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Abstract: Glioblastoma Multiforme (GBM) is an aggressive form of glioma, exhibiting very poor
survival. Genomic input, in the form of RNA sequencing data (RNA-seq), is expected to provide vital
information about the characteristics of the genes that affect the Overall Survival (OS) of patients.
This could have a significant impact on treatment planning. We present a new Autoencoder (AE)-
based strategy for the prediction of survival (low or high) of GBM patients, using the RNA-seq data of
129 GBM samples from The Cancer Genome Atlas (TCGA). This is a novel interdisciplinary approach
to integrating genomics with deep learning towards survival prediction. First, the Differentially
Expressed Genes (DEGs) were selected using EdgeR. These were further reduced using correlation-
based analysis. This was followed by the application of ranking with different feature subset
selection and feature extraction algorithms, including the AE. In each case, fifty features were
selected/extracted, for subsequent prediction with different classifiers. An exhaustive study for
survival group prediction, using eight different classifiers with the accuracy and Area Under the
Curve (AUC), established the superiority of the AE-based feature extraction method, called DeepSGP.
It produced a very high accuracy (0.83) and AUC (0.90). Of the eight classifiers, using the extracted
features by DeepSGP, the MLP was the best at Overall Survival (OS) prediction with an accuracy
of 0.89 and an AUC of 0.97. The biological significance of the genes extracted by the AE were also
analyzed to establish their importance. Finally, the statistical significance of the predicted output of
the DeepSGP algorithm was established using the concordance index.

Keywords: survival prediction; deep learning; glioblastoma; RNA sequencing data; differentially
expressed genes

1. Introduction

Cancer is a disease of genetic instability, often associated with genes directly involved
in cell growth and proliferation, differentiation, survival, and apoptosis, or indirectly in-
volved through genes participating in cell signal transduction pathways. Research over the
past decade has revealed that many of the defective genes affect the same set of molecular
pathways [1]; defects in only a small number of such pathways are actually responsible
for many different tumor types [2]. Therefore, therapeutics directed at specific molecu-
lar pathways (involving cancer-altered genes) can be used to effectively treat different
types of tumors. Current developments in genomics have enabled molecular profiling of
biological specimens by simultaneously revealing the expression levels of thousands of
genes. The gene expression patterns of cancer tissues can reveal its etiology, prognosis,
and response to therapy and facilitate the individualized selection of therapies. Here,
dimensionality reduction and feature selection help in filtering out and focusing on only
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those sets of differentially expressed genes, from the diseased tissue, that can be best corre-
lated with patient prognosis and clinical outcome [3]. This helps reduce the computational
complexity of the problem and make the appropriate modeling feasible.

Gliomas constitute 70% of malignant primary brain tumors in adults [4] and are
usually classified as High-Grade Gliomas (HGGs) and Low-Grade Gliomas (LGGs)—with
the former being more aggressive and infiltrative. Glioblastoma Multiforme (GBM) is
an aggressive form of HGG. It is one of the most common and invasive brain tumors,
with a median survival of 12 to 15 months. Standard treatments are surgery followed
by chemotherapy or radiotherapy [5]. Surgical removal of tumor can increase survival
substantially [6]. It was shown that post surgical chemotherapy with radiation followed by
adjuvant temozolomide can improve survival further [5]. However, some idea about the
overall survival is definitely useful for effective treatment planning. Although standard
treatment protocols help enhance the survival of GBM patients, the prediction of their
survival time and the identification of (possible) causative genes can increase the efficiency
of these models. Genomic features (RNA-seq), obtained invasively, can be used for survival
prediction in GBM patients.

Deep Learning (DL) is a kind of representation learning, where a machine learns
from raw data to automatically discover the representations needed for regression or
classification [7]. It involves multiple levels (depth) of representation, such that each
transforms the representation at the preceding level into one at a higher, slightly more
abstract level. Some of the inherent limitations of deep learning include high computational
cost and the requirement of a large number of training data. Among the different DL
models, the AE [8] is used to learn efficient data encoding through representation learning
and is typically employed for dimensionality reduction.

The problem of predicting OS in brain cancer patients is challenging. It depends on
multiple factors such as cancer grade, molecular biomarkers, non-biological factors (tumor
location, whether it was surgically removed or reduced), age, sex, and other comorbidities.
Besides, the presence of censored data causes further problems. The application of deep
learning models for OS prediction is limited also due to the absence of large annotated
publicly available datasets [9]. This is because training a deep model from scratch generally
requires a large amount of training data to generalize, while the data remain typically
scarce in medical applications with expert annotation being expensive.

The prediction of the OS of patients, from multi-modal MRI using deep learning, has
started to attract attention [10]. However, it has been observed that the majority of the
literature on survival prediction is based on radiomics [11–18]. Reference [19] reported
a very low accuracy (51.5%) on the test set even by the best performing model. In more
recent times, clinical (age) and radiomic (volumetric, shape, and texture) features from
multimodal MRI scans were used [20] for two-class (short and long) and three-class (short,
medium, and long) survival group prediction. It may be noted that the clinical feature
(age), very obviously, contributed the most towards the high accuracy reported for survival
prediction. Moreover, survival analysis, employing regression on genomic data, has also
gained attention, with most of the literature attempting to find a gene signature related to
the survival of a patient [21–29]. A study to discover genes with prognostic potential for
GBM patients was reported [9], using an MLP with two hidden layers. The selection of
27 significant genes was reported from the TCGA-GBM gene expression data employing
survival analysis.

