 10, 1341. https://doi.org/10.3390/electronics10111341 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1515-3187
https://orcid.org/0000-0001-9990-1084
https://doi.org/10.3390/electronics10111341
https://doi.org/10.3390/electronics10111341
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10111341
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10111341?type=check_update&version=2

Electronics 2021, 10, 1341 2 of 24

can be utilized to make decisions while detecting intrusions in networks [11]. Various
machine learning algorithms such as decision trees, K nearest neighbor (KNN), support
vector machine (SVM), Naive Bayes, neural networks, random forest, and fuzzy logic are
being used for intrusion detection [12–14].

The performance of each algorithm can be improved in the case of a group or combi-
nation strategy. Group model is a renowned strategy of machine learning in which several
algorithms are utilized to enhance predictions and speed of detection. The suggested
method focused on the use of supervised algorithms of machine learning to suggest a
framework for classification through stacked generalization. Big data is being produced
by IoT devices and networks in the current era [15], causing difficulties to secure the
industry and academia. Consequently, various threats and malware are rising and cannot
be handled by using current strategies [16].

Botnet attacks such as Gafgyt [17] and Mirai [18] are on the rise. A botnet is an
computer network consisting of several hosts running standalone software. A bot in such
a network is the computer itself with malware that allows an attacker to perform certain
actions using the resources of an infected PC.

A botnet runs a bot on several machines linked to the internet to form a botnet
operated by a malicious group [19]. Botnets pose a significant threat to network security as
they are commonly used for many Internet crimes such as Distributed Denial-of-Service
(DDoS) attacks, identity theft, email spam, and click fraud. Botnet-based DDoS attacks are
devastating for the target network as they will drain all network bandwidth and victim
computer resources and cause an interruption of services. Machine learning methods are
now commonly used to track these attacks in IoT [20–22].

The botnet can be instructed in targeted, distributed denial of service attacks on any
system on the Internet to consume resources (for example, bandwidth ability) of the system
in such a way that it cannot properly serve their legitimate users. Nowadays, practically
all DDoS attacks are carried out from a botnet platform. Despite its simplicity, the DDoS
attack technique is very effective due to the size of the botnet and the total bandwidth of
the bots.

An intruder can illegally access a user’s information or slow down the system by
launching several attacks. A computer network can be targeted by several attacks such as
User to Root (U2R), Probing (Probe), Remote to Local (R2L), Denial of Service (DoS), Port
Scanning, Brute Force, etc. Any transport, application, or protocol such as Internet Control
Message Protocol (ICMP), File transfer protocol (FTP), User Datagram Protocol (UDP),
Simple Mail Transfer Protocol (SMTP), Transmission Control Protocol (TCP), Hypertext
Transfer Protocol (HTTP), etc., can be used to execute these attacks. Network-based
Intrusion Detection Systems (NIDS) are suggested to be used to handle such attacks to scan
the network and to identify such attacks [23,24].

Several machine learning methods have been used to design intrusion detection
systems, but these methods fail to handle large traffic. Similarly, deep learning methods
lack the optimization perspective that leads to low generality of the model. Researchers
are now able to develop high-detection detectors for fixed botnet data sets with binary
recognition tasks [25]. However, since botnet attack detection techniques are constantly
changing, a high detection rate for only fixed data sets cannot guarantee excellent accuracy
when dealing with complex traffic data. Thus, there is a need for neuro-evolution-based
classification techniques that can help decide the number of layers and neurons during the
detection process [26].

The hyperparameters should be optimized during neural network training and weight
learning processes. Many fixed optimizers have been proposed in modern literature for
this reason, such as rmsprop, Adam, adagrad, adamax, and adadelta [27–29]. However,
they miss the problem nature and data set dimension; therefore, several evolutionary meth-
ods [30] have been employed to overcome this issue and to optimize the hyperparameters.

In this research, we propose a neural network-based optimized method Local-Global
best Bat Algorithm for Neural Network (LGBA-NN) to determine both feature subsets

Electronics 2021, 10, 1341 3 of 24

and hyperparameters for efficient detection of botnet attacks. LGBA-NN further contains
three major improvements; the first modification involves robust population initialization
of bats by Gaussian distribution. The proposed population initialization supports the
bat’s solution in producing robust offspring by providing sufficient diversity. Secondly,
the proposed BA uses a local-global best-based inertia weight to update the velocity of the
entire swarm bat. Finally, a local search mechanism based on the Gaussian density function
and the local-global best function is proposed to improve exploration during each phase.

The novelty and contribution of this paper is summarized as follows:

• A novel meta-heuristic local-global best bat algorithm (LGBA) for optimization of the
hyper-parameters of a neural network (LGBA-NN) is presented.

• The proposed LGBA-NN is tested on an N-BaIoT data set with extensive real-world
traffic data with benign and malicious classes, achieving high performance.

2. Related Work

Anomaly-based detection and signature-based detection are the two methods of de-
tection. For a known pattern of attack, signature-based detection is used. At the same
time, anomaly-based detection is used for unknown and known patterns of attack [31].
Additionally, Network-based Intrusion Detection Systems (NIDS) depend on traffic iden-
tification, which means the flow of traffic is used to extract essential features used to
classify traffic records into malicious or normal activities by utilizing machine learning
algorithms [32]. Host-based and network-based systems are two classifications of intrusion
detection systems. All actions are monitored in NIDS for detection of intrusion, which
helps in identifying attacks such as Denial of Service (DoS) [33]. In contrast, in the case
of Host-based Intrusion Detection Systems (HIDSs), specific approaches are implemented
at significant points of the server or every system. A low rate of false alarms and highly
accurate detection can be gained by utilizing a vast database in anomaly-based IDSs. For de-
veloping a particular database for anomaly-based systems, testing and training phases are
implemented. In the training phase, regular patterns are specified, used for comparison
during the testing phase.

Traditionally used signature and heuristic methods for detecting malicious software
are not able to provide a sufficient level of detection of new and previously unknown
variants of botnets. This determines the applicability of the machine learning methods
in solving this problem. Advanced machine learning and deep learning methods are
being utilized for security purposes while increasing the robustness and accuracy of attack
detection without demanding advanced knowledge of security [34,35]. The efficiency of
IDSs can be enhanced by utilizing nature-inspired meta-heuristic, grammar-based [36],
data mining, machine learning, reinforcement learning, and artificial intelligence-based
techniques [37–39]. The performance of IDS can be improved by utilizing techniques such
as Artificial Bee Colony (ABC) [40], Particle Swarm Optimization (PSO) [41], Grey Wolf
optimization [42], and Artificial Fish Swarm Algorithm [43]. Description of recent related
works on network intrusion detection using several optimization, deep, and machine
learning algorithms are given in Table 1.

One study [44] proposed a group model by utilizing a meta classification strategy
facilitated through stacked generalization. UGR’16 and UNSW NB-15 are two varied data
sets that were gathered from real and emulated network traffic. The proposed strategy
showed an accuracy of 97%, while emulated data sets came up with an accuracy of 94%.
Another study [45] proposed an algorithm based on double Particle Swarm Optimization
(PSO) to choose hyperparameters and feature subsets in a single process. They utilized
deep Belief Networks (DBN), Long Short-Term Memory Recurrent Neural Networks
(LSTM-RNN), and Deep Neural Networks (DNN) models for the proposed algorithm.

Tripathi et al. [46] utilized grasshopper optimization algorithm (GOA). Their sug-
gested method was IDS-based to discriminate between malicious and regular traffic. Multi-
layer perceptron, naïve Bayes, decision tree, and support vector machine determine the

Electronics 2021, 10, 1341 4 of 24

attack type. The CIC-IDS 2017 and KDD Cup 99 data sets were used to test their pro-
posed method.

Table 1. Brief description of recent related works on network intrusion detection using several optimization, deep, and
machine learning algorithms.

Ref Data-Set Methods Evaluation Metrics Accuracy

[44] UNSW NB-15 Ensemble approach using
concept of stacking

Accuracy, recall,
and precision

Gained 97%
accuracy

[45] Two common
IDS data sets

Double Particle Swarm
Optimization (PSO)-based algorithm

Accuracy, recall,
precision, specificity

Increased DR
by 4% to 6%

[46] KDD Cup 99 and
CIC-IDS 2017

GOIDS AUC, specificity,
false-positive rate

Low false-
positive rate.

[47] Own collected Immune Genetic
Algorithm

Average standard
deviation

85% of prediction
accuracy

[48] AWID data M-AdaBoost-A TPR/FPR, macro
precision

Showed highly
accurate results

[49] NSL-KDD SRDLM Accuracy, precision,
recall, F1

Attack detection
over 99%

[50] CICIDS 2017 Multi-stage optimized
ML-based NIDS

Accuracy, precision, recall
/TPR, FAR/FPR

Detection accuracy
over 99%

[51] UNSW-NB15 Feature selection
model for NIDSs

TPR, TNR, FPR,
FNR, accuracy, precision

Showed highly
accurate results

[52] CSE-CIC-IDS2018 ML and DL-based
NIDS.

