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Abstract: COVID-19 has greatly affected the tourist industry and ways of travel. According to
the UNTWO predictions, the number of international tourist arrivals will be slowly growing by
the end of 2021. One of the ways to keep tourists safe during travel is to use a personal car or
car-sharing service. The sensor-based information collected from the tourist’s smartphone during
the trip allows his/her behaviour analysis. For this purpose, we propose to use the Internet of Things
with ambient intelligence technologies, which allows information processing using the surrounding
devices. The paper describes a solution to the car tourist trajectory prediction, which has been
the demanding subject of different research studies in recent years. We present an approach based
on the usage of the bidirectional LSTM neural network model. We show the reference model
of the tourist support system for car-based attraction-visiting trips. The sensor data acquisition
process and the bidirectional LSTM model construction, training and evaluation are demonstrated.
We propose a system architecture that uses the tourist’s smartphone for data acquisition as well as
more powerful surrounding devices for information processing. The obtained results can be used for
tourist trip behaviour analysis.

Keywords: tourism; trajectory; prediction; neural networks; context; bidirectional LSTM

1. Introduction

The Coronavirus Disease 2019 (COVID-19) outbreak and the quarantine measures
around the world have greatly affected the whole tourism industry. According to the United
Nations World Tourism Organization (UNWTO) reports (https://www.unwto.org/covid-
19-and-tourism-2020 (accessed on 6 June 2021)), international tourist arrivals decreased
from 1.5 billion in 2019 to 381 million in 2020. About 27% of all destinations worldwide have
kept their borders completely closed for international tourism. The total loss in tourism
exports was $1.3 trillion. Most experts in the tourism industry do not expect international
tourism to return to pre-COVID levels before 2023.

Internal tourism has begun to increase due to the growing numbers of vaccinated
people in countries and still closed borders. According to Airbnb statistics (https://
news.airbnb.com/2021-travel/ (accessed on 6 June 2021)), more and more travellers are
preferring a domestic or local destination as a goal of the tourist route. Around 20% of
tourists want their destination to be within driving distance of home. One of the safest
ways to travel within the country during the COVID-19 pandemic is to use a personal car
or rental-car-sharing services. By applying protective measures such as using masks in case
of travelling with unfamiliar people, maintaining physical distance, sanitizing surfaces
and periodically ventilating the cabin, it would be possible to reduce the risk of COVID-19
infestation when travelling by car.
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For tourists travelling by car, it is important to use smart travel services [1] to enhance
and enrich the travel experience. Active use of a smartphone with Internet access allows
tourists to remain mobile and receive information with tourist support services directly.
Tourist interaction with smart services, direct actions in the form of generating audio/video
content or attraction reviews and sensor data form a large amount of information [2] that
can be studied and analysed using different machine learning techniques [3].

Based on historical tourist data, researchers can analyse and predict tourist behaviour [4]
using machine learning instruments. The tourist behaviour analysis allows researchers and
business stakeholders to better understand tourist intentions, look for patterns in the actions
of tourists in the region and improve tourist smart services. Internet of Things (IoT) sensors
from smart cities [5–7] can provide historical data about tourist actions.

The paper solves the car-based tourist trajectory prediction problem, which is a de-
manding task across the science community. Existing solutions are based on neural network
usage and focus on pedestrian route prediction based on the camera view, which limits
the behaviour analysis process in the scope of the tourist region. The authors’ solution
provides functionality to predict tourist routes and extract possible visited points of interest
(POIs) and can easily be modified by providing the tourist and trajectory context. The given
approach can be useful for research and tourist industry analytics.

This paper presents an approach based on bidirectional long short-term memory
(LSTM) neural network usage [8]. Neural network analysis based on IoT sensors is widely
used in different tasks [9]. The key aspect of LSTM is the ability to memorize previous
states in the inner neuron cells that can help to memorize route trajectory changes over time.
Bidirectional LSTM can preserve information from past and future, which helps to better
understand the trajectory context information. As an input, the proposed bidirectional
LSTM model works with the global world coordinates rather than data from the road
cameras over the region. Some context parameters such as tourist trip weekday also are
passed to the neural network model.

The following paper is structured as follows. Section 2 analyses the current research
state in the scope of trajectory prediction. Section 3 proposes the tourist support system,
which gathers tourist data and analyses the behavioural patterns. Section 4 describes
the tourist data acquisition from the device sensors. Section 5 shows the LSTM-model
construction and training and Section 6 presents the evaluation process. Section 7 dis-
cusses the gathered results and the proposed approach limitations and section 8 provides
our conclusions.

