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����������
�������

Citation: Hassan, S.M.; Maji, A.K.;
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Abstract: The timely identification and early prevention of crop diseases are essential for improving
production. In this paper, deep convolutional-neural-network (CNN) models are implemented to
identify and diagnose diseases in plants from their leaves, since CNNs have achieved impressive
results in the field of machine vision. Standard CNN models require a large number of parameters
and higher computation cost. In this paper, we replaced standard convolution with depth=separable
convolution, which reduces the parameter number and computation cost. The implemented models
were trained with an open dataset consisting of 14 different plant species, and 38 different categorical
disease classes and healthy plant leaves. To evaluate the performance of the models, different
parameters such as batch size, dropout, and different numbers of epochs were incorporated. The
implemented models achieved a disease-classification accuracy rates of 98.42%, 99.11%, 97.02%, and
99.56% using InceptionV3, InceptionResNetV2, MobileNetV2, and EfficientNetB0, respectively, which
were greater than that of traditional handcrafted-feature-based approaches. In comparison with other
deep-learning models, the implemented model achieved better performance in terms of accuracy
and it required less training time. Moreover, the MobileNetV2 architecture is compatible with mobile
devices using the optimized parameter. The accuracy results in the identification of diseases showed
that the deep CNN model is promising and can greatly impact the efficient identification of the
diseases, and may have potential in the detection of diseases in real-time agricultural systems.

Keywords: artificial intelligence; convolutional neural network; deep learning; machine learning;
transfer learning

1. Introduction

The automated identification of plant diseases based on plant leaves is a major land-
mark in the field of agriculture. Moreover, the early and timely identification of plant
diseases positively impacts crop yield and quality [1]. Due to the cultivation of a large
number of crop products, even an agriculturist and pathologist may often fail to identify
the diseases in plants by visualizing disease-affected leaves. However, in the rural areas
of developing countries, visual observation is still the primary approach of disease identi-
fication [2]. It also requires continuous monitoring by experts. In remote areas, farmers
may need to travel far to consult an expert, which is time-consuming and expensive [3,4].
Automated computational systems for the detection and diagnosis of plant diseases assist
farmers and agronomists with their high throughput and precision.

In order to overcome the above problems, researchers have thought of several solu-
tions. Various types of feature sets can be used in machine learning for the classification
of plant diseases. Among these, the most popular feature sets are traditional handcrafted
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and deep-learning (DL)-based features. Preprocessing, such as image enhancement, color
transformation, and segmentation [5], is a prerequisite before efficiently extracting features.
After feature extraction, different classifiers can be used. Some popular classifiers are
K-nearest neighbor (KNN) [6], support vector machine (SVM) [7], decision tree, random
forest (RF) [8], naive Bayes (NB), logistic regression (LR), rule generation [9], artificial
neural networks (ANNs), and Deep CNN. KNN is a simple supervised-machine-learning
algorithm used in classification problems, and it uses similarity measurements (i.e., dis-
tance, proximity, or closeness) [10]. SVM is also a popular supervised-machine-learning
technique used for classification purposes [11,12]. The idea behind SVM is to find a hy-
perplane between data classes that divides each class [13,14]. An NB classifier makes
predictions on the basis of probability measurements [15]. It assumes that the generated
features are independent from each other [16]. ANN is a set of connected inputs, an output
network that is modeled after the human neural system cells [17]. The network consists of
an input layer, intermediate layer, and output layer. Learning is performed by adjusting
weights [18]. Handcrafted-feature-based methods achieve good classification results, but
have some limitations such as requiring huge amounts of preprocessing, and the process
is time-consuming. Feature extraction in the handcrafted-based approach is limited, and
extracted features might not be enough for correct identification, which affects accuracy.

On the other hand, deep-learning-based techniques, particularly CNNs, are the most
promising approach for automatically learning decisive and discriminative features. Deep
learning (DL) consists of different convolutional layers that represent learning features
from the data [19,20]. Plant-disease detection can be accomplished using a deep-learning
model [21–23]. Deep learning also has some drawbacks, as it requires large amounts of data
to train the network. If an available dataset does not contain enough images, performance
is worse. Transfer learning has several advantages; for example, it does not needs a large
amount of data to train the network. Transfer learning improves learning a new task
through knowledge transfer from a similar task that had already been learned. Many stud-
ies used transfer learning in their disease-detection approach [24–27]. The benefits of using
transfer learning are a decrease in training time, generalization error, and computational
cost of building a DL model [28]. In this work, we use different DL models to identify plant
diseases. The inception module can extract more specific and relevant features as it allows
for simultaneous multilevel feature extraction. We replaced the standard convolution of an
inception block with depthwise separable convolution to reduce the parameter number.
Multiple feature extraction improves the performance of the model. In a residual network,
it has a shortcut connection that basically feeds the previous layer output to the next
layer, which strengthens features and improves accuracy. To evaluate performance on a
lightweight memory-efficient interface, the MobileNet model is used. MobileNetV2 archi-
tecture can achieve high accuracy rates while keeping parameter number and computation
as low as possible. According to [29], network depth, width, and resolution can lead to
better performance accuracy with fewer parameters. We also used this EfficientNet model
to identify diseases in plant and evaluated its performance. In the implemented DL archi-
tecture, we used different batch sizes of 32–180 to evaluate performance. Different dropout
values and learning rates were also used to examine performance. Several epochs were
used to run the model. The evaluation showed that the implemented deep CNN achieved
impressive results and better performance in comparison with those of state-of-the-art
machine-learning techniques.The main contributions of the paper are as follows:

Different convolutional-neural-network (CNN) architectures such as InceptionV3,
InceptionResNetV2, MobileNetV2, and EfficientNetB0 are implemented to diagnose
plant diseases on the basis of healthy- and diseased-leaf images.
In InceptionV3 and InceptionResNetV2, standard convolution was replaced with
depthwise separable convolution, which reduced the number of parameters by a large
margin while achieving the same performance-accuracy level.
The implemented InceptionV3 and InceptionResNetV2 use fewer parameters and are
faster than the standard InceptionV3 and InceptionResNetV2 architectures.
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A transfer-learning-based CNN was applied on a MobileNetV2 and an EfficientNetB0
model. In each model, we froze the layer weight before the fully connected layer
and removed all layers after that. We added a stack of an activation layer, batch-
normalization layer, and dense layer. After each batch-normalization layer, we used
a dropout layer with different dropout values, which prevents the architecture from
overfitting. Since a large number of features were there, we used the L1 and L2
regularization techniques in the dense layer of all models, which simplified the models.
We finetuned the network with different parameters to achieve optimal results. We
performed extensive testing by adjusting the different parameters. We used different
batch sizes in the range of 32–180, and different dropout values in the range of 0.2–0.8.
To optimize the model, we tested it with different learning rates in the range of
0.01–0.0001. The models were trained with different epochs.
To examine the robustness of the model, we used three formats of images, namely,
color, segmented, and grayscale images.
We compared the performance of the implemented models with that of other deep-
learning models and state-of-the-art machine-learning techniques. Results showed
that the implemented model performed better in terms of both accuracy and required
training time.

This paper is organized as follows. Section 2 illustrates the literature related to the
detection of plant diseases. Section 3 presents the CNN models and the details of the
datasets that are used in the experiments, along with their class and labels. Section 4
presents the results and performance of the models on the basis of their ability to predict
the correct class among 38 different classes. Section 5 offers a discussion, and outlines the
study’s limitations and future directions towards the development and enhancement of
the system Section 6 concludes the work.

2. Related Work

The implementation of proper techniques to identify healthy and diseased leaves
helps in controlling crop loss and increasing productivity. This section comprises different
existing machine-learning techniques for the identification of plant diseases.

2.1. Shape- and Texture-Based Identification

In [30], the authors identified diseases using tomato-leaf images. They used different
geometric and histogram-based features from segmented diseased portions and applied an
SVM classifier with different kernels for classification. S.Kaur et al. [31] identified three
different soybean diseases using different color and texture features. In [32] P Babu et al.
used a feed-forward neural network and backpropagation to identify plant leaves and their
diseases. S. S. Chouhan et al. [33] used a bacterial-foraging-optimization-based radial-basis-
function neural network (BRBFNN) for the identification of leaves and fungal diseases
in plants. In their approaches, they used a region-growing algorithm to extract features
from a leaf on the basis of seed points having similar attributes. The bacterial-foraging
optimization technique is used to speed up a network and improve classification accuracy.

2.2. Deep-Learning-Based Identification

Mohanty et al. [24] used AlexNet and GoogleNet CNN architectures in the identifica-
tion of 26 different plant diseases. Ferentinos et al. [25] used different CNN architectures to
identify 58 different plant diseases, achieving high levels of classification accuracy. In their
approach, they also tested the CNN architecture with real-time images. Sladojevic et al. [26]
designed a DL architecture to identify 13 different plant diseases. They used the Caffe DL
framework to perform CNN training. Kamilaris et al. [34] exhaustively researched different
DL approaches and their drawbacks in the field of agriculture. In [35], the authors proposed
a nine-layer CNN model to identify plant diseases. For experimentation purposes, they
used the PlantVillage dataset and data-augmentation techniques to increase the data size,
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and analyzed performance. The authors reported better accuracy than that of a traditional
machine-learning-based approach.