In this research, OS prediction was transformed into a classification problem by
dividing the patients into two survival groups, viz. high and low. It was based on the
determination of a threshold; by selecting an equal number of samples on either side of the
median survival point [30]. This was a novel interdisciplinary approach integrating deep
learning with genomics towards survival prediction.

The contributions and output of this article are as follows:

• Development of a new AE-based feature extraction model (DeepSGP) for survival
group prediction in glioblastoma;
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• A novel interdisciplinary application to survivability prediction, in terms of genes,
using deep learning;

• An exhaustive experimental study, including comparison with state-of-the-art (related)
feature extraction and feature selection algorithms;

• Quantitative evaluation to establish the statistically significant performance of the model;
• Analysis of the biological significance of genes extracted by the AE.

The rest of the paper is organized as follows. The list of symbols is given in Table 1.
Preprocessing is reported in Section 2. Section 3 describes the methods for the selection of
the genes. Section 4 provides the details on dimensionality reduction. This is followed by
the experimental results in Section 5, encompassing the comparative study with the related
methods and analysis of the biological significance of the extracted genes. Finally, Section 6
concludes the article.

Table 1. List of symbols used.

Symbol Symbol Description Symbol Symbol Description

|S| Cardinality of the set FC Fold Change
C Class label GBM Glioblastoma Multiforme
cov Covariance GO Gene Ontology
D Decoder HGG High-Grade Gliomas
E Encoder ICA Independent Component Analysis
Fj Relevant features ICAP Interaction Capping
Fk Subset of features JMI Joint Mutual Information
H(FkFjC) Joint entropy KPCA Kernel Principal Component Analysis
I Mutual information LGG Low-Grade Gliomas
J Criterion function LOO Leave-One-Out strategy
kNN k Nearest Neighbor classifier LR Logistic Regression
m Samples MIFS Mutual Information Feature Selection
n Features MIM Mutual Information Maximization
p′(x) Probability MLP Multi-Layer Perceptron
p′(xy) Joint probability MRI Magnetic Resonance Imaging
S Set of features MRMR Minimum Redundancy Maximum Relevance
X̂ Output of AE MSE Mean-Squared Error
X and Y Random variables NB Naive Bayes
σ Standard deviation OS Overall Survival
AE Autoencoder PCA Principal Component Analysis
AUC Area Under the Curve RF Random Forest
CART Classification And Regression Tree RNA-seq RNA sequencing data
CIFE Conditional Infomax Feature Extraction ROC Receiver Operating Characteristic curve
CONSS Consensus SMOTE Synthetic Minority Oversampling TEchnique
DEG Differentially Expressed Genes SVM Support Vector Machine
DISR Double Input Symmetrical Relevance TCGA The Cancer Genome Atlas
DL Deep Learning XGB XGBoost

2. Preprocessing

Here, we present the dataset preparation for the simulation study, based on TCGA-
GBM RNA sequencing data (https://www.cancer.gov/tcga (accessed on 8 November 2018).
The Cancer Genome Atlas Program provided 174 samples containing RNA sequencing
(RNA-seq) data, with the number of control and disease samples being five and one-
hundred sixty-nine, respectively. The control data being the normal samples, these were not
found suitable for this study; hence, they were discarded. After eliminating the 40 censored
data, the threshold between the high and low survival groups was selected based on the
median [30] computed at 384 days on the 129 samples. Note that the sample median
can be treated as a good representation of the population statistics [30]. Now, there were
64 samples (with high survival) and 65 samples (having low survival) of glioblastoma cases,

https://www.cancer.gov/tcga
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to formulate the two-class framework. The raw counts of RNA-seq for these 129 samples
were employed in our experiments. Here, the RNA-seq data for each sample consisted
of the raw read counts of 60,483 genes, which included both protein-coding and non-
coding genes.

The EdgeR package [31] (in R) was used to prepare the data. It is a Bioconductor
software package that detects differentially expressed genes from normalized read count
data. The raw count of the RNA sequence, with a cutoff of 200 per million, was employed
for low abundance data cleaning, to estimate the effective library size of the entire data
towards normalization. Genes with low expression values are basically noise and hinder
the evaluation of differentially expressed genes. Next, the RNA-seq dataset was normalized
by adjusting the library sizes to minimize the log-fold changes. A major step in the analysis
of Differentially Expressed Genes (DEGs) is to estimate their dispersion parameters. EdgeR
uses an overdispersed Poisson model to analyze the biological and statistical variances,
with the empirical Bayes method being employed to normalize the degree of overdispersion
across transcripts.

Differential expression analysis [32] was used to select groups of DEGs having signifi-
cant quantitative changes in expression levels between the experimental groups (involving
normalized read count data and statistical analysis) reporting high and low survival in
glioblastoma samples. With a threshold of p < 0.002 [31] (indicating the significance of
genes), a total of 877 DEGs were extracted by the above procedure. These 877 genes were
considered as our dataset for subsequent feature (gene) selection or extraction.