2. Related Work

The selected papers analyse different tourist behaviour aspects such as tourist arrival,
trajectory prediction, destination prediction, etc. Behavioural aspect identification can
improve smart-tourism service usage for further travel experience improvement. One of
the ways to obtain the necessary information about the actions of tourists in a smart city
is the usage of various IoT sensors and information processing by ambient intelligence
technologies [10].

Table 1 presents information about related work in the scope of tourist behaviour
analysis. The first column contains the paper citation, the second column describes the pa-
per problem, the third column shows the machine learning task type and the last column
provides information about the problem solution.
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Table 1. Related work review.

Paper Problem Machine Learning Tasks Solution

[11] Inbound tourist arrival forecasting for
the tourist region Time series event prediction Least-squares support vector regression

with genetic algorithm
[12] Real-time driver destination prediction Time series event prediction Attention-aware LSTM

[13] Urban routing simulation Time series event prediction
Iterative framework based on the learn

heuristic solution, local search and
artificial neural network (ANN)

[14] Tourist sequential pattern analysis for
pedestrian- and car-based trips POI route construction Convolutional neural network (CNN),

LSTM neural network
[15] Locally optimal tourist route construction POI route construction Shortest tree path construction

[16]
Temporal–spatial tourist behaviour

analysis on micro-scale distances based on
Global Positioning System (GPS) data

Clustering DBSCAN

[17] Tourist arrival forecasting Time series event prediction
Extreme learning machine as predictor,

self-adaptive method for empirical
decomposition of tourist arrival

[18] Urban vehicle trajectory prediction based
on Bluetooth data Trajectory prediction Attention-based recurrent neural

networks (RNNs)
[19] Trajectory labelling Classification Fuzzy rule classifiers

[20]

Geo-semantic tourist analysis for studying
relationship between traffic interaction

and urban functions at the road segment
based on GPS data

Classification CNN, Skip-gram Word2Vec model

[21] Camera-based pedestrian
trajectory prediction Trajectory prediction Social generative adversarial network

(SGAN) with attention mechanism

[22] Trajectory prediction for heterogeneous
traffic-agents based on camera frame data Trajectory prediction LSTM

The reviewed papers solve different machine learning tasks such as classification [19,20],
clustering [16], event prediction [11–13,17], POI route contraction/trajectory prediction [14,15]
and trajectory prediction [18,21,22]. To solve the assigned tasks, the presented works use
various neural networks such as LSTM or CNNs. However, the presented works do not
practically use the contextual information of tourists to solve their stated problems and do
not describe the data gathering process, which limits their application.

In the scope of trajectory prediction, the selected papers [21,22] mostly work with
camera frame data, which limits the models’ applicability at the tourism region level.
The authors of [18] operate with raw data gathered by Bluetooth sensors that are similar to
the authors’ approach but work with the RNN model, which tends to perform only short-
term prediction with potential memorizing problems on the long sequences. The proposed
approach shows the sensor-driven solution for the data gathering by describing the tourist
support system, describes supported machine learning tasks and presents the bidirectional
LSTM-based solution for the car-based tourist trajectory predictions.

3. Reference Model

The tourist support system reference model is presented in Figure 1. The suggested
tourist support system aims to propose a POI route within the tourist region by taking into
consideration context and historical data about the tourist, region and POI. The context
describes the current situation around the tourist support system subject/object and histor-
ical data contains information about actions and events of system subjects from the past.
The POI route construction is divided into 2 tasks: POI visitation list formation based
on the tourist POI preferences and route planning among selected POIs.

The tourist interacts with the system using an electronic device such as a smartphone.
The smartphone allows tourists to interact with the tourist system, displays a map of
the area with surrounding points of interest and displays multimodal information about
attractions. From the perspective of the proposed tourist support system, the tourist
can be characterized by the following attributes: actions, sensor data, preferences and
context information. The actions describe the tourist activities such as photo/video content
generation, POI review, etc. The raw sensor data describe tourist movement by gathering
information from smartphone sensors such as GPS, accelerometer, magnetometer, etc.
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The attractiveness of a certain POI types is declared by preferences. The context information
represents the additional parameters, which describes the situation around tourist actions.