Accuracy, precision,
recall, FAR, TNR

Gained
promising results

[53] CICIDS2017,
NSL-KDD

LNNLS-KH FPR, DR Ensured high
detection accuracy

[54] KDD CUP 99 Data mining-based
IDS

DR, FPR Showed improved
accuracy

[40] NSL-KDD and
ISCXIDS2012

Anomaly network-based
IDS (A-NIDS)

TP, FP,
FN, TN

Gained enhanced
detection accuracy

[55] KDDTest + Improved convolutional
neural network (ICNN)

AC, TPR,
FPR

Higher recall rate
and lower FPR

[56] NSL-KDD Network intrusion detection
system (NIDS)

FPR, FNR,
TPR, TNR

Low false alarm
rates (FARs)

[57] ISCX 2012,
and Kyoto 2006+.

Hybrid dimensionality
reduction technique

AC, DR FAR,
precision, F-measure

Gained enhanced
detection accuracy

[58] Public data sets IoT-based IDS FPR and DR Obtained satisfactory
results

[59] NSL-KDD XGBoost–DNN
model

Recall, accuracy,
precision

Showed useful
outcomes

[60] UGR’16 ML-based NIDS F1, precision,
recall

Proved suitable
for NID problems

[61] NSL-KDD and
UNSW-NB15

Hybrid IDS DA, DR, FNR,
FPR, FAR

0.01% FPR

[62] N-BaIoT CNN, RNN, and LSTM F1 0.87 for 4 types of
attack

[63] PhishTank, OpenPhish,
Curlie, N-BaIoT

Temporal LSTM F1, accuracy 94.80% accuracy

[64] N-BaIoT ANN, J48, Naïve Bayes Accuracy 99%

[65] ISOT, ISCX Artificial Immune System Accuracy 0.99

Electronics 2021, 10, 1341 5 of 24

Novel utilization of Genetic Algorithm (GA) alongside an immune algorithm was pro-
posed in [47] to improve a computer’s ability to detect intrusion. They carried out several
simulations to verify the performance of their proposed method. The experiments con-
ducted proved that Immune Genetic Algorithm (IGA) can enhance the system’s capabilities
to foretell the existence of an intrusion in the network.

The authors [48] used the M-AdaBoost-A algorithm for efficient intrusion detection
in the network. They grouped several M-AdaBoost-A-based classifiers through several
approaches such as PSO. Their proposed method came up with better performance than ex-
isting approaches among various classes in intrusion detection in the traditional enterprise
and 802.11 wireless.

Another study [49] suggested a novel method for intrusion detection, namely SRDLM,
based on deep learning and semantic re-encoding. Their proposed method enhances the
classification abilities by utilizing deep learning while offering highly robust and accurate
results. Their proposed method showed an accuracy of 99% when detecting the Web
character injection network’s attack. Injadat et al. [50] suggested multi-stage optimized
Machine Learning-based NIDS that minimizes computations’ complexity during intrusion
detection. They compared correlation-based and information gain and studied their impact
in terms of time and performance. Their proposed method was tested by using the UNSW-
NB 2015 and CICIDS 2017 data sets.

A framework proposed in [51] used genetic algorithm (GA), firefly optimization (FFA),
grey wolf optimizer (GWO), and particle swarm optimization (PSO). The framework was
tested on UNSW-NB15 data set, J48 ML classifiers, and support vector machine (SVM) with
promising results.

A study [52] proposed a novel framework based on DL and ML strategies to design
NIDS. They studied the pros and cons of existing approaches to the suggested method.
They aimed to facilitate researchers with advanced knowledge of AI-based NIDS and
spotted possible obstacles for the proposed method.

Another study [53] proposed linear nearest neighbor lasso step (LNNLS-KH) to select
features of intrusion detection. They implemented LNNLS-KH on renewed krill herd
position to obtain the optimal global solution.

B et al. [54] applied wrapper and filter-based approaches using the firefly algorithm
for feature selection. Classifiers of Bayesian Networks (BN) and C4.5 were applied to
obtained features with a data set of KDD CUP 99. The preliminary outcomes proved that
ten features are adequate for intrusion detection, providing enhanced accuracy.

A novel framework [40] named anomaly network-based IDS (A-NIDS) was proposed
by utilizing AdaBoost and the artificial bee colony (ABC) algorithm to achieve low False
Positive Rate (FPR) and high Detection Rate (DR). For the selection of features, they utilized
ABC, and for classification and evaluation, they used the AdaBoost algorithm. The ISCX-
IDS2012 and NSL-KDD data sets were used. Their framework showed promising results.

The authors of [55] proposed a method of intrusion detection for wireless networks
using an improved convolutional neural network (ICNN). Firstly, they preprocessed and
discriminated data and then model it using ICNN. The experimental results showed that
their proposed method offers highly accurate results and valid favorable rates along with
lower false-positive rates.

Another study [56] proposed an intrusion detection system based on anomaly to
analyze and monitor network traffic flow towards a cloud system. For the classification
of network traffic, they utilized an SVM classifier. To tune the SVM parameters, they
used SPSO, and to select features of the network, they used binary-based Particle Swarm
Optimization (BPSO). They used the NSL-KDD data set for the development and evaluation
of their proposed method.

Salo et al. suggested a technique [57] of intrusion detection through principal compo-
nent analysis (PCA) and information gain (IG). They utilized multi-layer perceptron (MLP),
Instance-based learning algorithms (IBK), and support vector machine (SVM). They used

Electronics 2021, 10, 1341 6 of 24

Kyoto 2006+, NSL-KDD, and ISCX 2012 to test their model. Their proposed method came
up with highly accurate results.

A study [58] investigated network security issues, intrusion detection, fault tolerance,
access control, authentication, key management, and crucial security technologies. It
considered various intrusion detection approaches and their importance in IoT. They also
made a comparison between various techniques of intrusion detection.

A method proposed in [59] used XGBoost to select features through a deep neural
network (DNN) in the process of intrusion detection. The proposed model comprises
classification, selection of features, and normalization, while for testing, the NSL-KDD data
set was used.

Another study [60] analyzed and compared current machine learning-based NIDSs
while using the UGR’16 data set to solve issues of intrusion detection. The guidelines
provided will be helpful for researchers in analyzing NIDSs. Their proposed model still
needs improvements and efforts to enhance understandability.

Krich et al. used stochastic optimization (SPSA) [66] to compute airborne weights
that are low-side lobe beam-forming. Their proposed method only depends on digitizing
the beam of radar’s sum without demanding antenna calibration. The proposed approach
comprises low-priced computations and can be scaled conveniently to radars as it contains
a considerable quantity of elements of the antenna.

One study [61] suggested a novel method of hybrid classification based on Artificial
Fish Swarm (AFS) and Artificial Bee Colony (ABC) algorithms. The authors utilized
Correlation-based Feature Selection (CFS) and Fuzzy C-Means Clustering (FCM) to filter
unnecessary features and to classify training data sets and evaluated their proposed model
on the UNSW-NB15 and NSL-KDD data sets.

3. Material and Methods
3.1. Bat Algorithm

BA is a metaheuristic algorithm inspired by nature, proposed by Yang [67]. The mi-
crobats’ property of echolocation is utilized in this algorithm used by microbats when
searching for prey and handling hurdles faced in darkness. Microbats send quite loud
pulses during searching prey, and these pulses start becoming quieter with an increase
in distance.

Theories of the natural behavior of microbat are expressed as a method of optimization
to propose BA. Every bat settles its velocity and location depending upon the mutual
exclusivity of microbats close to prey to locate the accurate trajectory from their existing
location, as illustrated in Figure 1.

Figure 1. Trajectory of bats during the searching process.

To systematize the terms, Reference [67] proposed the following theories related to
artificial bats.

Electronics 2021, 10, 1341 7 of 24

1. Every micro bat estimates the distance within their surroundings and prey by utilizing
its property of echolocation.

2. Frequency of fixed range is utilized to find a micro bat’s velocity v′ i from location x′ i
beside distinct loudness A′o and distinct wavelength λ while searching for prey.

3. Emission pulse rate r′ ∈ [0, 1] can be utilized to adjust the frequency of its pulses
while estimating distance among prey and microbat.

4. Loudness will be migrated from a considerable positive value A′o to a smaller value
A′min.

Conventional BA comprises the following six steps:
Step 1: The bat parameters and the population are initialized. The global optimization

function is expressed as follows:

min/ max{ f
(
x′
)
|x′ ∈ X} (1)

The objective function f ′(x) is utilized to estimate solution x′ = (x′1, x′2, ..., x′d), the
length demonstrated by d.