A volcano plot [33] was generated using the differential expression analysis results
obtained from EdgeR. Volcano plots are a useful means of visualizing the data in RNA-seq,
proteomics, and other high-throughput experiments. It usually resembles a scatter plot
where the statistical significance denoted by the p-values is plotted with the fold changes
of the expression of the genes. From this plot, one can easily perceive changes in large
datasets and thereby identify the best candidate genes relevant to the study. We used the
Bioconductor package “EnhancedVolcano” to construct the volcano plot. Likewise, in the
case of differential expression analysis, we took a p-value threshold of less than 0.002 to
denote significance. Additionally, we used a log fold-change cut-off of one, signifying at
least a two-fold change in the expression between the two conditions. The volcano plot
is provided in Figure 1. Looking at the volcano plot, we can see that the genes marked
in red are the ones that were statistically significant on account of both the p-values and
their fold changes. On the other hand, the genes represented in blue depict the ones that
were significant in terms of their p-values (≤0.002), measured as the magnitude of their
fold changes (which were less than two folds). In other words, the genes depicted in “red”
were deregulated by at least a two-fold change in expression between the two conditions
(high- vs. low-GBM). In general, these two groups of genes were relevant in our study for
further downstream analyses.

As some samples in the TCGA-GBM RNA sequencing dataset had a very high ex-
pression value for a particular gene, as compared to that of the majority samples in the
same class, this was likely to be noise. Therefore, we did not consider log2(FC), where FC
(Fold Change) is the ratio of the expression values of a particular gene between the two
classes, as a deciding criterion during DEG selection. Low abundance cleaning based on
expression count rate and a p-value less than 0.002 were the deciding criteria.

Due to high correlation among the genes of RNA-seq data, it became necessary to
reduce the redundancy amongst features. Correlation was applied for dimensionality
reduction. This is a statistical method that evaluates how strongly a pair of features are
related. The correlation coefficient uses the standard deviation (σ) and covariance (cov) to
measure the relationship between features f1 and f2 as:

corr( f1, f2) =
cov( f1, f2)

σf1 ∗ σf2

. (1)
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Correlation-based feature selection helps reduce the feature set while preserving the
data characteristics. It helps select a subset of features that ensures minimum feature-to-
feature correlation and redundancy. We selected only one gene from each correlated cluster,
with the correlation coefficient > 0.7, based on the (minimum) p-value.

Figure 1. Volcano plot depicting the significant genes in terms of their significance levels and
fold changes in expression. Genes with p-values less than 0.002 were considered to be statistically
significant (“red” and “blue” points in the plot). Of these, those with more than a two-fold expression
are additionally demarcated (genes denoted in “red”). The top 5 upregulated and downregulated
genes with the highest changes in expression are labeled. The genes represented in black (NS) and
green (logFC) points denote the ones that were not statistically significant and were not considered
for downstream analyses.

As the sample size of the dataset was very small (only 129) and the number of features
was very high, employing deep learning became infeasible. Therefore, data augmentation
was performed to enhance the sample size (from 129 to 804). Over-sampling was employed
for this purpose [34], using the SMOTE algorithm [35]. The Synthetic Minority Over-
sampling TEchnique (SMOTE) improves random oversampling by generating additional
samples based on the feature space characteristics of a dataset.

3. Selection of Genes

The selection of features can be supervised, as well as unsupervised, depending on
class information availability in the data. The algorithms are typically categorized as
filter and wrapper models [36], with a differing emphasis on dimensionality reduction
or accuracy enhancement. The wrapper methods assess feature subsets according to
their usefulness to a given predictor. However, selecting a good set of features is usually
suboptimal for building a predictor, particularly in the presence of redundant variables.
Since finding the best feature subset is intractable or NP-hard [37], heuristic and non-
deterministic strategies are deemed more practical. It is important to select a highly
informative and non-redundant feature (gene) subset for the efficiency and accuracy of
decision making.

Feature selection can be performed through ranking, as well as subset selection
strategies [38]. The former computes the ranking score for each gene according to its
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discriminative power, followed by a simple choice of the top k genes. Although prefer-
able for high-dimensional problems, due to its computational scalability, such subsets
of selected genes remain prone to redundancy. This is because the ranking score is com-
puted independently for each gene, while completely ignoring its correlation with others.
On the contrary, the feature subset selection methods focus on choosing a subset of genes
that jointly possess higher discriminative power. In general, sophisticated subset selection
methods demonstrate improved decision making. However, the high computational cost
usually limits their applicability to high-dimensional domains. Since a combinatorial
search of the optimal combination of features is computationally prohibitive, a judicious
combination of both strategies becomes desirable.

In this study, EdgeR was used to find the significantly deregulated genes between the
two groups under study. Prior to carrying out the statistical testing, the low abundance
genes were filtered out to improve the power of the statistical testing [39] (as described
in Section 2). This preprocessing was followed by a sequential combination of ranking
and subset selection in order to select the relevant genes. The entire process is outlined in
Figure 2.

Figure 2. Flowchart of the experimental strategy.

3.1. Ranking

The simple two-tailed t-test [40], which measures the significance of the difference of
the means between two distributions, was used to evaluate the discriminatory power of
each individual gene in separating the two survival classes. If the features are assumed
to come from normal distributions with unknown, but equal variances, the t-statistic is
defined as:
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classes, respectively, and N′1 and N′2 are the corresponding numbers of samples in the two
classes. Here, the features correspond to the expression values of the genes.

In the absence of any consideration of the correlation between features, the redundant
ones are inevitably selected, thereby affecting the classification performance. Therefore, we
used this strategy to initially select the more discriminatory genes by applying a cut-off
ratio p < α, where α = 0.05 is the significance level for rejecting the null hypothesis.
Here, the p-value indicates the probability of the test statistic, calculated using the null
distribution.