Digital Pa�ern of Life

Behaviour Analysis Tasks

Tourist
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POI route 
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Figure 1. Tourist support system reference model.

The region represents a city and its surroundings with located attractions, which
tourists can visit. The region manages smart-city sensors whose task is to monitor the ac-
tions of tourists. Traffic situations and weather conditions describe the region’s context
situation. The POIs represent places the tourist wants to visit during a trip. Each POI is
characterized by its type, expert and tourist assessments, as well as contextual information
such as the cost of a visit, opening hours, etc.

Information about tourist, region and the POI forms the digital pattern of life [23].
The digital pattern of life represents the tourist and the world around them in the virtual
world at the concept level. The proposed concepts describe the tourist and the world with
which the tourist interacts. All gathered information is stored in data lake storage without
structural changes. The data lake approach allows extracting the current tourist situation
and the historical data simultaneously, which creates an opportunity to perform event
prediction tasks.

The artificial neural network (ANN) models allow researchers to learn patterns
in tourist behaviour by working with the historical data from the digital pattern of life.
The approach of preserving the original data structure in the data lake provides flexibility
for the ANN models’ data preparation and training. In the proposed tourist support system
the ANN models are used for the following behaviour analysis tasks: route classification,
tourist clustering, POI visiting prediction and tourist route trajectory prediction. Each task
requires both historical and context data for the proper work.

The POI route construction takes into account the tourist restrictions (time, locations,
etc.) and works with the current state and the historical changes of the region. The route
construction is enhanced by using the results of the ANN models. The POI visiting pre-
diction, tourist trajectory prediction and tourist clustering influence the recommendation
system choices of attraction set creation. The route classification is used for evaluating
the quality of the generated route.

In the scope of this paper, the authors describe the process of solving tourist trajectory
prediction tasks defined in the typical behaviour analysis tasks. The existing tourist
trajectory is described by GPS sensor values, gathered from the smartphone by retrieving
historical data from the data lake based on the digital pattern of life concepts. The prediction
results are intended for the tourism services to improve. As an example, the predicted
routes can be analysed for the frequency of visiting certain POIs and used as an additional
factor for the tourist recommendation services.
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4. Digital Pattern of Life Formation

We propose to use the earlier developed Drive Safely system [24,25] for the digital
pattern of life formation. The Drive Safely system is aimed at supporting drivers by
warning of critical events monitored by the smartphone camera and sensors. Different
events such as distraction, drowsiness, seat belt not fastened, eating/drinking and smoking
are monitored by the drivers’ electronic device, such as a smartphone (Figure 2).

Figure 2. Driver data collection and dangerous state detection by using a smartphone with Drive
Safely application.

The data gathering process is presented in Figure 3. Each car has an electronic device
with a camera and a set of sensors that track the movement of the car. The camera saves
the critical event video files and sensors such as GPS, accelerator and gyroscope measure
the chaining in the global positioning and speed/acceleration. The Drive Safely system can
process data from different drivers simultaneously.

Gunicorn

Driver 1

Deivce with 

camera
Sensors

...

Driver N

Deivce with 

camera
Sensors

Aioh�p 

instance

Aioh�p 

instance

...
Nginx

Postgresql

Camera & sensors data

Camera & sensors data

Processed data

Processed data

Figure 3. Drive Safely data gathering process.

Driver data are sent to the Representational State Transfer Application Programming
Interface (REST-API) web service during the trip with a periodicity of ten times per second.
The Python programming language is used for the backend implementation of the web
service. The asynchronous package Aiohttp is used for HyperText Transfer Protocol
(HTTP) server implementation, which simplifies the sensor data processing from different



Electronics 2021, 10, 1390 6 of 12

drivers at the same time. The Nginx is used as the reversed proxy server for the Python-
based backend, managed by the Gunicorn application server, which runs several backend
instances for the parallel data processing from the different sources. All data processed
from the backend instances are stored in the Postgresql database.

The processed sensor data are presented in Table 2. The table describes the tourist state
gathered by sensors in the given period. The first column notes the row index, the second
column represents the data, the third column declares the measurement unit, the fourth
column represents the sensor type used for the data gathering and the fifth column provides
the sensor data example. The GPS, accelerometer, gyroscope and magnetometer sensors
are used for gathering raw data. The electronic device sends sensor data to the Drive
Safely backend instance with the specific timestamp every 1.5 s using the batch of data.
We collected sensor data 10 times per second. All gathered data during the tourist car
trip can be treated as historical data according to the reference model. The selected set of
sensors can be used for restoring trip routes and driver behaviour pattern mining.