The following steps are followed for initialization of the BA parameters:

1. N denotes the number of locations of the artificial bat.
2. F′min is used to denote minimum frequency, while F′max is used to denote maxi-

mum frequency.
3. Every bat’s velocity vector is represented by v′ j.
4. Rate of loudness is denoted by A′ j.
5. Pulse rate is denoted by r′ j.
6. Every bat’s initial pulse rate is denoted by r′0j .
7. α and β are two constants.
8. £ is used to denote a range of bandwidth.

Step 2: Bat population memory is initialized. BM is used to stores vectors of bat
location. The following steps are followed to generate those vectors randomly as expressed
in Equation (2):

x
′ j
i = LBi + (UBi − LBi) ? (0, 1) (2)

BM is then used to store those solutions while arranging values of objective function
in ascending order.

BM = |

x
′1
1 x

′1
2 . . . x

′1
d

x
′2
1 x

′2
2 . . . x

′2
d

: : . . . :
x
′N
1 x

′N
2 . . . x

′N
d

| (3)

Step 3: Regeneration of current population of bat.
Three operators are used to reconstruct every bat’s location; these operators are

selection, diversification, and intensification. While applying the intensification operator, a
new location x′ j of the bat is created as follows:

F′j = F′min +
(

F
′
min − F

′
max

)
∗ (0, 1) (4)

v
′ j
i = vj

i +
(

x
′ j
i − x

′Gbest
i

)
∗ F

′
j (5)

x
′′ j
i = x

′ j
i + v

′ j
i (6)

While applying diversification operator, a local strategy of searching is used to create
the new location of the bat. Consequently, the latest location x′ j is obtained as follows:

x
′′ j
i = x

′best
i + ∈ A′j (7)

Electronics 2021, 10, 1341 8 of 24

x′j ←
{

x′best+ ∈ A
′
j U

′
(0, 1) > r′j

x′j + v′j otherwise

}
(8)

While applying a selection operator, the current location of bat is replaced with a new

location of bat and updates x′Gbest in the case f (x
′′ j
i) < f (x

′Gbest
i).

r′j = r
′0
j

(
1− e‘(−γ∗)

)
(9)

A
′
j = αA

′
j (10)

A
′itr
j → 0, r

′itr
j → r

′ j
0 , whereitr → ∞ (11)

Step 4: Stopping criteria.
The previous step is iterated until the criteria of termination are met. A pseudo code

for standard BA is presented in Algorithm 1.

Algorithm 1 Pseudo code for standard BA.
1: Sensor with rich RSSI value
2: for j = 1 to N do
3: for i = 1 to d do
4: x

′ j
i = LBi + (UBi − LBi) ? (0, 1)

5: end for
6: end for
7: Calculate x′Gbest, where Gbest ∈ (1, 2,,N),
8: while itr<Total Iterations do
9: for j = 1 to N do

10: F′j = F′min +
(

F
′
min − F

′
max

)
∗ (0, 1)

11: for i = 1 to d do
12: v

′ j
i = vj

i +
(

x
′ j
i − x

′Gbest
i

)
∗ F

′
j

13: x
′′ j
i = x

′ j
i + v

′ j
i

14: end for
15: if U

′
(0, 1)> r′ j then

16: for i = 1 to d do
17: x

′′ j
i = x

′best
i + ∈ A′j

18: end for
19: end if
20: if U

′
(0, 1)> A′ j and f (x

′′ j
i) < f (x

′Gbest
i) then

21: x′ j = x′
′ j

22: f ′(x′ j) = f ′(x′
′ j)

23: A′ j = αA′ j
24: r′j = r

′0
j

(
1− e‘(−γ∗)

)
25: end if
26: end for
27: Update x

′Gbest, Gbest ∈ (1, 2,, N)
28: end while

Deep Artificial Neural Networks (DNN)

An artificial neuron comprises interconnected processing units responsible for pro-
cessing in parallel and assigns inputs to the required outputs. The output gained from the
artificial neuron is illustrated as Equation (12). The DNN model consists of the following
layers: output layer, hidden layers, and input layer.

Electronics 2021, 10, 1341 9 of 24

y′ i = f ′ i

(
n

∑
i=1

w′ i.j . x′ i + β′ i

)
(12)

Every neuron receives a signal from any environment. A weight w′ i.j is linked
with each input signal x′ i. The output signal y′ i is computed by the environment. In
Equation (12), the node’s output is denoted by y′ i, the node’s ith input is denoted by x′ i,
weight among input and node are denoted by w′ ij, the node’s bias is denoted by β′ i, and
the activation function of the node is expressed by f ′ i. Generally, the node’s activation
function is a function of nonlinear nature, such as Gaussian function, sigmoid function,
and Heaviside function. The output layer comprises a single neuron concerning each class.

To train neural networks by utilizing a meta-heuristic algorithm, three methods are
available. In the first one, algorithms are utilized to gain a mixture of biases and weights
that contribute the least MSE. Secondly, an appropriate structure for a given problem is
found by utilizing algorithms. Thirdly, the gradient-based learning algorithm’s parameters
such as momentum and learning rate are adjusted by utilizing a meta-heuristic algorithm.
Figure 2 demonstrates the DNN with one hidden layer.

Figure 2. Sample neural network architecture with one hidden layer.

For swarm and evolutionary-based algorithms, the process of adaption is inter-
preted into an appropriate illustration of termination condition, DNN weights, and fitness
function.

3.2. Local-Global Best Bat Algorithm (LGBA-NN)

Instant detection increases network security by speeding up alerts and by disconnect-
ing compromised IoT devices from the network, preventing the botnet from spreading and
preventing further attacks. In related work, several metaheuristics methods for detecting
botnet attacks have been developed. The major problem in the metaheuristic algorithms
used for botnet attack detection is premature convergence and low diversity.

A lack of diversity is usually the cause of premature convergence. The extent that
changes, i.e., the variety of diverse solutions in the population and how specific they are, is
measured by low diversity (distance between alternative solutions). Researchers have tried
to propose new variants with the latest features in the last decade, but they all have the
same advantages, such as achieving the global best optimum, and the same disadvantages,
such as premature convergence and low diversity. To overcome this issue, we propose three
modifications in the proposed LGBA-NN before use as an optimizer in the neural network.

Electronics 2021, 10, 1341 10 of 24

The first modification includes robust population initialization of bats through Gaussian
distribution. The proposed population initialization helps the bat’s solution obtain enough
divers for generating robust offsprings. Secondly, the proposed BA adopts the local-global
best-based inertia weight to update the swarm’s entire bat’s velocity. Lastly, the local search
mechanism is proposed and follows the Gaussian density function and local-global best
function to achieve better exploration during each generation.

3.2.1. Gaussian Distribution

For a real-valued random variable, a Gaussian distribution is a form of the variable
stochastic process. The probability density function’s general form is as follows:

f (x) =
1

ρ
√

2π
e−

1
2

(a−σ)
ρ

2

(13)

In the above equation, the mean or expectation of the distribution (and its mode and
median) is denoted by σ, while the standard deviation is shown as ρ. The distribution’s
variance is ρ2. A normal deviate is a random variable that has a Gaussian distribution and
is normally distributed.

A Gaussian function is as follows:

f (x) = x× e

(
− (a−y)

2z2
2
)

(14)

For nonzero z and arbitrary real constants x and y, a Gaussian’s graph has a distinctive
differential “bell curve” form. The intensity of the curve’s edge is controlled by the
parameter x, the direction of the peak’s centre is controlled by the parameter y, and the
width of the “bell” is controlled by the parameter z (the standard deviation, also known as
the Gaussian Root Mean Square (RMS) width).

When combining an exponential function with a concave quadratic function, it forms
a function:

f (x) = (α + βy + γ) (15)

where α = −0.5/c2, β = b/c2 and γ = 0.5(Log(a−b2)
c2)

3.2.2. LGBA-NN Steps

The proposed architecture of LGBA-NN is presented in Figure 3.

Figure 3. Proposed architecture of Local-Global best Bat Algorithm for Neural Network (LGBA-NN).

Electronics 2021, 10, 1341 11 of 24

The following are the steps adopted in the proposed LGBA-NN.

1. Initialize the bat population using the Gaussian distribution over internal [0, 1]. The
Gaussian density function ensures the diverse locations of each bat in the multidi-
mensional search space. If any two corresponding vectors obtain the same initial
solution, the Gaussian density function produces a diversity effect in the second
generation. The following equation can be used to initialize the population using
Gaussian distribution.

x
′G
i = LBi + (UBi − LBi) ∗ Gauss(0, 1) (16)

where x
′G
i represents each individual gained initial location using Gaussian distribu-

tion over jth dimension. LBi indicates the lower bound, which is set to 0, and UBi
shows the upper bound with 1 maximum value. Gauss(0, 1) represents the Gaussian
density function used to generate random numbers following Gaussian distribution
over the interval of [LBi, UBi]. Normal distribution starts with a random guess if
the bats have any prior knowledge about the solution. However, Gaussian distribu-
tion disregards previous experience about the solution. This phenomenon tends to
produce a rich diversity in the initial solution of the population.