3.2. Subset Selection

In the second stage, subset selection was employed to evaluate the effectiveness of
the discriminative genes selected by the t-statistic, as outlined above. Let J be the criterion
function for feature selection, which measures the importance or usefulness of a feature
(gene) subset with respect to classification. It is also known as the “relevance index” in the
literature. Let Fk be the feature that is being evaluated, C be the class label, and S be the set
of features that are already selected.

Let I(X; Y) denote the mutual information between two random variables X and Y,
such that I(X; Y) = ∑

x∈X
∑

y∈Y
p′(xy) log p′(xy)

p′(x)p′(y) , where p′(x) and p′(xy) are the probability

and joint probability of occurrence, respectively. We have:

1. Mutual Information Maximization (MIM) [41]:

Jmim(Fk) = I(Fk; C). (3)

Here, each feature is considered independently and ranked according to the score.
On the basis of the rank, the required number of features is selected;

2. Joint Mutual Information (JMI) [42]:

Jjmi(Fk) = ∑
Fj∈S

I(FkFj; C). (4)

The objective is to select a complementary subset Fk of the relevant features Fj;
3. Minimum Redundancy Maximum Relevance (MRMR) [43]:

Jmrmr(Fk) = I(Fk; C)− 1
|S| ∑

Fj∈S
I(Fk; Fj) (5)

focuses on selecting feature pairs from S having the maximum relevance and mini-
mum redundancy, with |S| denoting the cardinality of the set;

4. Double Input Symmetrical Relevance (DISR) [44] is a modification of the criterion of
Equation (4) and given by:

Jdisr(Fk) = ∑
Fj∈S

I(FkFj; C)
H(FkFjC)

. (6)

Here,H(FkFjC) is the joint entropy;
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5. Mutual Information Feature Selection (MIFS) [45], as Equation (5), also attempts to
balance the “relevance-redundancy” tradeoff in the feature. We computed:

Jmi f s(Fk) = I(Fk; C)− β ∑
Fj∈S

I(Fk; Fj), (7)

with β being configured experimentally. Note that β = 0 leads to Jmim(Fk), and
β = 1

|S| results in Jmrmr(Fk). Since it has been experimentally observed [45] that β = 1
is often optimal, hence this was used in our study;

6. Interaction Capping (ICAP) [46], formulated as:

Jicap = I(Fk; C)− ∑
Fj∈S

max[0, {I(Fk; Fj)− I(Fk; Fj|C)}], (8)

and Conditional Infomax Feature Extraction (CIFE) [47], given by:

Jci f e = I(Fk; C)− ∑
Fj∈S

I(Fk; Fj) + ∑
Fj∈C

I(Fk; Fj|C), (9)

are two other ways to handle the relevance-redundancy tradeoff in feature selection.
7. Finally, a Consensus (CONSS) of all seven subsets, generated by Equations (3)–(9),

was also considered to incorporate the aggregated effect of the algorithms. Those
genes occurring in at least three of the seven selected subsets were considered, of
which the top 50 genes were taken for the present study.

4. Dimensionality Reduction

Although feature selection can choose individual features that are important for
classification, it often neglects the interfeature relationship. An individual feature may
monothetically fail to represent a dataset properly, yet polythetically, its inter-relationship
with other features can function better. Feature extraction encompasses projection to
a new dimension for generating transformed attributes in a reduced space without losing
significant information. Given a gene dataset, it is therefore possible that this relation
between genes holds the key to the accurate prediction of survival in a patient. Here lies
the utility of autoencoders in dimensionality reduction.

4.1. Statistical Methods

Some of the well-known, traditional feature extraction strategies include Principal
Component Analysis (PCA) [48], Kernel PCA (KPCA) [49], and Independent Component
Analysis (ICA) [50]. PCA extracts the dominant information from the patterns by iden-
tifying eigenvectors with the largest eigenvalues as the most relevant attributes. KPCA,
on the other hand, is a nonlinear formulation of PCA. Using integral operator kernel
functions, it extracts the principal components of a dataset. A nonlinear map is employed
for this purpose. ICA separates a multivariate signal from some individual non-Gaussian
components, such that the generated attributes remain statistically independent. It serves
as an example of blind source separation.

4.2. Autoencoder

Although statistical feature selection algorithms can efficiently detect singleton fea-
tures, they typically ignore the combined effect of multiple features. This intergene rela-
tionship is not properly explored in the high-dimensional genomic data. In this scenario,
the latent layer of an AE allows representing a combined effect of the entire input feature set.
AEs are global nonlinear dimensionality reduction methods. They capture the topology of
the manifold and tend to capture more of these global characteristics than other traditional
dimensionality reduction algorithms. They can thereby learn very complicated nonlinear
transformations of the features that interact in a nonlinear way, as observed in the case of
high-dimensional genomic data.
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The autoencoder [51] is a classical unsupervised learning model used here for gene
data analysis. The basic AE is depicted in Figure 3 and includes an encoder and a decoder.
The encoder compresses high-dimensional data into a low-dimensional feature space. This
is an effective way of dimensionality reduction [52,53], particularly for redundant gene
data. The decoder is then responsible for restoring the compressed features back to their
input space.

Figure 3. Basic architecture of the autoencoder.