Table 2. Sensors data acquisition.

# Data Measurement Unit Sensor Type Data Example

1 Latitude degrees GPS 60.098962
2 Longitude degrees GPS 30.2727385
3 Altitude meters GPS 39.3
4 Location accuracy meters GPS 1.41
5 Datetime seconds GPS 1,618,389,370,529
6 Speed km/h Accelerometer 38.91725
7 Acceleration m/s Accelerometer 1.27
8 Light level lux Lightmeter 120

The latitude, longitude and altitude represent the tourist position in the global space.
The coordinates are recorded in the World Geodetic System 1984 (WGS84). Location
accuracy defines the radius of tourist position measurement error by using GPS sensors.
The datetime stores a Unix timestamp in seconds that represents sensor measurement time.
Speed and acceleration represent the car speed and acceleration on the track at the given
moment in time. Light level measures the illumination inside the car.

5. LSTM-Based Trajectory Prediction Approach

Trajectory prediction is implemented based on information from the tourist’s digital
pattern of life. We analyse tourist routes and predict their future behaviour as part of
the behaviour analysis tasks. The bidirectional LSTM-based approach was chosen as
the car trajectory prediction solution. The LSTM is one of the possible ways to implement
recurrent neural networks (RNNs), which are capable of maintaining data within a short
period. The LSTM models are designed due to the RNN incapability to memorize the long-
period data by using an improved inner cell structure.

The general structure of an LSTM cell is presented in Figure 4. xt is an input sequence
value in the given moment, ht represents the output value, produced from the LSTM cell,
Ct represents an LSTM cell inner status. Based on the given input, the LSTM cell performs
three main operations (“gates”):

• the forget gate decides which kind of information will be removed from the cell state
Ct−1 based on ht−1 and xt;

• the input gate determines the amount of information that will be stored in the LSTM
cell based on ht−1 and xt;

• the output gate computes the new cell output Ct based on the mix of the previous cell
states and output of the input gate.
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LSTM CELLLSTM CELL

Figure 4. LSTM cell general description.

In the LSTM models, the data flows through the LSTM cell only in the forward direc-
tion. The bidirectional LSTM (Figure 5) is the LSTM extension, which provides the output
level information from the previous and future inner states. The input information for
the sequence is simultaneously passed to the forward and backward layers. The activation
layer merges the processed data from the previous layers that will be passed to the model
output. The activation layer can sum results (values just simply added), multiply results,
concatenate results (in this case the model doubles the output cell’s number), and calculate
the average of the given values. This ANN modification allows working with the context
information of the sequence input.

LSTM LSTM LSTM

LSTM LSTM LSTMForward layer

Backward
layer

Inputs

Activation layer

Outputs

Figure 5. Bidirectional LSTM architecture.

5.1. Car Route Data Preprocessing

The driver trajectory dataset for neural network training and validation contains
routes that have been made in the city of Saint Petersburg, Russia. The dataset contains
1085 tourist routes, recorded from January to March of 2021. For each route, the tourist car
trajectory was simplified by using the PostGIS function ST_Simplify (https://postgis.net/
docs/ST_Simplify.html (accessed on 6 June 2021)).

The proposed bidirectional LSTM neural network demands a geodetic coordinate
transformation because spherical coordinates transform into 2D space coordinates with
an inaccuracy that leads to a potentially large prediction error. Another approach for
geodetic coordinate preprocessing is measuring the geographical distance and forward
azimuth angle between two coordinates by using the inverse method of the Vincenty
formula [26].

The Vincety formula works with the ellipsoidal model of the Earth and measures
the azimuth and distance between points more accurately than the Haversine formula,
which uses the spherical model of the Earth. An example of preprocessed coordinates is

https://postgis.net/docs/ST_Simplify.html
https://postgis.net/docs/ST_Simplify.html
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given in Table 3. The first column represents the position number in the car route. The sec-
ond and third columns in the row represent the car longitude and latitude, which are
decoded in the WGS84. The fourth column represents the forward azimuth in degrees be-
tween coordinates on the current and next rows and takes values in the range [−179◦; 180◦].
The fifth column represents the distance between coordinates in the current and next rows
and measures in meters. For the last route position azimuth and distance are not calculated.

Table 3. Car route transformation.