Pretrained AlexNet and GoogleNet were used in [36] to detect 3 different soybean
diseases from healthy-leaf images with modified hyperparameters such as minibatch size,
max epoch, and bias learning rate. Six different pre-trained network(AlexNet, VGG16,
VGG19, GoogLeNet, ResNet101 and DenseNet201) used by KR Aravind et al. [37] to
identify 10 different diseases in plants, and they achieved the highest accuracy rate of
97.3% using GoogleNet. A pretrained VGG16 as the feature extractor and multiclass SVM
were used in [38] to classify different eggplant diseases. Different color spaces (RGB,
HSV, YCbCr, and grayscale) were used to evaluate performance; using RGB images, the
highest classification accuracy of 99.4% was achieved. In [39], the authors classified maize-
leaf diseases from healthy leaves using deep-forest techniques. In their approach, they
varied the deep-forest hyperparameters regarding number of trees, forests, and grains,
and compared their results with those of traditional machine-learning models such as
SVM, RF, LR, and KNN. Lee et al. compared different deep-learning architectures in the
identification of plant diseases [22]. To improve the accuracy of the model, Ghazi et al.
used a transfer-learning-based approach on pretrained deep-learning models [40].

In [41], the authors used a shallow CNN with SVM and RF classifiers to classify
three different types of plant diseases. In their work, they mainly compared their results
with those of deep-learning methods and showed that classification using SVM and RF
classifiers with extracted features from the shallow CNN outperformed pretrained deep-
learning models. A self-attention convolutional neural network (SACNN) was used in [42]
to identify several crop diseases. To examine the robustness of the model, the authors
added different noise levels in the test-image set.

Oyewola et al. [43] identified 5 different cassava-plant diseases using plain convolu-
tional neural network (PCNN) and deep residual network (DRNN), and found that DRNN
outperformed PCNN by a margin of 9.25%. Ramacharan et al. [4] used a transfer-learning
approach in the identification of three diseases and two pest-damage types in cassava
plants. The authors then extended their work on the identification of cassava plant diseases
using a smartphone-based CNN model and achieved accuracy of 80.6% [44].

A NASNet-based deep CNN architecture was used in [45] to identify leaf diseases
in plants, and an accuracy rate of 93.82% was achieved. Rice- and maize-leaf diseases
were identified by Chen et al. [2] using the INC-VGGN method. In their approach, they
replaced the last convolutional layer of VGG19 with two inception layers and one global
average pooling layer. A shallow CNN (SCNN) was used by Yang Li et al. [41] in the
identification of maize, apple, and grape diseases. First, they extracted CNN features and
classified them using SVM and RF classifiers. Sethy et al. [1] used different deep-learning
models to extract features and classify them using an SVM classifier. Using ResNet50 with
SVM, they achieved the highest performance accuracy. A VGG16, ResNet, and DenseNet
model was used by Yafeng Zhao et al. [46] to identify plant diseases from the plant village
dataset. To increase the dataset size, they used a double generative adversarial network
(DoubleGAN), which improved the performance results. A summary of the related work
on plant-disease identification based on leaf images is shown in Table 1.
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Table 1. Summary of related work on plant-disease detection.

Author Methods Results

Mohanty et al. [24] (2016) AlexNet and GoogleNet 99.27% in AlexNet
99.34% in GoogleNet

Sladojevic et al. [26] (2016) Finetuned CNN architecture 96.3% accuracy

Ramcharan et al. [4] (2017) Inception V3 based on
GoogleNet 93% accuracy

Fuentes et al. [23] (2017) Faster R-CNN 83% accuracy

Ferentinos et al. [25] (2018) AlexNetOWTBn and VGG
99.49% in

AleXNetOWTBn
99.53% in VGG

Ramacharan el al. [44] (2019)

Single-shot multibox (SSD)
model

with MobileNet detector and
classifier

80.6% accuracy on
images

70.4% accuracy on
video

Geetharamani et al. [35] (2019) Nine-layer deep CNN 96.46% accuracy

Chen et al. [2] (2020) INC VGGN 92% accuracy

Li et al. [41] (2020) Shallow CNN with SVM and
RF 94% accuracy

Oyewola et al. [43] (2021) Deep residual neural network
(DRNN) 96.75% accuracy

3. Materials and Methods
3.1. Convolutional-Neural-Network Models

Interest in CNNs has recently surged, and DL is the most popular architecture because
DL models can learn relevant features from input images at different convolutional levels
similar, to the function of the human brain. DL can solve complex problems particularly
well and quickly with high classification accuracy and a lower error rate [47]. The DL model
is composed of different components (convolutional, pooling layer, and fully connected
layers, and activation functions).