Let X = [x1, x2, . . . , xm] ∈ Rn×m be the input, containing m samples with n features.
The function of the encoder can be expressed as E : X ∈ Rn×m −→ Y ∈ Rp×m where
p � n and Y is the output of the hidden layer. The function of the decoder is D : Y ∈
Rp×m −→ X̂ ∈ Rn×m, where X̂ is the output of the AE. Here, E andD represent the encoder
and decoder transformations, respectively. The Mean-Squared Error (MSE) optimization
function of the AE (MSEAE) can be represented as:

MSEAE = arg max
E ,D
||X−D(E(X))||2. (10)

The AE was employed to reduce the feature space in order to efficiently perform
subsequent decision making in the form of survival prediction.

5. Experimental Results

In this section, we present the results for survival group prediction, using eight classi-
fication algorithms on the reduced feature space (involving the selection and projection of
genes). Preprocessing (as in Section 2) on the RNA-seq data with EdgeR over 60,483 genes,
considering 129 uncensored samples, led to the extraction of 877 DEGs. The application of
correlation-based selection, with a coefficient corr = 0.7, resulted in the choice of a reduced
set of 315 genes.

5.1. Selection of Genes

The 315 genes thus obtained using Equation (2) were considered for feature ranking.
A subset of 50 genes was selected by each of the seven subset selection algorithms of
Equations (3)–(9), from the 315 gene set. An overall summary of the seven subsets is
presented in Table 2. It is clearly evident that the maximum p-value by all the algorithms
was ≤0.0019, thereby establishing the statistical significance of the selections. This was
followed by considering a consensus among these seven subsets of genes, such that those
present in at least three of the seven subsets were selected. Of these, the first 50 genes were
chosen. The results are depicted in the last row of Table 2, as CONSS. Subsets of gene IDs,
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selected before and after the application of the seven filters, are reported in Supplementary
Materials Sections S1 (Table S1) and S2, respectively.

Table 2. Characteristics of the top 50 genes chosen by the subset selection algorithms.

# Algorithm Max p-Value Min p-Value

1 CIFE 0.0019 2.88× 10−5

2 DISR 0.0019 4.16× 10−26

3 ICAP 0.0019 1.72× 10−6

4 JMI 0.0019 2.79× 10−11

5 MIFS 0.0014 9.15× 10−25

6 MIM 0.0019 2.79× 10−11

7 MRMR 0.0019 2.79× 10−11

8 CONSS 0.0019 0.00 (Approx.)

5.2. Extraction of Reduced Attributes

Next, the AE model DeepSGP was employed for attribute extraction. The 315 genes’
set was encoded to 50 transformed attributes, selected from the latent (middle) layer of
the AE consisting of two hidden layers with 200 and 100 nodes, respectively (Figure 3).
The decoded output layer can reconstruct these back to their original gene space. Multiple
the AE architecture was used for this experiment (hidden layers with 200, 150; 150, 100;
and 150, 75 nodes, were employed). It was experimentally observed that stepwise decre-
menting (and incrementing) of the number of nodes, over the consecutive hidden layers
(from 200 through 100 to 50), provided improved output, as compared to that of a sudden
drop. The latent layer constituted the transformed attributes. The 50 projected attributes
(chosen for the parity of comparison with the other methods) formed the reduced set for
further investigation.

For comparison with other feature extraction procedures (explained in Section 4.1),
we also extracted the most relevant 50 attributes from the 315 genes using the PCA (vari-
ance between 50.84 and 2.03), KPCA, and ICA algorithms. Finally, eight subsets of selected
features (using feature selection and consensus algorithms), one subset of encoded at-
tributes (DeepSGP), and three sets of extracted attributes were used by the eight classifiers
considered in our study. Note that in each case, the 50 attributes (or features) were se-
lected/extracted, based on their performance, for subsequent prediction with different
classifiers. By increasing or decreasing the features, an improvement in performance was
not evident. Moreover, taking 50 features (or attributes) in all the cases was reasonable,
particularly for maintaining parity.

5.3. Classification into Survival Groups

The capability of feature selection and dimensionality reduction (including AE), using
a 50-dimensional reduced input space, was next evaluated for survival class prediction
of glioblastoma patients into the low and high survival classes. Eight classifiers, viz.
Logistic Regression [54] (LR), Support Vector Machine [55] (SVM, linear kernel), k Nearest
Neighbors [56] (kNN, averaged over k = 3, 5, and 7), Naive Bayes [57] (NB), Multilayer
Perceptron [58] (MLP, ReLU activation), Classification and Regression Tree [59] (CART
with entropy), Random Forest (RF, with n_estimators = 100) [60], and XGBoost (XGB, with
booster gbtree) [61] were used for this purpose. The hyperparameters were selected based
on several experiments. The classifiers were tested on the seven subsets of selected genes
and one consensus subset of genes along with four subsets of extracted attributes. All the
experiments were implemented using Python 3.6.