# Longitude ◦ Latitude ◦ Forward Azimuth ◦ Distance m

1 30.38421 59.90405 168.5758 3.2962
2 30.38422 59.90402 118.5501 13.5593
3 30.38443 59.90396 103.5846 5.29665

· · ·
38 30.38086 59.90629 64.9117 37.6177
39 30.38146 59.90643 54.0330 7.5245
40 30.3815 59.90647 − −

5.2. Neural Network Model Configuration

The Python programming language with Tensorflow and Keras platforms was used
for the bidirectional LSTM model construction. Pandas and geopandas packages provide
dataset manipulation tools. Sklearn and NumPy packages implement the data manipula-
tion into the convenient neural network training form. The Shapely package is used for
the trajectory drawing on the interactive maps.

For the correct bidirectional LSTM neural model training, the input data normalization
process is required. Different input features may have a different scale and distribution
and large input values can influence the neural model in a way that means the model will
learn large weight values. When the model has large weight values it acts very unstably
on the prediction tasks, which leads to a huge generalization error.

The forward azimuth and distance between coordinates are re-scaled by using min–
max normalization [27]. In Equation (1), xscaled is a value of x from the old scale, which
is mapped on the new scale [0; 1]; xmin represents the minimum value from the input
sequence and xmax refers to the maximum value.

xscaled =
x − xmin

xmax − xmin
(1)

The categorical weekday value is transformed by using a hot-encoding technique.
The hot-encoding technique replaces the categorical value with a new binary vectored
value. The proposed vector has a length of total categories.

The neural network model is described by the input layer, several inner layers and
the output layer, which contains the predicted trajectory (Figure 6). The input layer requires
the transformed part of the tourist trajectory, which contains the next 3, 5 or 9 rows from
Table 3. It does not make sense to use a trajectory with information for 1 or 2 points for
prediction due to the small amount of input information. Using information for more than
9 points makes it difficult to use the model in real applications due to the need to wait for
data to fill. The models with inputs defined by 4 and 6 trajectory points show close results
to models with 5 and 9 points, respectively. Each row has been supplemented with the trip
weekday. Selected trajectory rows flatten into the 1d array length of trajsize × wl × inputsize,
where trajsize is the potential point sequence, wl is the length of the hot-encoded weekday
and inputsize represents the trajectory characteristics at the given moment in time (azimuth
and distance between two points). The inner neural network model layers consist of the
3 bidirectional layers with 128 LSTM cells in each layer and a dense layer with 64 neurons.
The output layer has inputsize length with predicted azimuth and distance to the next point.
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Output layer

Bidirectional LSTM
Layer (128 cells)

Bidirectional LSTM
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Inner ANN layersInput layer

Figure 6. Approach of the ANN architecture.

6. Trajectory Prediction Results

The training part of the tourist car dataset contains 220,296 entries, the validation part
contains 73,432 entries and the test part consists of 53,822 entries. Each neural network
model with a different input size has been trained on 100 epochs with a batch size of 64.

The mean squared error (MSE) between expected and predicted azimuths and dis-
tances between points (Equation (2)) and average displacement error (ADE) for each model
with different input lengths were calculated using Equation (3). For Equation (2), n is
sequence length, Yi denotes values of the variable being predicted and Ŷi denotes predicted
values. For Equation (3), l is trajectory length, (xi, yi) is the ground truth point of the trajec-
tory on the i-th step and (x̂i, ŷi) is the predicted point of the trajectory on the i-th step.

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (2)

ADE =
1
l

l

∑
i=1

√
(xi − x̂i)2 − (yi − ŷi)2 (3)

The results of the models’ comparison are presented in Table 4. The experiments show
that the model using five-point prediction is the most accurate. Due to the inaccuracy
of GPS measurements and the subsequent lack of filtering of trajectory emissions, there
is a discrepancy between the small error in prediction and the total error in the distance
between the predicted and real points.

Table 4. Model evaluation results.

Trajectory Point Input Number MSE ADE, m

3 2.54 × 10−6 73.64
5 4.184 × 10−7 31.42
9 3.574 × 10−7 37.26

The car trajectory prediction result is shown in Figure 7. The trajectory represents
the tourist travel around St. Petersburg, Russia. The blue coloured line shows the original
tourist trajectory in the city and red-coloured line stands for the predicted trajectory given
by the bidirectional LSTM model. The visualization of the trajectories comparison shows
that on straight sections of the route the initial and predicted results practically coincide.
However, the proposed model starts to make mistakes when it tries to predict turns.
This situation can be explained by the high noise in the initial data, which were extracted
from the electronic device GPS.