2. The second modification includes the local-global best inertia weight to accelerate
each bat’s velocity during the exploration process. In standard BA, the velocity of
each bat is updated without inertia weight acceleration. In general, significant inertia
weight is recommended for the initial stages of the quest process to improve global
exploration (searching for new areas). However, the inertia weight is decreased for
local exploration in the later stages (fine-tuning the current search area).
The proposed local-global best inertia weight effect can be produced by taking a
significant difference in local best solution of the current swarm with the global best
solution of all multitude in the multidimensional search space. This phenomenon
supports the convergence process to be robust enough in terms of exploration; if
the current generation gained two same fitness values, the proposed inertia weight
uses both solutions to decide the bat’s next location towards the global optimum.
Local-global best inertia weight can be defined using the following equation.

WLG =

Gauss(0, 1) ∗
x
′ j
i

x′Gbest
i

 (17)

where x
′ j
i indicates the local best solution of current swarm and x

′Gbest
i expresses the

global best solution of all the swarms in the population.
LGBA-NN updates the bats velocity through following equation.

v
′LG
i = WLG ∗ vj

i +
(

x
′ j
i − x

′Gbest
i

)
∗ F

′
j (18)

WLG is local-global best inertia weight; vj
i indicates the previous velocity of current

individual, where x
′ j
i is current position of ith bat; and x

′Gbest
i expresses the global

best solution of all swarms in the population. F′ j shows frequency of the ith bat in the
multi-dimensional search space.

3. In the third modification, we updated the local search mechanism, which uses the
Gaussian density function and local-global best function to achieve better exploration
during each generation. During the local searching process, each bat’s current fitness
was evaluated and compared with each bat’s previous fitness; however, in standard
BA, the local search mechanism missed the local and global best solution during the
last generation. In the previous generation, if any bat has a global fitness greater than
the global fitness of bats in the next generation, then the algorithm needs to retain
the last global best fitness. We tackled this issue by introducing the Gaussian density

Electronics 2021, 10, 1341 12 of 24

function and local-global best function to achieve better exploration during each
generation. Local-global best function retained the difference between previous local
and global best. LGBA will check the difference between local and global best fitness;
check if it is minimal, smaller than the current fitness; and retains the best optimum
solution. LGBA uses the following equation to update the local search manner.

x
′′LG
i = Gauss(0, 1) ∗ v

′LG
i − x

′best
i ∈ 0.001 ∗ A′ j (19)

where Gauss(0, 1) represents the accelerated sequence generated through Gaussian
distribution, v

′LG
i indicates the local-global best function retaining the difference

between the previous local and global best, where 0.001 is the scaling factor used to
balance the exploitation during local search.
The pseudo code for proposed LGBA-NN is given in Algorithm 2.

4. In the last modification, LGBA is further employed in the neural network for hy-
perparameter tuning and weight optimization to classify ten different botnet attacks
with an additional one benign target class. A weight w′ i.j is linked with each input

signal x′ i following the optimal solution x′LG
i . The output signal y′ i is then fed to

the classifier for the prediction. For weight optimization of LGBA-NN, we used the
following equation.

wLG
i.j = x

′′LG
i + w′ i.j (20)

Algorithm 2 Pseudo code for the proposed LGBA-NN.
1: Sensor with rich RSSI value
2: for j = 1 to N do
3: for i = 1 to d do
4: Use Equation (16) for population initialization
5: end for
6: end for
7: Calculate x′Gbest, where Gbest ∈ (1, 2,,N),
8: while itr<Total Iterations do
9: for j = 1 to N do

10: F′j = F′min +
(

F
′
min − F

′
max

)
∗ (0, 1)

11: for i = 1 to d do
12: Use Equation (18) to update velocity of each bat

13: x
′′ j
i = x

′ j
i + v

′ j
i

14: end for
15: if U

′
(0, 1)> r′ j then

16: for i = 1 to d do
17: Use Equation (19) to obtain local best solution.
18: end for
19: end if
20: if U

′
(0, 1)> A′ j and f (x

′′ j
i) < f (x

′Gbest
i) then

21: x′ j = x′
′ j

22: f ′(x′ j) = f ′(x′
′ j)

23: A′ j = αA′ j
24: r′j = r

′0
j

(
1− e‘(−γ∗)

)
25: end if
26: end for
27: Update x

′Gbest, Gbest ∈ (1, 2,, N)
28: end while

Electronics 2021, 10, 1341 13 of 24

wLG
i.j shows the optimal weights obtained by LGBA and can further be used in the

DNN as follows:

y′ i = f ′ i

(
n

∑
i=1

wLG
i.j . x′ i + β′ i

)
(21)

For hyperparameter optimization, LGBA-NN used x′LG
i as an optimizer instead of

other optimizers such as Adam and SGD.

3.3. Data Set Description

The proposed LGBA-NN was tested on an N-BaIoT data set with extensive real traffic
data with benign and Malicious target classes. The N-BaIoT data set addresses the lack
of publicly available botnet data sets, specifically for IoT technology. It shows accurate
traffic data from 9 commercial IoT devices that have been infected with Gafgyt and Mirai.
Gafgyt is considered one of the most well-known IoT botnets, and therefore, its script
and activities have been replicated in other IoT malware. The botnet attacks IoT devices
running on Linux by brute-forcing devices’ default credentials while using open Telnet
ports to launch an attack. N-BaIoT is a multivariate sequential data set with a total of
115 real value features. N-BaIoT is publically available at [68]. A data set description with
a total number of target classes and the number of total instances in that class is given in
Table 2.

Table 2. Data set description with the total number of target classes and the number of total instances.

Sr# Target Class Number of Instances

1 Mirai udpplain 15,304

2 Mirai udp 15,625

3 Mirai syn 16,436

4 Mirai scan 14,517

5 Mirai ack 15,138

6 Gafgyt udp 15,602

7 Gafgyt tcp 15,676

8 Gafgyt scan 14,648

9 Gafgyt junk 15,449

10 Gafgyt combo 15,345

11 Benign 15,538

12 Total 7,062,606

3.4. Evaluation Metrics

We used four performance measures to evaluate the performance of LGBA-NN. These
evaluation metrics include precision, recall, f1-score, and support.

The recall is calculated by dividing the number of true positives by the number of
false negatives plus true positives. True positives are independent variables that the LGBA-
NN classifies as positive but are actually positive. While false negatives are independent
variables that LGBA-NN classify as negative but are truly positive. Recall can be defined
as follows:

Recall =
True Positives

False Negatives + True Positives
(22)

Electronics 2021, 10, 1341 14 of 24

Precision is calculated by dividing the number of true positives by the number of false
positives plus true positives. False positives are independent variables that the LGBA-NN
classifies as positive but are actually negative. Precision can be defined as follows:

Precision =
True Positives

False Positives + True Positives
(23)

F1 score is the harmonic mean of precision and recall:

F1 − score = 2 ∗ Precision ∗ Recall
Precision + Recall

(24)

4. Results and Discussion

Devices are usually equipped to classify based on expert labels in deep learning
applications. LGBA-NN, on the other hand, has been trained to identify unusual behavior.
As a result, LGBA-NN can detect previously unknown botnet behaviors, which is critical
given the ever-evolving variants that render most detection methods obsolete. The IoT
domain is too complicated compared to traditional computing environments. LGBA-NN,
on the other hand, tackles the growing complexity of Smart nodes by evaluating each
system against other botnet attack target groups. The traffic data of all linked hosts are
supposed to be tracked in the enterprise scenario. Nonetheless, the volume of controlled
traffic is too high to store and use for in-depth neural network training. To remove features,
LGBA-NN employs systematic statistics. LGBA-NN training is available remotely. As a
result, learning is useful and there is no need to be concerned about storage. Furthermore,
since LGBA-NN is network-based, it consumes no computing memory from IoT devices
typically constrained. As a result, LGBA-NN does not negatively impact its operation.

To the best of our knowledge, no one has previously applied optimized BA to an
IoT network traffic for detecting ten botnet attacks. Therefore, we are still short on other
variants to compare for a fair comparison of the state-of-the-art algorithms’ current state.
Furthermore, optimized BA has not been used as highly autonomous independent malware
detectors in the broader domain of network traffic, instead of as intermediate devices with
either object training or feature extraction or as semimanual anomaly indicators that rely
heavily on human labeling for further examination by intelligence analysts.

We divided the experimental configuration into five phases. Firstly, the experiments
were enriched with a neural network and no hyperparameter optimization; secondly, we
added the Gaussian noise layer in the neural network to check the Gaussian effect on
the classifier’s performance. A performance evaluation of the neural network without
hyperparameter optimization using ten attack types and one benign target class is given in
Table 3. Similarly, a performance evaluation of the neural network without hyperparameter
optimization and with Gaussian noise addition using ten attack types and one benign
target class is presented in Table 4.