The results are depicted in Tables 3 and 4, evaluated for the average Accuracy Acc
and AUC, respectively. As the sample size of the dataset was very small, we did not use
10-fold cross-validation. Instead, the Leave-One-Out strategy (LOO) was used for the
experiments. The metric Area Under the Curve (AUC) measured the distinguishability
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between the two survival classes (low and high). The algorithms considered included CIEF,
DISR, ICAP, JMI, MIFS, MIM, MRMR, and Consensus (CONSS), for selection, and ICA,
PCA, KPCA, and AE, for extraction. The average score of each algorithm, over all eight
classifiers, is indicated in the last column of both tables. It was evident that the average
accuracy of 0.83 and the AUC 0.90 were attained by the AE, as it outperformed the rest
of the algorithms by a large margin. The next highest value (on average) was obtained
by ICAP, with an accuracy of 0.71 and an AUC of 0.81, which was significantly lower
than the proposed DeepSGP. The ICA performed the worst, with an average accuracy
of only 0.61 and an average AUC of 0.71. From the perspective of a classifier, the best
results were obtained using the MLP; with a 0.89 accuracy and a AUC of 0.97. The F1-score
(the harmonic mean of the precision and recall) is defined as F1 = 2 × (precision ×
recall)/(precision + recall), where precision = True positives/(True positives +
False positives) and recall = True positive/(True positive + False negative), speci f icity =
(True negative/(True negative + False positive), and sensitivity =
True positive/(True positive + False negative). These are depicted in Table 5. The Receiver
Operating Characteristic (ROC) curve is shown in Figure 4. From Table 5 and Figure 4,
it was evident that (in all cases), DeepSGP outperformed the other methods. The experi-
ments were also performed with DeepSGP involving fewer nodes. For example, with 10,
20, 30, and 40 nodes used for testing, the average accuracy and AUC were always less
than 0.80 and 0.88, respectively. It may be noted that increasing the size of the subset did
not ensure better results. Subsequent analysis of the significance of the genes, decoded
from the attributes selected by the AE (DeepSGP), is pursued in Section 5.4. The predictive
ability of the extracted attributes from DeepSGP was estimated using the concordance
index, which was found to be a reasonable 0.81. The proposed method was compared with
state-of-the-art feature extraction/selection algorithms and demonstrated superiority in
all cases.

Table 3. Comparative study of the accuracy of the survival prediction by DeepSGP using 50 attributes.

# Methods LR SVM KNN NB MLP CART RF XGB Avg

1 CIEF 0.76 0.74 0.72 0.72 0.69 0.57 0.67 0.64 0.69
2 DISR 0.72 0.70 0.65 0.77 0.69 0.59 0.72 0.66 0.69
3 ICAP 0.73 0.76 0.73 0.79 0.71 0.55 0.69 0.68 0.71
4 JMI 0.75 0.73 0.72 0.67 0.66 0.53 0.68 0.68 0.68
5 MIFS 0.67 0.71 0.55 0.69 0.67 0.60 0.66 0.59 0.64
6 MIM 0.68 0.68 0.67 0.68 0.64 0.52 0.63 0.62 0.64
7 MRMR 0.74 0.72 0.62 0.79 0.72 0.45 0.75 0.63 0.68
8 CONSS 0.73 0.68 0.70 0.77 0.73 0.61 0.74 0.73 0.71
9 ICA 0.65 0.64 0.51 0.78 0.58 0.47 0.66 0.58 0.61
10 PCA 0.71 0.68 0.46 0.61 0.58 0.65 0.74 0.75 0.65
11 KPCA 0.74 0.71 0.60 0.63 0.65 0.45 0.64 0.68 0.64
12 DeepSGP 0.85 0.86 0.76 0.86 0.89 0.66 0.88 0.85 0.83
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Table 4. Comparative study over the AUC in the survival prediction by DeepSGP using 50 attributes.

# Methods LR SVM KNN NB MLP CART RF XGB Avg

1 CIEF 0.85 0.85 0.82 0.85 0.85 0.60 0.80 0.75 0.80
2 DISR 0.85 0.85 0.73 0.90 0.85 0.62 0.73 0.73 0.78
3 ICAP 0.87 0.86 0.86 0.87 0.87 0.52 0.79 0.80 0.81
4 JMI 0.86 0.83 0.82 0.82 0.86 0.58 0.81 0.78 0.80
5 MIFS 0.73 0.75 0.64 0.74 0.83 0.60 0.76 0.65 0.71
6 MIM 0.79 0.78 0.75 0.80 0.79 0.59 0.76 0.68 0.74
7 MRMR 0.87 0.86 0.72 0.93 0.87 0.54 0.80 0.67 0.78
8 CONSS 0.83 0.79 0.78 0.84 0.83 0.57 0.79 0.75 0.77
9 ICA 0.77 0.75 0.58 0.86 0.77 0.56 0.76 0.63 0.71
10 PCA 0.85 0.78 0.57 0.69 0.85 0.65 0.80 0.78 0.75
11 KPCA 0.78 0.81 0.70 0.75 0.78 0.52 0.72 0.73 0.72
12 DeepSGP 0.97 0.95 0.86 0.94 0.97 0.65 0.95 0.94 0.90

Table 5. Comparative study of the F1-score, sensitivity, and specificity in the survival prediction by
DeepSGP using 50 attributes.

Score CIFE DISR ICAP JMI MIFS MIM ICA PCA KPCA DeepSGP

F1 0.71 0.65 0.73 0.70 0.68 0.67 0.51 0.60 0.60 0.82
Sensitivity 0.75 0.64 0.77 0.75 0.71 0.74 0.53 0.66 0.62 0.82
Specificity 0.69 0.74 0.69 0.68 0.66 0.64 0.64 0.57 0.59 0.84

Figure 4. Comparative study of the ROC curve in the survival prediction by DeepSGP using 50
attributes. Here, the x-axis represents the false positive rate, and the y-axis corresponds to the
true positive rate. Each colored plot indicates the performance of an algorithm, with reference to
the respective legend.
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All the experiments were conducted on a computer with an Intel Xeon E5 processor
using 128 GB of RAM and an NVIDIA TITAN Xp GPU. The programming language R and
Python 3.6 were used for the experiments [62,63].