The MSE error is comparable to existing solutions for predicting motion trajectories
based on the ANN solutions, but the ADE error is greater. Such a situation can be explained
by different approach scopes. The existing solution usually predicts the movement patterns
around the camera frame within fixed dimensions. The authors’ approach tries to predict
tourist car-trajectory in the tourist region in the global map scope. Due to the scale of the re-
gion, even when using such precise coordinate transformation methods as the Vincenty
formula, a small prediction error can lead to a large final trajectory error. Another factor
leading to a large deviation in the predicted trajectory is the general noise level of the GPS
data and the lack of smoothing.
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Figure 7. Actual and predicted tourist trajectories.

7. Discussion

The proposed trajectory prediction model successfully allows prediction of tourist
trajectories, which was stated as the goal of this paper. The collected driver trip trajectory
dataset with GPS data and further coordinate transformation by using the inverse method
of the Vincenty formula allows training of the bidirectional LSTM-model with acceptable
results for the behaviour analysis. The research has confirmed that ANN-based solutions
can be used for map-based trajectory predictions. We showed that MSE and ADE errors
are quite small and the model can be used in real systems. The proposed model can be
used for accounting and analysis of the most frequently visited routes based on historical
data. The gathered results can be used for controlling possible tourist flow within the city.
Another possible model application is an analysis of indirectly visited tourist POIs that
are close to the predicted trajectory. The possible visited POI can be used for the recom-
mendation system tuning and the following tourist clustering. The proposed method does
not depend on the tourist region and relies on the joint use of coordinates collected from
the GPS of an electronic device and the inverse method of the Vincenty formula. Based on
these facts, researchers can use the proposed bidirectional LSTM model for further research.

However, the presented approach has the following limitations and weaknesses.
Firstly, the tourist trajectory car dataset has to contain relatively close routes, within one city
for example. If this condition is not met, the min–max scaler usage can transform the close
route points incorrectly, which can potentially lead to the wrong trajectory predictions.

Secondly, the trajectory has to be filtered from route point emissions because they
provide incorrect data dependencies to a neural network that can lower the prediction
accuracy. The absence of filtering and softening of these trajectories leads to a greater
prediction error. Increasing the number of predicted trajectory points, as well as displaying
several possible trajectories with probabilistic estimates, can also help improve model
prediction results [28].

The following actions can be taken for improving the overall model prediction applica-
bility. The current model considers only weekday usage as a context parameter. However,
the route characteristics such as speed, acceleration and other sensor-based metrics can be
used as additional context parameters. Another possible context expansion is a road-type
consideration (highway, country road, square, etc). The proposed context parameters can
drastically improve the model prediction capability.

Another potential improvement is neural network hyper-parameter tuning by using
genetic algorithms. Due to the limitation in the form of training the proposed neural model
within one city, the tourist support system needs to train different neural networks for
each supported city. Due to the different city topologies and heterogeneity of training data,
the bidirectional LSTM hyper-parameter optimisation can be time-consuming for manual
adjusting. Genetic algorithms can facilitate the task of selecting optimal parameters.
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8. Conclusions

In this paper we presented an approach to tourist trajectory prediction based on
LSTM neural networks. We showed the reference model of the approach as well as
the neural network architecture. We evaluated our approach based on data generated by
the Drive Safely system that tracks drivers’ movements as well as detecting dangerous
situations in vehicle cabins based on the different sensors. The evaluation shows that
the presented approach allows prediction of the tourist trajectories with acceptable accuracy
for further trajectory analysis by experts. The existing trajectory prediction models focus
on the forecasting process within a small area such as a camera frame. The proposed
solution considers trajectories at the level of the tourist region and provides the possibility
of modifying the input parameters. In addition to using the trajectory, the proposed tourist
support system can provide additional context and historical data based on the digital
pattern of life concepts, such as road type, various movement characteristics during the trip,
critical events frequency such as drowsiness/distraction, etc. Experiments have been
implemented in a dataset of 220,296 entries. In the future, the authors want to add context
support such as road type, speed and/or acceleration as the bidirectional LSTM-model
input, and extend the model output length with support for the probabilistic derivation of
possible tourist trajectories.
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