In the third phase, the Gaussian noise layer was extracted and the neural network
dropout layer was added for further analysis of neural network behavior on the multi-
class problem. Table 5, expressing the results, was obtained using the neural network
without hyper-parameter optimization and with neural network layer dropout using
ten attack types and one benign target class. After that, we merged both the Gaussian
noise and neural network dropout layers without hyper-parameter optimization. Table 6
shows comparative results of the neural network without hyper-parameter optimization
and with neural network layer dropout and Gaussian noise addition using ten attack
types and one benign target class. Lastly, we evaluated LGBA-NN with hyper-parameter
optimization. Since there are many other NN optimization methods proposed in the related
work. Therefore, for a more thorough comparison, we included some other recent NN
optimizers such as BA-NN and PSO-NN. The performance evaluations of BA-NN and
PSO-NN using 10 attack types and 1 benign target class are presented in Tables 7 and 8. A

Electronics 2021, 10, 1341 15 of 24

comparative evaluation of the proposed LGBA-NN using ten attack types and one benign
target class is given in Table 9.

Table 3. Performance evaluation of the neural network without hyperparameter optimization using
10 attack types and 1 benign target class.

Attack Type Precision Recall F1-Score Support

Benign 0.9957 0.9724 0.9839 3882

Gafgyt_combo 0 0 0 3787

Gafgyt_junk 0.4977 0.9966 0.663898 3850

Gafgyt_scan 0.9975 0.9791 0.9882 3700

Gafgyt_tcp 0 0 0 3892

Gafgyt_udp 0.5089 0.9990 0.6743 4044

Mirai_ack 0.9974 0.3173 0.4814 3766

Mirai_scan 0.9806 0.9930 0.9868 3614

Mirai_syn 0.9885 0.9955 0.992068 4083

Mirai_udp 0.6545 0.9992 0.7909 3861

Mirai_udpplain 0.8714 0.9903 0.9271 3841

Average 0.6791 0.7510 0.6806 42,320

In terms of true positives, false negatives, true negatives, and false positives, for the
most part, the LGBA-NN demonstrated dominance. Deep architectures’ ability to learn
variational structure representation and to estimate complex functions is likely to be the
reason for this. The confusion matrix obtained through the neural network without hyper-
parameter optimization and with Gaussian noise addition using ten attack types and one
benign target class is presented in Figure 4a.

Table 4. Performance evaluation of the neural network without hyperparameter optimization and
with Gaussian noise addition using 10 attack types and 1 benign target class.

Attack Type Precision Recall F1-Score Support

Benign 0.9845 0.9976 0.9910 3828

Gafgyt_combo 0.5627 0.9513 0.7071 3846

Gafgyt_junk 0.8509 0.2729 0.4133 3913

Gafgyt_scan 0.9991 0.9848 0.9919 3636

Gafgyt_tcp 0.4997 1 0.666437 3867

Gafgyt_udp 0 0 0 3861

Mirai_ack 0.9946 0.9751 0.9847 3619

Mirai_scan 0.9913 0.9980 0.9947 3672

Mirai_syn 0.6814 0.9944 0.8087 4173

Mirai_udp 0.9783 0.9970 0.9875 4025

Mirai_udpplain 1 0.4961 0.663221 3880

Average 0.7733 0.7862 0.7432 42,320

LGBA-NN can minimize the loss of initiated attacks if the classification of attack-
related abnormalities automatically and directly causes exclusion of the compromised IoT
system from the network. Variation in loss during the training of neural networks without
hyperparameter optimization is visualized in Figure 5a.

Electronics 2021, 10, 1341 16 of 24

Furthermore, LGBA-NN cannot comprehend trivial identity mapping due to the
restricted uncertainty imposed by the feature space in the hidden layers. As a result,
LGBA-NN suits more common characteristics than unique ones. This is advantageous
for IoT devices because their functionality usually is task-oriented, translating into a few
standard traffic patterns. Variation in loss during the training of neural network without
hyper-parameter optimization and with neural network layer dropout and LGBA-NN
is visualized in Figure 5b,c. The confusion matrices obtained through a neural network
without hyperparameter optimization and with neural network layer dropout, Gaussian
noise addition, and LGBA-NN using ten attack types and one benign target class are
illustrated in Table 9 and Figure 4c.

Table 5. Performance evaluation of the neural network without hyperparameter optimization and
with neural network layer dropout using 10 attack types and 1 benign target class.

Attack Type Precision Recall F1-Score Support

Benign 0.9856 0.9977 0.9916 3919

Gafgyt_combo 0 0 0 3854

Gafgyt_junk 0.4959 0.9984 0.662748 3840

Gafgyt_scan 0.9991 0.9866 0.9928 3594

Gafgyt_tcp 0.4908 1 0.658513 3823

Gafgyt_udp 0 0 0 3954

Mirai_ack 0.9676 0.9674 0.9675 3805

Mirai_scan 0.9994 1 0.999724 3628

Mirai_syn 1 0.9990 0.999523 4192

Mirai_udp 0.9921 0.9687 0.9803 3907

Mirai_udpplain 0.9877 0.9994 0.9935 3804

Average 0.7175 0.8080 0.7472 42,320

Table 6. Performance evaluation of the neural network without hyperparameter optimization and
with neural network layer dropout and Gaussian noise addition using 10 attack types and 1 benign
target class.

Attack Type Precision Recall F1-Score Support

Benign 1 0.9770 0.988372 3828

Gafgyt_combo 0.7183 0.7771 0.7465 3846

Gafgyt_junk 0.7571 0.7009 0.7279 3913

Gafgyt_scan 0.9988 0.9898 0.994336 3636

Gafgyt_tcp 0.4994 0.9997 0.6660 3867

Gafgyt_udp 0 0 0 3861

Mirai_ack 0.8986 0.9361 0.917039 3619

Mirai_scan 0.9975 0.9989 0.9982 3672

Mirai_syn 0.9855 0.98130 0.9834 4173

Mirai_udp 0.9817 0.9085 0.9437 4025

Mirai_udpplain 0.9401 0.9994 0.9688 3880

Average 0.7973 0.8417 0.8114 42,320

Electronics 2021, 10, 1341 17 of 24

Table 7. Performance evaluation of BA-NN using 10 attack types and 1 benign target class.

Attack Type Precision Recall F1-Score Support

Benign 0.987098 0.997699 0.99237 3911

Gafgyt_combo 0.989165 0.576276 0.72827 3802

Gafgyt_junk 0.705972 0.986229 0.822892 3776

Gafgyt_scan 0.942328 0.971896 0.956884 3665

Gafgyt_tcp 0 0 0 3903

Gafgyt_udp 0.498015 0.999486 0.664786 3891

Mirai_ack 0.967891 0.993147 0.980356 3794

Mirai_scan 0.974434 0.999727 0.986918 3660

Mirai_syn 0.979914 0.989377 0.984623 4142

Mirai_udp 0.999735 0.967444 0.983325 3901

Mirai_udpplain 0.993208 0.943484 0.967708 3875

Average 0.820524 0.855931 0.823409 42,320

Table 8. Performance evaluation of Particle Swarm Optimization (PSO)-NN using 10 attack types
and 1 benign target class.

Attack Type Precision Recall F1-Score Support

Benign 0.999741 0.987983 0.993827 3911

Gafgyt_combo 0.989529 0.546817 0.704388 3802

Gafgyt_junk 0.692265 0.981197 0.811788 3776

Gafgyt_scan 0.998088 0.997271 0.99768 3665

Gafgyt_tcp 0.498722 0.999744 0.665473 3903

Gafgyt_udp 0 0 0 3891

Mirai_ack 0.925917 0.991566 0.957617 3794

Mirai_scan 0.955103 0.999727 0.976906 3660

Mirai_syn 0.970912 0.958957 0.964897 4142

Mirai_udp 0.997233 0.923866 0.959148 3901

Mirai_udpplain 0.989022 0.999742 0.994353 3875

Average 0.818607 0.852457 0.819568 42,320

Table 9. Performance evaluation of the proposed LGBA-NN using 10 attack types and 1 benign
target class.

Attack Type Precision Recall F1-Score Support

Benign 0.9986 0.9973 0.9980 3828

Gafgyt_combo 0.9994 0.8855 0.9390 3846

Gafgyt_junk 0.8992 0.9987 0.9463 3913

Gafgyt_scan 0.9964 0.9991 0.9978 3636

Gafgyt_tcp 0 0 0 3867

Gafgyt_udp 0.4988 0.9989 0.6654 3861

Mirai_ack 0.9969 0.9969 0.99696 3619

Mirai_scan 0.9983 0.9972 0.9978 3672

Mirai_syn 0.9992 0.9988 0.9990 4173

Mirai_udp 0.9982 0.9987 0.9985 4025

Mirai_udpplain 0.9989 0.9989 0.9989 3880

Average 0.8523 0.9 0.8664 42,320

Electronics 2021, 10, 1341 18 of 24

(a)

(b)

(c)
Figure 4. Confusion matrix of (a) the neural network without hyperparameter optimization and
with Gaussian noise addition, (b) the neural network with hyperparameter optimization and with
neural network layer dropout, and (c) the proposed LGBA-NN using 10 attack types and 1 benign
target class.