5.4. Biological Significance of Extracted Genes

The weights of the AE were analyzed to infer the importance of its encoded genes
towards decision making. Since our model had two hidden layers, preceding the latent
layer, it became difficult to directly decode the genes based on their connectivity from the
latent layer. Therefore, an analogous single-layer AE was designed with 50 nodes in its
latent layer. Although this smaller AE also generated a high prediction accuracy of 0.84,
it was less than that by the DeepSGP version represented in Figure 3. The normalized final
weights, with values above a threshold of 0.5 or below a threshold of−0.5, were considered
to be the important genes. In this manner, twenty-one genes could be extracted. Their
biological relevance could also be validated from the existing literature. The results are
listed in Table 6, along with the corresponding references, reporting their relevance.

Table 6. The significant genes, with their p-values and roles.

# Gene Name p-Value Reference Comment

1 MAP2K3 7.91× 10−5 [64,65] related to tumor invasion and progression of gliomas and breast tumors.
2 B3GLCT 2.01× 10−4 [66] related to cell proliferation and invasion.
3 HBEGF 1.48× 10−4 [67,68] widely expressed in tumors compared with normal tissue.
4 AC073072.2 2.47× 10−4 [69] affects tumorigenesis.
5 ADAMTS14 1.41× 10−7 [70] expression signature of human prostate cancer cells.
6 LINC02731 1.89× 10−3 Note 1 associated with schizophrenia.
7 MMP7 1.69× 10−6 [71,72] produced by the glioma itself.
8 SLC17A1 9.30× 10−5 [73] downregulation of membrane expression in the gliosomes.
9 COL22A1 1.57× 10−7 [74,75] high expression in squamous cell carcinoma of the head and neck.

10 INHBE 6.89× 10−5 [76] plays a crucial role in cell growth and differentiation.
11 EGFR-AS1 1.28× 10−13 [77] linked to migration, invasion, and apoptosis in glioma cells.
12 SPON2 3.85× 10−5 [78] maintains stem cell traits in GBM.
13 HAND2-AS1 2.25× 10−5 [79] downregulated in tumor tissues of patients with melanoma.
14 CHCHD2P9 4.24× 10−5 [80] upregulated by WNT1/FGF3 in MCF7 cells.
15 GPR27 1.19× 10−3 [81,82] related to cervical cancer.
16 RPP25 1.01× 10−43 [83,84] gene signature for survival of GBM patients.
17 CD1B 1.99× 10−5 [85] has antitumor potential.
18 CRYGS 7.37× 10−11 [86] related to retinoblastoma.
19 CPA6 1.97× 10−4 [87,88] related to heterogeneous glioblastoma cell.
20 FER1L4 6.58× 10−4 [89,90] high expression predicted a poor prognosis for patients with glioma.
21 AL035425.3 5.26× 10−10 [91] related to psoriasis.

1 (https://rgd.mcw.edu/rgdweb/search/genes.html (accessed on 21 January 2020)).

5.4.1. Comparisons with Other Feature Sets

Analogously, employing thresholds of ±0.4 and ±0.3 resulted in the extraction of 52
and 100 significant genes, respectively. The results for the accuracy and AUC, with the eight
classifiers on all three sets of selected genes, viz. 21, 52, and 100, are provided in Table 7.
It can be observed that the accuracy and AUC with 315 genes were not better than those
obtained using the AE. This highlights the importance of the AE towards extracting signifi-
cant genes for survival group prediction. It may be emphasized that while Tables 3 and 4
provide prediction evaluation in terms of 50 projected attributes (for DeepSGP with a
200 × 100 × 50 × 100 × 200 configuration), Table 7 presents the results obtained by genes
extracted by analyzing the AE weight values (with a 200 × 50 × 200 configuration). It may
be concluded that a judicious combination of features (genes) through DeepSGP led to
improved survival group prediction.

https://rgd.mcw.edu/rgdweb/search/genes.html
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Table 7. Acc and AUC of the most important genes.

# of Genes LR SVM KNN NB MLP CART RF XGB Avg

21 0.70 0.72 0.64 0.67 0.66 0.57 0.66 0.68 0.66

Acc 52 0.71 0.68 0.57 0.69 0.71 0.58 0.67 0.76 0.67

100 0.75 0.76 0.65 0.76 0.68 0.60 0.64 0.64 0.69

21 0.84 0.82 0.78 0.78 0.84 0.60 0.72 0.71 0.76

AUC 52 0.80 0.78 0.71 0.79 0.80 0.59 0.73 0.77 0.75

100 0.87 0.86 0.78 0.85 0.87 0.64 0.75 0.75 0.80

5.4.2. Pathway Analysis

The shortlisted set of 100 genes was used to perform pathway analysis using the
KEGG [92] and Reactome [93] pathway databases. The IDs of the subset of the short-
listed 100 genes for pathway analysis are listed in Supplementary Materials Section S3
(Table S2). The list of identified pathways is given in Supplementary Materials Section S4
(Tables S3 and S4). We obtained only two significant pathways in the case of KEGG, while
eight significant processes were obtained upon performing the analysis on the Reactome
Database. Of these processes, the noteworthy ones were the activation of matrix metallo-
proteinases and collagen formation and degradation [94], associated with glioblastoma.