Table 2 shows the number of layers and parameter sizes of different CNN architec-
tures. AlexNet has a layer size of 8 and 60 millions parameters, whereas VGGNet-16
and GoogleNet have parameter sizes of 138 and 7 million, respectively. The layers in
those two models are 16 and 27. The layers in ResNet-152 are 152, and the parame-
ter size is 50 million. InceptionV3, MobileNetV1, and MobileNetV2 have a parameter
size of 27, 4.2, and 3.37 million, respectively. In our work, we used the InceptionV3,
InceptionResNetV2, MobileNetV2, and EfficientNetB0 architectures to identify different
plant diseases using the leaves of different disease-affected plants. We used these models
because their parameter size is optimal in comparison with that of other architectures.
During implementation, we used a pretrained weight based on the ImageNet Large-Scale
Visual Recognition (ILSVRC) [48] dataset.
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Table 2. Comparison among different CNN architectures regarding layer number and parameter size.

Model No. of Layer Parameters
(Million)

Size

AlexNet 8 60 -

VGGNet-16 23 138 528 MB

VGGNet-19 26 143 549 MB

Inception-V1 27 7 -

Inception-V3 42 27 93 MB

ResNet-152 152 50 132 MB

ResNet-101 101 44 171 MB

InceptionResNetV2 572 55 215 MB

MobileNet-V1 28 4.2 16 MB

MobileNet-V2 28 3.37 14 MB

EfficientNet B0 - 5 -

Convolutional neural networks became familiar in machine vision since the AlexNet
model was popularized in DL architecture. The development of the Inception model
was important in the field of machine vision. Inception is a simple and more powerful
DL network with sparsely connected filters, which can replace fully connected network
architectures, especially inside convolutional layers, as shown in Figure 1b. The Inception
model’s computational efficiency and number of used parameters are much lower in
comparison with those of other models such as AlexNet and VGGNet. An inception layer
consists of differently dized convolutional layers (e.g., 1 × 1, 3 × 3, and n × n convolutional
layers) and pooling layers with all outputs integrated together and propagating to the
input of the next layer. Instead of using standard convolution in the inception block, we
used depthwise separable convolution. Tables 3 and 4 show the required parameters in
standard convolution and depthwise separable convolution, respectively. The number
of parameters required in depthwise separable convolution is much less than that of
standard convolution.

(a) MobileNetV2

Pool1

n

Filter Concat

Base

depthwise

1 1

1
n

depthwise

1
pointwise

1
pointwise

DS Conv

1
1

1

111

n n

(b) Modified block of InceptionV3.

Figure 1. Basic architectures of implemented DL models.
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Table 3. Required parameters using standard convolution in the Inception block.

Layer Input Filter (Size/Number) Parameter

Input image 299 × 299 × 3 - -
Conv1 Input image 1 × 1/32 128
Conv2 Conv1 1 × 1/64 2112
Conv3 Conv1 1 × 1/64 2112
Conv4 Conv3 3 × 3/96 55,392
Conv5 Conv1 1 × 1/64 2112
Conv6 Conv5 5 × 5/48 76,848

Avg. pooling Conv1 3 × 3 -
Conv7 Avg. pooling 1 × 1/32 1056

Total 139,760

Table 4. Required parameters using depthwise separable convolution in the Inception block.

Layer Input Filter (Size/Number) Parameter

Input image 299 × 299 × 3 - -
Conv1 Input image 1 × 1/32 128
Conv2 Conv1 1 × 1/64 2112
Conv3 Conv1 1 × 1/64 2112

Depthwise
separable conv1

Conv3 3 × 3/96 6816

Conv4 Conv1 1 × 1/64 2112
Depthwise
separable conv2

Conv4 5 × 5/48 4720

Avg. pooling Conv1 3 × 3 -
Conv5 Avg. pooling 1 × 1/32 1056

Total 19,056

The InceptionResNetV2 architecture is the combination of recent deep-learning mod-
els: residual connection and the Inception architecture [49]. This hybrid deep-learning
model has the advantages of a residual network and retains the unique characteristics of
the multiconvolutional core of the Inception network. In [50], the authors showed that
residual connections are implicit approaches for training very deep architectures. This
improved version of the Inception architecture significantly improved performance and
accelerated the model. Figure 2 shows the basic block diagram of InceptionResNetV2.
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Figure 2. Basic block diagram of InceptionResNetV2 model.