Electronics 2021, 10, 1341 19 of 24

(a)

(b)

(c)
Figure 5. Comparison of loss during training: (a) the neural network without hyperparameter
optimization, (b) that without hyperparameter optimization and with neural network layer dropout,
and (c) proposed LGBA-NN.

Electronics 2021, 10, 1341 20 of 24

Analysis

Each type of botnet attack activity’s uniformity can be applied appropriately to perfor-
mance measures. An integrated platform with a high degree of traffic predictability can
highlight any unusual behavior, increasing recall while decreasing precision. We extracted
static and dynamic attributes from the training set for empirical validation, and we used
NN to examine the impact of these attributes on the average recall and precision obtained
by five NN configurations on the test set.

From Table 3, it can be observed that the neural network shows a higher precision rate
of 0.9957 and a higher recall rate of 0.9724 for the benign class. However, regarding botnet
attacks, identification neural network fails to deliver a low false-positive rate. Standard
CNN without hyperparameter optimization obtained a low precision rate, which means the
classifier identified both types of botnet attacks with ten target classes as benign instances
at a higher rate. Similarly, a higher mean recall rate recorded for neural networks without
hyperparameter optimization shows the ability of the neural network to classify benign
samples as malicious botnet attacks, hence decreasing the false-negative rate.

Adding Gaussian noise layer to the neural network without hyperparameter opti-
mization using LGBA slightly improved the average precision rate (see Table 4). However,
the average recall rate’s net impact compared to the neural network without the Gaussian
noise layer is the same. This variant obtained a maximum precision rate of 0.9974 and a
minimum recall rate of 0.3173 for the “Mirai ack” target class. As opposed to this, a neural
network with a Gaussian noise layer failed to gain a low false-positive rate for the “Gafgyt
udp” target class with a minimum precision rate of 0.5089 and a maximum recall rate
of 0.9990.

Similarly, removing the Gaussian noise layer and adding a neural network dropout
layer to the neural network without hyperparameter optimization using LGBA insignif-
icantly increased the average precision rate (referred to Table 5). However, the average
recall rate’s net impact correlated to the neural network with the Gaussian noise layer is
identical. This modification achieved a maximum precision rate of 1.00 and a maximum
recall rate of 0.9990 for the “Mirai syn” target classes. This indicates that the false-positive
and false-negative rates are approximately 0 for that particular target class. As opposed to
this, adding a neural network dropout layer failed to gain a low false-positive rate for the
“Gafgyt udp” and “ Gafgyt combo” target classes with a minimum precision rate of 0.00
and minimum recall rate of 0.00.

From Table 6, it can be observed that a neural network without hyperparameter
optimization and with neural network layer dropout and Gaussian noise addition bestows
a more maximum precision rate of 0.9994 and a higher recall rate of 1.00 for the “Mirai
scan” class. Nevertheless, concerning “Gafgyt udp” and “Gafgyt combo,” the variant fails
to deliver a low false-positive rate.

From Table 7, it can be perceived that the BA-NN confers a higher average recall rate
of 0.855931 and a lower precision rate of 0.820524. However, BA-NN failed to obtain a
low false-positive rate for the “Gafgyt tcp” target class with a minimum precision rate
of 0.00 and a minimum recall rate of 0.00. Referring to Table 8, PSO-NN obtained a high
precision rate for all target classes except “Gafgyt tcp” and “Gafgyt udp” with 0.498 and
0.00 respectively. However, both variants BA-NN and PSO-NN achieved higher accuracy
compared to the non-optimziation version of the experimental results.

The proposed LGBA-NN (refer to Table 9) managed to overcome the effects of each
botnet attack detection except the “Gafgyt tcp” botnet attack class. We can observe that
LGBA-NN obtained a low false-negative rate as it misclassified only 10% of its negative
instances. However, it still had a 15% false-positive rate, indicating the complexity of
multi-class dimensionality. The proposed LGBA-NN received a maximum precision rate
of 0.998969 and a maximum recall rate of 0.9989 for the “Mirai udpplain” target classes.
Compared to all neural networks, LGBA-NN shows a maximum accuracy of 90%, with the
lowest misclassification rate for all target classes. The loss curves and confusion matrix
presented in Figures 4 and 5c also confirm the superiority of the proposed LGBA-NN over

Electronics 2021, 10, 1341 21 of 24

other variants of the neural network, as LGBA-NN (90% accuracy) outperformed BA-NN
(85.5% accuracy) and PSO-NN (85.2% accuracy).

5. Conclusions

To reduce the risk associated with IoT devices, it is essential to identify DDoS attacks
in advance. Early DDoS attack identification improves network security by speeding up
the process of disconnecting compromised IoT devices from the network, preventing the
botnet from spreading and preventing additional attacks. In this research, LGBA-NN was
proposed to accumulate both feature subsets and hyperparameters for efficient botnet
detection based on data from 9 commercial IoT devices that were authentically infected
by two botnets: Gafgyt and Mirai. The proposed BA uses local-global best-based inertia
weight to update the swarm’s entire bat’s velocity. To tackle with swarm diversity of BA, we
proposed Gaussian distribution used in the population initialization. Furthermore, the local
search mechanism was enhanced by the Gaussian density function and local-global best
function to achieve better exploration during each generation. The proposed LGBA-NN
was put to the test on the N-BaIoT data set, which includes a large amount of real-time
traffic data for both benign and malicious target groups. We evaluated the proposed
LGBA-NN by comparing the performance with several configurations of a non-optimized
version of neural networks and some recent variants of optimized neural networks such as
PSO-NN and BA-NN. The experimental results proved that LGBA-NN is superior over
other recent algorithms.

In future work, we intend to extend the optimization of neural networks using the bat
algorithm to other evolutionary models such as differential evolution algorithm, genetic
algorithm, and particle swarm optimization.

Author Contributions: Conceptualization, A.A. and W.A.; methodology, A.A., W.A., and H.A.;
software, H.T.R.; validation, H.T.R. and R.D.; writing—original draft preparation, A.A., W.A., and
H.A.; writing—review and editing, H.T.R. and R.D.; visualization, H.T.R.; supervision, R.D.; funding
acquisition, A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Taif University Researchers Supporting Project under grant
number TURSP- 2020/231, Taif University, Taif, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data set used for this study is publicly available at [68].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vasilomanolakis, E.; Karuppayah, S.; Mühlhäuser, M.; Fischer, M. Taxonomy and Survey of Collaborative Intrusion Detection.

ACM Comput. Surv. 2015, 47, 1–33. [CrossRef]
2. Hussain, B.; Du, Q.; Sun, B.; Han, Z. Deep Learning-Based DDoS-Attack Detection for Cyber-Physical System over 5G Network.

IEEE Trans. Ind. Inform. 2021, 17, 860–870. [CrossRef]
3. de Assis, M.V.O.; Carvalho, L.F.; Rodrigues, J.J.P.C.; Lloret, J.; Proença, M.L., Jr. Near real-time security system applied to SDN

environments in IoT networks using convolutional neural network. Comput. Electr. Eng. 2020, 86, 106738. [CrossRef]
4. Manimurugan, S.; Al-Mutairi, S.; Aborokbah, M.M.; Chilamkurti, N.; Ganesan, S.; Patan, R. Effective attack detection in internet

of medical things smart environment using a deep belief neural network. IEEE Access 2020, 8, 77396–77404. [CrossRef]
5. Rehman Javed, A.; Jalil, Z.; Atif Moqurrab, S.; Abbas, S.; Liu, X. Ensemble Adaboost classifier for accurate and fast detection of

botnet attacks in connected vehicles. Trans. Emerg. Telecommun. Technol. 2020. [CrossRef]
6. Lee, S.; Abdullah, A.; Jhanjhi, N.; Kok, S. Classification of botnet attacks in IoT smart factory using honeypot combined with

machine learning. PeerJ Comput. Sci. 2021, 7, 1–23. [CrossRef]
7. Perez, M.G.; Celdran, A.H.; Ippoliti, F.; Giardina, P.G.; Bernini, G.; Alaez, R.M.; Chirivella-Perez, E.; Clemente, F.J.G.; Perez, G.M.;

Kraja, E.; et al. Dynamic Reconfiguration in 5G Mobile Networks to Proactively Detect and Mitigate Botnets. IEEE Internet
Comput. 2017, 21, 28–36. [CrossRef]