5.4.3. Gene Ontology Analysis

Gene Ontology analysis was carried out on these top 100 differentially expressed genes,
extracted from the AE (Table 7). The Panther (http://www.pantherdb.org/(accessed on
2 February 2020)) and GOrilla (http://cbl-gorilla.cs.technion.ac.il/(accessed on
2 February 2020)) gene ontology databases were used to perform the enrichment anal-
ysis. Fisher’s exact test with FDR correction yielded no significantly enriched biological
processes (i.e., FDR ≤ 0.05). On that account, we withheld any statistical analysis and
looked into the biological significance of these genes independently.

The selected list revealed several genes related to the prognosis and pathogenesis of
glioblastoma cells. Among these, Heparin-Binding Epidermal Growth Factor-like growth
factor (HBEGF) has been reported to be expressed in several cases of malignant gliomas,
and it has been shown to induce glioblastoma in mice [95]. Various subtypes of glioblas-
toma have been shown to be characterized by the increased expression of genes related
to the extracellular matrix and invasion [96]. Accordingly, our set included cadherins
PCDHA7 and PCDHB15 to be among the deregulated genes. Another extracellular matrix
protein, COL22A1, has been shown to be involved in head-and-neck cancers. Spainhour
and Qiu [75] identified a possible association between COL22A1 expression and survival in
glioblastoma and low-grade glioma patients. Several matrix metalloproteases were found
to be deregulated, including MMP7 and MMP9, which have been reported to be associated
with glioblastoma. A low level of expression of MMP9 was found to be correlated with bet-
ter survival rates and is considered to be a prognostic biomarker in patients with primary
glioblastoma [97]. Mu et al. [98] demonstrated that PRL3 promotes invasion and prolifer-
ation in glioma cells, and this process is mediated by the increased expression of MMP7
through the ERK and JNK signaling pathways. Another family of proteins, namely A Disin-
tegrin And Metalloproteinases (ADAMs), has been found to be involved in the progression
and pathogenicity of cancers. Of these, ADAMTS14 was found to be significantly deregu-
lated in our dataset [99]. B3GLCT, a glucosyltransferase, has been found to be highly over-
expressed in gliomas, among other categories of malignancies, as seen in the TCGA dataset
(https://www.proteinatlas.org/ENSG00000187676-B3GLCT/pathology) (accessed on
2 February 2020).

Bioinformatic analysis integrating both gene expression and methylation profiles in
glioblastoma using TCGA RNA-seq and methylation data, followed by further validation
in other TCGA gene expression and TCGA methylation datasets, revealed several genes

http://www.pantherdb.org/
http://cbl- gorilla.cs.technion.ac.il/
https://www.proteinatlas.org/ENSG00000187676- B3GLCT/pathology
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(including RPP25) to be among the eight-gene signature that divided the GBM patients into
high-risk and low-risk groups, with the high- risk individuals being characterized by lower
survival rates [84]. The lncRNA FER1L4 has been established to be upregulated in gliomas,
with the expression levels being significantly higher in high-grade gliomas as compared
to gliomas of a lower grade [89]. Another differentially expressed lncRNA, LINC02731,
has been found to have significantly elevated expression in brain tissues as compared to
other tissues (https://www.ncbi.nlm.nih.gov/gene/100128239#gene-expression (accessed
on 2 February 2020)); however, whether or not it has any role in glioblastoma is yet to
be examined.

Using the Panther Database to examine the pathways regulated by these genes, we
found that several genes were involved in the cholecystokinin receptor-mediated signaling
pathway (CCKR map in GO terms). These included HBEGF, IL8, and matrix metallo-
proteinases (MMP-3,7,9). The matrix metalloproteases were also found to be involved
in other pathways such as the plasminogen activating cascade, which is known to be
associated with glioma cell invasion [100] and the Alzheimer disease presenilin pathway.
Other regulated pathways, with corresponding genes that were differentially expressed in
our set, included the gonadotropin-releasing hormone receptor pathway (FOSB, MAP2K3,
and AL035425), the cadherin signaling pathway (PCDHA7 and PCDHB15), the integrin
signaling pathway (AL035425, MAP2K3), and the EGF receptor signaling pathway (HBEGF
and MAP2K3).

6. Conclusions

We developed an AE-based feature extraction model, DeepSGP, for survival group
prediction, producing very high-quality results. It can be inferred that the RNA-seq
data had a good potential to predict the survival prognostic of GBM patients, with the
appropriate selection of genes. The extraction by the AE was compared with that from
several state-of-the-art feature selection and extraction algorithms. A set of eight classifiers
was used for learning and predicting, based on the selected and extracted reduced attributes’
set. DeepSGP outperformed all the methods on average, and was particularly good with
respect to MLP. The biological significance of the genes, extracted by the AE, were also
analyzed to establish their importance. The concordance index on the AE-extracted features
demonstrated that the results were quite reasonable. In our study, feature selection was
employed as a means of extracting the highest correlated genes. Though this method will
potentially identify the most relevant genes, several genes specific to disease biology will
be omitted by this strategy. Moreover, the results are yet to be implemented in clinical care.
One of the major reasons is a lack of a multicentric approach in validating the prediction of
the model before the implementation of these observations [101]. In the future, we will try to
discover the correlation between the selected genes with the imaging phenotypes (extracted
from multi-modal MR images) for a better understanding of brain cancer patients.
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