InceptionResNetV2 consists of three inception blocks. Figure 3a shows the modified
InceptionResNet-A block where the inception module uses parallel structure to extract
the features. The 3 × 3 standard convolution was replaced by 3 × 3 depthwise separable
convolution. Figure 3b represents the modified InceptionResNet-B block, where the 7 × 7
standard convolutional structure of inception model was replaced by 7 × 7 depthwise
separable convolution.
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1
7

1

(b)

Figure 3. (a) Modified structures of InceptionResnet-A. (b) Structures of InceptionResnet-B of
InceptionResNetV2 model.

In the InceptionResNet-C block, the 3 × 3 convolutional structure was replaced by
successive 3 × 1 and 1 × 3, as shown in Figure 4. By replacing the original convolutional
kernel with multiple smaller convolutional kernels, this model effectively reduced compu-
tational complexity. An increase in the number of convolutional layers and the deepening
of the network improved performance accuracy.

Relu Activation

1 Conv

1 Conv

1 Conv

3 Conv

1 Conv

Relu Activation

1

1

3

1

1

Figure 4. Structures of InceptionResNet-C in InceptionResNetV2.

The main intention behind the use of MobileNetV2 architecture is the convolutional
layer, which is quite expensive in normal convolutions in comparison with in MobileNetV2.
To improve efficiency, depthwise separable convolution is used in the MobileNetV2 archi-
tecture [51,52]. Depthwise convolution is independently performed for each input channel.
The blocks of MobileNetV2 are shown in Figure 1a. The first layer is called the expansion
layer of 1 × 1 convolution, and its purpose is to expand the number of channels in the
data. Next is the projection layer. In this layer, a high number of dimensions is reduced to a
smaller number. Except for the projection layer, each layer comprises a batch-normalization
function and activation function ReLU. In the MobileNetV2 architecture, there is one
residual connection between input and output layers. The residual network tries to learn
already learned features; those that are not useful in decision making are discarded. This
architecture can reduce the number of computations and of parameters. The MobileNetV2
architecture consists of 17 building blocks in a row followed by a 1 × 1 convolutional layer,
global average pooling layer, and classification layer.

A deep-learning architecture aims to achieve better performance accuracy and ef-
ficiency with smaller models. Unlike other state-of-the-art deep=learning models, the
EfficientNet architecture is a compound scaling method that uses a compound coefficient
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to uniformly scale network width, depth, and resolution [29]. EfficientNet consists of 8
different models from B0 to B7. Instead of using the ReLU activation function, EfficientNet
uses a new activation function, swish activation. EfficientNet uses inverted bottleneck
convolution, which was first introduced in the MobileNetV2 model, which consists of a
layer that first expands the network and then compresses the channels [52]. This archi-
tecture reduces computation by a factor of f 2 as compared to normal convolution, where
f is the filter size. The authors in [29] showed that EfficientNetB0 is the simplest of all 8
models and uses fewer parameters. So, in our experiment, we directly used EfficientNetB0
to evaluate performance. Figure 5 shows the basic block diagram of EfficientNetB0.
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Figure 5. Basic block diagram of EfficientNet model.

3.2. Transfer-Learning Approach

In deep learning, transfer learning is the reuse of a pretrained network on a new task.
Transfer learning is very popular in deep learning because it can train the network with a
small amount of data and high accuracy. In transfer learning, a machine exploits knowledge
gained from a previous task to improve generalization about another. In transfer learning,
the last few layers of the trained network are replaced with new layers, such as a fully
connected layer and softmax classification layer, with number of classes, which is 38 in our
paper. In each model, we unfroze the layer and added a stack of one activation layer, one
batch-normalization layer, and one dropout layer. All models were tested with different
dropout values, learning rates, and batch sizes. The input size used in MobileNetV2 and
EfficientnetB0 is 224 × 224.

3.3. Dataset

For training and testing purposes, we used the standard open-access PlantVillage
dataset [53], which consists of 54,305 numbers of healthy- and infected-plant leaves. De-
tailed database information, the number of classes and images in each class, their com-
mon and scientific names, and the disease-causing viruses are shown in Tables 5 and 6.
The database contains 38 different classes of 14 different plant species with healthy- and
disease-affected-leaf images. All images were captured in laboratory conditions. Figure 6
shows some sample leaf images from the PlantVillage datasets [53].

In our experiment, we used three different formats of PlantVillage datasets. First, we
ran the experiment with colored leaf images, and then with segmented leaf images of the
same dataset. In the segmented images, the background was smoothed, so that it could
provide more meaningful information that would be easier to analyze. Lastly, we used
grayscale images of the same dataset to evaluate the performance of the implemented
methods. All leaf images were divided into two sets, a training set and the testing set.
To evaluate performance, we split leaf images into three different sets, namely 80–20 (80%
training images and 20% testing images), 70–30 (70% training images and 30% testing
images), and 60–40 (60% training images and 40% testing images).
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Table 5. Detailed description of PlantVillage dataset with relative information.