8. Wei, W.; Woźniak, M.; Damaševičius, R.; Fan, X.; Li, Y. Algorithm Research of Known-plaintext Attack on Double Random Phase
Mask Based on WSNs. J. Internet Technol. 2019, 20, 39–48.

http://doi.org/10.1145/2716260
http://dx.doi.org/10.1109/TII.2020.2974520
http://dx.doi.org/10.1016/j.compeleceng.2020.106738
http://dx.doi.org/10.1109/ACCESS.2020.2986013
http://dx.doi.org/10.1002/ett.4088
http://dx.doi.org/10.7717/peerj-cs.350
http://dx.doi.org/10.1109/MIC.2017.3481345

Electronics 2021, 10, 1341 22 of 24

9. Yong, B.; Wei, W.; Li, K.; Shen, J.; Zhou, Q.; Wozniak, M.; Połap, D.; Damaševičius, R. Ensemble machine learning approaches for
webshell detection in Internet of things environments. Trans. Emerg. Telecommun. Technol. 2020. [CrossRef]

10. Chung, Y.Y.; Wahid, N. A hybrid network intrusion detection system using simplified swarm optimization (SSO). Appl. Soft
Comput. 2012, 12, 3014–3022. [CrossRef]

11. Ganapathy, S.; Kulothungan, K.; Muthurajkumar, S.; Vijayalakshmi, M.; Yogesh, P.; Kannan, A. Intelligent feature selection and
classification techniques for intrusion detection in networks: A survey. EURASIP J. Wirel. Commun. Netw. 2013, 2013, 1–16.
[CrossRef]

12. Aburomman, A.A.; Reaz, M.B.I. Review of IDS development methods in machine learning. Int. J. Electr. Comput. Eng. (IJECE)
2016, 6, 2432–2436. [CrossRef]

13. Bijalwan, A. Botnet Forensic Analysis Using Machine Learning. Secur. Commun. Netw. 2020, 2020, 9302318. [CrossRef]
14. Alothman, Z.; Alkasassbeh, M.; Al-Haj Baddar, S. An efficient approach to detect IoT botnet attacks using machine learning. J.

High Speed Netw. 2020, 26, 241–254. [CrossRef]
15. Damasevicius, R.; Venckauskas, A.; Grigaliunas, S.; Toldinas, J.; Morkevicius, N.; Aleliunas, T.; Smuikys, P. Litnet-2020: An

annotated real-world network flow dataset for network intrusion detection. Electronics 2020, 9, 800. [CrossRef]
16. Mahmood, T.; Afzal, U. Security analytics: Big data analytics for cybersecurity: A review of trends, techniques and tools. In

Proceedings of the 2013 2nd National Conference on Information Assurance (NCIA), Rawalpindi, Pakistan, 11–12 December
2013; pp. 129–134.

17. Cozzi, E.; Vervier, P.A.; Dell’Amico, M.; Shen, Y.; Bilge, L.; Balzarotti, D. The Tangled Genealogy of IoT Malware. In Proceedings
of the Annual Computer Security Applications Conference, Austin, TX, USA, 7–11 December 2020. [CrossRef]

18. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and Other Botnets. Computer 2017, 50, 80–84. [CrossRef]
19. Hoque, N.; Bhattacharyya, D.K.; Kalita, J.K. Botnet in DDoS Attacks: Trends and Challenges. IEEE Commun. Surv. Tutor. 2015,

17, 2242–2270. [CrossRef]
20. McDermott, C.D.; Majdani, F.; Petrovski, A.V. Botnet Detection in the Internet of Things using Deep Learning Approaches. In

Proceedings of the International Joint Conference on Neural Networks, Rio de Janeiro, Brazil, 8–13 July 2018; Volume 2018.
21. Koroniotis, N.; Moustafa, N.; Sitnikova, E. Forensics and Deep Learning Mechanisms for Botnets in Internet of Things: A Survey

of Challenges and Solutions. IEEE Access 2019, 7, 61764–61785. [CrossRef]
22. Yerima, S.Y.; Alzaylaee, M.K.; Shajan, A.; Vinod, P. Deep learning techniques for android botnet detection. Electronics 2021,

10, 519. [CrossRef]
23. Marir, N.; Wang, H.; Feng, G.; Li, B.; Jia, M. Distributed abnormal behavior detection approach based on deep belief network and

ensemble svm using spark. IEEE Access 2018, 6, 59657–59671. [CrossRef]
24. Azeez, N.A.; Ayemobola, T.J.; Misra, S.; Maskeliūnas, R.; Damaševičius, R. Network intrusion detection with a hashing based

apriori algorithm using Hadoop MapReduce. Computers 2019, 8, 86. [CrossRef]
25. Tuan, T.A.; Long, H.V.; Son, L.H.; Kumar, R.; Priyadarshini, I.; Son, N.T.K. Performance evaluation of Botnet DDoS attack

detection using machine learning. Evol. Intell. 2020, 13, 283–294. [CrossRef]
26. Kebande, V.R.; Venter, H.S. A cognitive approach for botnet detection using Artificial Immune System in the cloud. In Proceedings

of the 2014 Third International Conference on Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), Beirut, Lebanon, 29
April–1 May 2014; pp. 52–57.

27. Da, K. A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
28. Zeiler, M.D. Adadelta: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
29. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res.

2011, 12, 2121–2159.
30. Rauf, H.T.; Malik, S.; Shoaib, U.; Irfan, M.N.; Lali, M.I. Adaptive inertia weight Bat algorithm with Sugeno-Function fuzzy search.

Appl. Soft Comput. 2020, 90, 106159. [CrossRef]
31. Ullah, I.; Mahmoud, Q.H. A two-level flow-based anomalous activity detection system for IoT networks. Electronics 2020, 9, 530.

[CrossRef]
32. Dong, B.; Wang, X. Comparison deep learning method to traditional methods using for network intrusion detection. In

Proceedings of the 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN), Beijing, China,
4–6 June 2016; pp. 581–585.

33. Folorunso, O.; Ayo, F.E.; Babalola, Y. Ca-NIDS: A network intrusion detection system using combinatorial algorithm approach. J.
Inf. Priv. Secur. 2016, 12, 181–196. [CrossRef]

34. Deng, L. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inf. Process.
2014, 3, e2. [CrossRef]

35. Berman, D.S.; Buczak, A.L.; Chavis, J.S.; Corbett, C.L. A survey of deep learning methods for cyber security. Information 2019, 10,
122. [CrossRef]

36. Yilmaz, S.; Sen, S. Early Detection of Botnet Activities Using Grammatical Evolution. In Applications of Evolutionary Computation;
Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 395–404. [CrossRef]

37. Yu, Y.; Long, J.; Liu, F.; Cai, Z. Machine learning combining with visualization for intrusion detection: A survey. In Proceedings
of the International Conference on Modeling Decisions for Artificial Intelligence, Sant Julià de Lòria, Andorra, 19–21 September
2016; pp. 239–249.

http://dx.doi.org/10.1002/ett.4085
http://dx.doi.org/10.1016/j.asoc.2012.04.020
http://dx.doi.org/10.1186/1687-1499-2013-271
http://dx.doi.org/10.11591/ijece.v6i5.pp2432-2436
http://dx.doi.org/10.1155/2020/9302318
http://dx.doi.org/10.3233/JHS-200641
http://dx.doi.org/10.3390/electronics9050800
http://dx.doi.org/10.1145/3427228.3427256
http://dx.doi.org/10.1109/MC.2017.201
http://dx.doi.org/10.1109/COMST.2015.2457491
http://dx.doi.org/10.1109/ACCESS.2019.2916717
http://dx.doi.org/10.3390/electronics10040519
http://dx.doi.org/10.1109/ACCESS.2018.2875045
http://dx.doi.org/10.3390/computers8040086
http://dx.doi.org/10.1007/s12065-019-00310-w
http://dx.doi.org/10.1016/j.asoc.2020.106159
http://dx.doi.org/10.3390/electronics9030530
http://dx.doi.org/10.1080/15536548.2016.1257680
http://dx.doi.org/10.1017/atsip.2013.9
http://dx.doi.org/10.3390/info10040122
http://dx.doi.org/10.1007/978-3-030-16692-2_26

Electronics 2021, 10, 1341 23 of 24

38. Ahmed, A.A.; Jabbar, W.A.; Sadiq, A.S.; Patel, H. Deep learning-based classification model for botnet attack detection. J. Ambient.
Intell. Humaniz. Comput. 2020. [CrossRef]

39. Alauthman, M.; Aslam, N.; Al-kasassbeh, M.; Khan, S.; Al-Qerem, A.; Raymond Choo, K. An efficient reinforcement learning-
based Botnet detection approach. J. Netw. Comput. Appl. 2020, 150, 102479. [CrossRef]

40. Mazini, M.; Shirazi, B.; Mahdavi, I. Anomaly network-based intrusion detection system using a reliable hybrid artificial bee
colony and AdaBoost algorithms. J. King Saud Univ. Comput. Inf. Sci. 2019, 31, 541–553. [CrossRef]