Class Plant Name Disease Name Causes Virus
Name

Type of
Disease

No. of
Images

C1 Apple Healthy - - 1645

C2 Apple Apple scab Venturia
inaequalis Fungus 630

C3 Apple Black rot Botryosphaeria
obtusa Fungus 621

C4 Apple Cedar apple
rust

Gymnosp-
orangium Fungus 275

C5 Blueberry Healthy - - 1502

C6 Cherry Healthy - - 854

C7 Cherry Powdery mildew Podosphaera
clandestina

Biotrophic
Fungus 1052

C8 Corn Healthy - - 1162

C9 Corn Cercospora
leaf spot

Cercospora
zeae-maydis Fungal 513

C10 Corn Common rust Puccinia sorghi Fungus 1192

C11 Corn Northern
Leaf Blight

Exserohilum
turcicum Foliar 985

C12 Grape Healthy - - 423

C13 Grape Black rot Guignardia
bidwellii Fungus 1180

C14 Grape Esca
(Black Measles)

Phaeomoniella
chlamydospora Fungus 1383

C15 Grape Leaf blight
(Isariopsis)

Pseudocercospora
vitis Fungus 1076

C16 Orange Healthy - - 5507

C17 Peach Healthy - - 360

C18 Peach Bacterial spot
Xanthomonas

campestris
pv. pruni

Bacterial 2297

C19 Pepper/bell Healthy - - 1478

C20 Pepper/bell Bacterial spot Xanthomonas
campestris pv. Bacterial 997

C21 Potato Healthy - - 152

C22 Potato Early blight Alternaria solani Fungal 1000

C23 Potato Late blight Phytophthora
infestans Fungal 1000

C24 Raspberry Healthy - - 371

C25 Soybean Healthy - - 5090

C26 Squash Powdery mildew Podosphaera
xanthii Fungal 1835
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Table 6. Detailed description of PlantVillage Dataset with relative information.

Class Plant Name Disease Name Causes Virus
Name

Type of
Disease

No. of
Images

C27 Strawberry Healthy - - 456

C28 Strawberry Leaf scorch Diplocarpon
earliana Fungal 1109

C29 Tomato Healthy - - 1591

C30 Tomato Bacterial spot Xanthomonas
perforans Bacterial 2127

C31 Tomato Early blight Alternaria˙sp. Fungal 1000

C32 Tomato Late blight Phytophthora
infestans Fungal 1909

C33 Tomato Leaf Mold Lycopersicon Fungal 952

C34 Tomato Septoria
leaf spot

Septoria
lycopersici Fungal 1771

C35 Tomato Spider mites Tetranychus spp. Pest 1676

C36 Tomato Target Spot Corynespora
cassiicola Fungal 1404

C37 Tomato Tomato mosaic
virus Tomato mosaic Viral 373

C38 Tomato Tomato Yellow
Leaf Begomovirus Viral 5357

(a) Color (b) Grayscale (c) Segmented

(d) Color (e) Grayscale (f) Segmented

Figure 6. Sample images of color, grayscale and segmented version of PlantVillage image dataset.

4. Results

The implemented CNN architectures, as described in the previous section, used the
parameters in Table 7. EfficientNetB0 achieved the best accuracy in comparison with
that of InceptionV3, MobileNetV2, and InceptionResNetV2. To evaluate performance, we
used different parameters, for example, performance accuracy, F1 score, precision, recall,
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training loss, and time required per epoch. As in our experiment, we used three different
representations (i.e., color, grayscale, segmented) of PlantVillage image data, which showed
different performance metrics in all cases. The color-image dataset performed better than
those with grayscale and segmented images; the same number of CNN network parameters
was maintained in all cases. Figure 7a–c shows the graphs for testing the accuracy, loss, and
F1-score regarding the number of epochs for the implemented models. Figure 7d represents
the accuracy graph of the InceptionResnetV2 model with different training and testing split
images. A summary of the performance comparisons of the implemented models based on
testing accuracy and testing loss is represented in Table 8. The performance metrics that
are considered in our proposed work are as follows.

• Performance accuracy: the total number of correctly classified images to the total
number of images.

• Loss function: how well the architecture models the data.
• Precision: the ratio of the number of correctly predicted observations (true positives)

to the total number of positive predictions (true positives + false positives).
• Recall: the ratio of correctly predicted observations (true positives) to all observations

in that class (true positives + false negatives).
• F1 score: the harmonic mean between precision and recall.
• Time requirement (in sec) per epoch for training each DL model.