41. Asadi, M.; Jabraeil Jamali, M.A.; Parsa, S.; Majidnezhad, V. Detecting botnet by using particle swarm optimization algorithm
based on voting system. Future Gener. Comput. Syst. 2020, 107, 95–111. [CrossRef]

42. Al Shorman, A.; Faris, H.; Aljarah, I. Unsupervised intelligent system based on one class support vector machine and Grey Wolf
optimization for IoT botnet detection. J. Ambient Intell. Humaniz. Comput. 2020, 11, 2809–2825. [CrossRef]

43. Lin, K.C.; Chen, S.Y.; Hung, J.C. Botnet Detection Using Support Vector Machines with Artificial Fish Swarm Algorithm. J. Appl.
Math. 2014, 2014, 1–9. [CrossRef]

44. Rajagopal, S.; Kundapur, P.P.; Hareesha, K.S. A stacking ensemble for network intrusion detection using heterogeneous datasets.
Secur. Commun. Netw. 2020, 2020, 4586875. [CrossRef]

45. Elmasry, W.; Akbulut, A.; Zaim, A.H. Evolving deep learning architectures for network intrusion detection using a double PSO
metaheuristic. Comput. Netw. 2020, 168, 107042. [CrossRef]

46. Dwivedi, S.; Vardhan, M.; Tripathi, S. Defense against distributed DoS attack detection by using intelligent evolutionary algorithm.
Int. J. Comput. Appl. 2020, 1–11. [CrossRef]

47. Suhaimi, H.; Suliman, S.I.; Musirin, I.; Harun, A.; Mohamad, R.; Kassim, M.; Shahbudin, S. Network intrusion detection system
using immune-genetic algorithm (IGA). Indones. J. Electr. Eng. Comput. Sci. 2020, 17, 1059–1065. [CrossRef]

48. Zhou, Y.; Mazzuchi, T.A.; Sarkani, S. M-AdaBoost—A based ensemble system for network intrusion detection. Expert Syst. Appl.
2020, 162, 113864. [CrossRef]

49. Wu, Z.; Wang, J.; Hu, L.; Zhang, Z.; Wu, H. A network intrusion detection method based on semantic re-encoding and deep
learning. J. Netw. Comput. Appl. 2020, 164, 102688. [CrossRef]

50. Injadat, M.; Moubayed, A.; Nassif, A.B.; Shami, A. Multi-Stage Optimized Machine Learning Framework for Network Intrusion
Detection. IEEE Trans. Netw. Serv. Manag. 2020. [CrossRef]

51. Almomani, O. A Feature Selection Model for Network Intrusion Detection System Based on PSO, GWO, FFA and GA Algorithms.
Symmetry 2020, 12, 1046. [CrossRef]

52. Ahmad, Z.; Khan, A.S.; Shiang, C.W.; Abdullah, J.; Ahmad, F. Network intrusion detection system: A systematic study of machine
learning and deep learning approaches. Trans. Emerg. Telecommun. Technol. 2020, 32. [CrossRef]

53. Li, X.; Yi, P.; Wei, W.; Jiang, Y.; Tian, L. LNNLS-KH: A Feature Selection Method for Network Intrusion Detection. Secur. Commun.
Netw. 2021, 2021, 8830431 . [CrossRef]

54. Selvakumar, B.; Muneeswaran, K. Firefly algorithm based feature selection for network intrusion detection. Comput. Secur. 2019,
81, 148–155. [CrossRef]

55. Dong, Q.L.; He, S.N. Self-adaptive projection algorithms for solving the split equality problems. Fixed Point Theory 2017,
18, 191–202. [CrossRef]

56. Sakr, M.M.; Tawfeeq, M.A.; El-Sisi, A.B. Network Intrusion Detection System based PSO-SVM for Cloud Computing. Int. J.
Comput. Netw. Inf. Secur. 2019, 11, 22–29. [CrossRef]

57. Salo, F.; Nassif, A.B.; Essex, A. Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection.
Comput. Netw. 2019, 148, 164–175. [CrossRef]

58. Deng, L.; Li, D.; Yao, X.; Wang, H. RETRACTED ARTICLE: Mobile network intrusion detection for IoT system based on transfer
learning algorithm. Clust. Comput. 2018, 22, 9889–9904. [CrossRef]

59. Devan, P.; Khare, N. An efficient XGBoost–DNN-based classification model for network intrusion detection system. Neural
Comput. Appl. 2020, 32, 12499–12514. [CrossRef]

60. Magán-Carrión, R.; Urda, D.; Díaz-Cano, I.; Dorronsoro, B. Towards a Reliable Comparison and Evaluation of Network Intrusion
Detection Systems Based on Machine Learning Approaches. Appl. Sci. 2020, 10, 1775. [CrossRef]

61. Hajisalem, V.; Babaie, S. A hybrid intrusion detection system based on ABC-AFS algorithm for misuse and anomaly detection.
Comput. Netw. 2018, 136, 37–50. [CrossRef]

62. Kim, J.; Shim, M.; Hong, S.; Shin, Y.; Choi, E. Intelligent detection of iot botnets using machine learning and deep learning. Appl.
Sci. 2020, 10, 7009. [CrossRef]

63. De La Torre Parra, G.; Rad, P.; Choo, K.R.; Beebe, N. Detecting Internet of Things attacks using distributed deep learning. J. Netw.
Comput. Appl. 2020, 163, 102662. [CrossRef]

64. Soe, Y.N.; Feng, Y.; Santosa, P.I.; Hartanto, R.; Sakurai, K. Machine learning-based IoT-botnet attack detection with sequential
architecture. Sensors 2020, 20, 4372. [CrossRef]

65. Hosseini, S.; Nezhad, A.E.; Seilani, H. Botnet detection using negative selection algorithm, convolution neural network and
classification methods. Evol. Syst. 2021. [CrossRef]

66. Krich, S.I.; Weiner, I. Low-Sidelobe Antenna Beamforming Via Stochastic Optimization. IEEE Trans. Antennas Propag. 2014,
62, 6482–6486. [CrossRef]

http://dx.doi.org/10.1007/s12652-020-01848-9
http://dx.doi.org/10.1016/j.jnca.2019.102479
http://dx.doi.org/10.1016/j.jksuci.2018.03.011
http://dx.doi.org/10.1016/j.future.2020.01.055
http://dx.doi.org/10.1007/s12652-019-01387-y
http://dx.doi.org/10.1155/2014/986428
http://dx.doi.org/10.1155/2020/4586875
http://dx.doi.org/10.1016/j.comnet.2019.107042
http://dx.doi.org/10.1080/1206212X.2020.1720951
http://dx.doi.org/10.11591/ijeecs.v17.i2.pp1059-1065
http://dx.doi.org/10.1016/j.eswa.2020.113864
http://dx.doi.org/10.1016/j.jnca.2020.102688
http://dx.doi.org/10.1109/TNSM.2020.3014929
http://dx.doi.org/10.3390/sym12061046
http://dx.doi.org/10.1002/ett.4150
http://dx.doi.org/10.1155/2021/8830431
http://dx.doi.org/10.1016/j.cose.2018.11.005
http://dx.doi.org/10.24193/fpt-ro.2017.1.15
http://dx.doi.org/10.5815/ijcnis.2019.03.04
http://dx.doi.org/10.1016/j.comnet.2018.11.010
http://dx.doi.org/10.1007/s10586-018-1847-2
http://dx.doi.org/10.1007/s00521-020-04708-x
http://dx.doi.org/10.3390/app10051775
http://dx.doi.org/10.1016/j.comnet.2018.02.028
http://dx.doi.org/10.3390/app10197009
http://dx.doi.org/10.1016/j.jnca.2020.102662
http://dx.doi.org/10.3390/s20164372
http://dx.doi.org/10.1007/s12530-020-09362-1
http://dx.doi.org/10.1109/TAP.2014.2359202

Electronics 2021, 10, 1341 24 of 24

67. Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. In Proceedings of the Nature Inspired Cooperative Strategies for
Optimization (NICSO 2010), Granada, Spain, 12–14 May 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. [CrossRef]

68. Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Shabtai, A.; Breitenbacher, D.; Elovici, Y. N-BaIoT: Network-based Detection of
IoT Botnet Attacks Using Deep Autoencoders. IEEE Pervasive Comput. 2018, 17, 12–22. [CrossRef]

http://dx.doi.org/10.1007/978-3-642-12538-6_6
http://dx.doi.org/10.1109/MPRV.2018.03367731

	Introduction
	Related Work
	Material and Methods
	Bat Algorithm
	Local-Global Best Bat Algorithm (LGBA-NN)
	Gaussian Distribution
	LGBA-NN Steps

	Data Set Description
	Evaluation Metrics

	Results and Discussion
	Conclusions
	References