Table 7. Parameters used in CNN for training.

Parameters Value

Training epoch 30–50
Batch size 32–180
Dropout 0.2–0.8

Learning rate 0.01–0.0001

Table 8. Performance comparison of different DL architectures.

Model Training
Acc (%)

Testing
Acc (%)

Loss Epoch Avg Time
(s/Epoch)

AlexNet [25] - 98.64 0.0658 50 7034

VGG [25] - 98.87 0.0542 49 4208

NASNet [45] - 93.82 - 9 -

ResNet - 92.56 - - -

Deep CNN [26] - 96.3 - 100,000 -

Nine Layer
CNN [35] 97.87 96.46 0.2487 3000 -

CNN [54] 99.99 97.1 - - -

InceptionV3 98.92 98.42 0.0129 50 1027

InceptionResNetV2 99.47 99.11 0.0241 50 836

MobileNetV2 97.17 97.02 0.0921 50 565

EfficientNetB0 99.78 99.56 0.0091 50 545

To avoid overfitting, we phasewise divided the dataset into different training and
testing ratios. In the case of 80% of training and 20% of testing image data, we achieved an
accuracy of 98.42% in InceptionV3, 99.11% in InceptionResNetV2, 97.02% in MobilenetV2,
and 99.56% in EfficientNetB0 for color images. After splitting the dataset into different
training and testing ratios, there was not much variation in the accuracy of the models.
Hence, they did not suffer from the problem of overfitting.The accuracy of all models
for different image types with loss and number of epochs are shown in Table 9. Table 10
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presents the precision, recall, and F1 score of the implemented models on splitting the
dataset into 80–20% training and testing ratios. EffcientNetB0 had a precision value of
0.9953, recall of 0.9971, and F1 score of 0.9961, which were higher than those of the other
models.

Table 9. Accuracy and loss of implemented models regarding different image types along with
different train-test split ratios.

Dataset Model Image Type Accuracy(%) Loss Epoch

Train-80%
Test-20%

InceptionV3

Color 98.92 0.0392 50

Grayscale 96.39 0.1391 50

Segmented 98.71 0.0571 50

InceptionResNetV2

Color 99.47 0.0731 50

Grayscale 98.13 0.0972 50

Segmented 99.39 0.0347 50

MobileNetV2

Color 97.17 0.0921 50

Grayscale 93.53 0.1152 50

Segmented 99.69 0.0973 50

EfficientNetB0

Color 99.75 0.0137 50

Grayscale 98.83 0.0837 50

Segmented 99.78 0.0091 50

Train-70%
Test-30%

InceptionV3

Color 97.14 0.0931 45

Grayscale 94.32 0.1937 45

Segmented 96.85 0.1198 45

InceptionResNetV2

Color 99.11 0.0397 45

Grayscale 96.93 0.1078 45

Segmented 98.87 0.0683 45

MobileNetV2

Color 96.87 0.0965 45

Grayscale 93.21 0.2145 45

Segmented 96.69 0.0998 45

EfficientNetB0

Color 99.64 0.0341 45

Grayscale 98.43 0.0987 45

Segmented 99.61 0.0653 45

Train-60%
Test-40%

InceptionV3

Color 96.81 0.1012 30

Grayscale 94.11 0.2241 30

Segmented 96.42 0.1019 30

InceptionResNetV2

Color 98.97 0.0634 30

Grayscale 96.17 0.1134 30

Segmented 98.45 0.0687 30

MobileNetV2

Color 96.54 0.1391 30

Grayscale 93.07 0.3112 30

Segmented 96.37 0.1424 30

EfficientNetB0

Color 99.13 0.1139 30

Grayscale 98.17 0.1463 30

Segmented 99.17 0.1127 30
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Table 10. Precision, recall, and F1 score of implemented models.

Deep-Learning
Model Precision Recall F1-Score

InceptionV3 0.9836 0.9911 0.9873
InceptionResNetV2 0.9921 0.9961 0.9940

MobileNetV2 0.9732 0.9962 0.9845
EfficientNetB0 0.9953 0.9971 0.9961
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Figure 7. (a) Performance accuracy of implemented model. (b) Performance loss of implemented
model. (c) F1 score of InceptionV3. (d) Accuracy of InceptionResNetV2 grouped by training.

Table 8 indicates that the implemented techniques achieved better performance in
terms of the combination of accuracy and average time per epoch in comparison with that
of other implemented techniques. The highest successful classification accuracy, obtained
by EfficientNetB0, was 99.56%, and training time was much less as compared with that of
the InceptionV3, InceptionResNetV2, and MobileNetV2 architectures. The decrease in time
per epoch was because the number of parameters in these models was quite smaller than
that of other existing models. A comparison between the number of parameters used in
different models is highlighted in Table 1. The novelty of the implemented model lies in the
fact that we used depthwise separable convolution, which reduces the network parameters.
We considered different deep-learning models, such as a deep-learning model with an
inception layer, deep learning with a residual connection, deep learning with depthwise
separable convolution, and deep-learning models with depth, width, and resolution. We
finetuned the network parameters to achieve better performance accuracy with less time,
as is shown in Table 8.

The accuracy of the model with respect to the number of predictions in the Mo-
bileNetV2 architecture decreased to 91% if we used a dropout value of 0.8. Figure 8 shows
performance accuracy with respect to the different dropout values used in the network.
Figure 9 shows correctly classified results from the test image dataset with their predicted
and source class. The predicted class was returned with the confidence of that class.
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Figure 8. Performance accuracy with different dropout values.

Figure 9. Example of correct classification from test image set.

5. Discussion

The early detection and identification of plant diseases using deep-learning techniques
has recently made tremendous progress. Identification using traditional approaches heavily
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depends on some factors such as image enhancement, the segmentation of disease regions,
and feature extraction.

Our approach is based on the identification of diseases using a deep-learning-based
transfer-learning approach. Instead of using standard convolution, we used depthwise
separable convolution in the inception block, which reduced the number of parameters by
a large margin. To use both the inception and the residual network connection layer, we
used the InceptionResNetV2 model. The model both has higher accuracy and requires less
training time than the original architecture does, as the used parameters are much fewer.
To check the performance towards a smartphone-implemented lightweight model to assist
in plant-disease diagnosis, we implemented the MobileNetV2 model. We also implemented
EfficientNetB0, which considers depth, width, and resolution during convolution.

Although the convolutional-neural-network-based deep-learning architecture achieved
high success rates in the detection of plant diseases, it has some limitations, and there is
a scope for future works. A little noise in the sample images led to misclassification by
the deep-learning model [55,56]. Future work includes evaluating performance on noisy
images and improving it. The dataset that we used to evaluate performance included 38
different diseases and healthy leaves. However, there is a need for the expansion of the
dataset with wider land areas and more varieties of disease images. The dataset can also
be improved with aerial photos, which are captured by drones. Another important issue
is that the testing images are all from the same image dataset. Testing the network with
real-time field images is an important challenging issue. The images that were used to
test performance were all captured in laboratory conditions. The images that we used for
testing our model are part of the same dataset, the training dataset. There is a need for
the development of an efficient machine-learning system that could identify diseases in
real-time scenarios and from collected data from different datasets. Some researchers are
working on this field; they tested their model with real-time images, and performance
worsened by a huge margin—around 25–30%. Mohanty et al. [24] conducted an experiment
where they tested their model with different images from those in the training dataset
and achieved an accuracy rate of 31.5%. Ferentinos et al. [25] measured performance with
training images in laboratory conditions and tested the images in real-time conditions, and
achieved an accuracy rate of 33%. To improve this, we need wide variety in databases,
for example, with images taken in different lighting conditions, from different geograph-
ical areas, and with cultivating conditions. In addition, we aim to carry this research
forward by implementing it with a new deep-learning model, such as ACNet [57], and a
transformer-based architecture, such as ViT [58] and the MLP Mixer [59] method, in plant
disease identification, and evaluate its performance.

6. Conclusions

There are many developed methods in the detection and classification of plant diseases
using diseased leaves of plants. However, there is still no efficient and effective commercial
solution that can be used to identify the diseases. In our work, we used four different DL
models (InceptionV3, InceptionResnetV2, MobileNetV2, EfficientNetB0) for the detection
of plant diseases using healthy- and diseased-leaf images of plants. To train and test the
model, we used the standard PlantVillage dataset with 53,407 images, which were all
captured in laboratory conditions. This dataset consists of 38 different classes of different
healthy- and diseased-leaf images of 14 different species. After splitting the dataset into
80–20 (80% of whole data for training, 20% whole images for testing), we achieved the
best accuracy rate of 99.56% in EfficientNetB0 model. On average, less time was required
to train the images in the MobileNetV2 and EfficientNetB0 architectures, and it took 565
and 545 s/epoch, respectively, on colored images. In comparison with other deep-learning
approaches, the implemented deep-learning model has better predictive ability in terms
of both accuracy and loss. The required time to train the model was much less than
that of other machine-learning approaches. Moreover, the MobileNetV2 architecture is
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an optimized deep convolutional neural network that limits the parameter number and
operations as much as possible, and can easily run on mobile devices.
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