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Abstract: The paper studies efficient modeling and prediction of daily traffic patterns in transport
telecommunication networks. The investigation is carried out using two historical datasets, namely
WASK and SIX, which collect flows from edge nodes of two networks of different size. WASK is a
novel dataset introduced and analyzed for the first time in this paper, while SIX is a well-known
source of network flows. For the considered datasets, the paper proposes traffic modeling and
prediction methods. For traffic modeling, the Fourier Transform is applied. For traffic prediction, two
approaches are proposed—modeling-based (the forecasting model is generated based on historical
traffic models) and machine learning-based (network traffic is handled as a data stream where chunk-
based regression methods are applied for forecasting). Then, extensive simulations are performed to
verify efficiency of the approaches and their comparison. The proposed modeling method revealed
high efficiency especially for the SIX dataset, where the average error was lower than 0.1%. The
efficiency of two forecasting approaches differs with datasets—modeling-based methods achieved
lower errors for SIX while machine learning-based for WASK. The average prediction error for SIX
reached 3.36% while forecasting for WASK turned out extremely challenging.

Keywords: traffic modeling; traffic prediction; network modeling; Fourier Transform; machine learning

1. Introduction

The beginnings of transport telecommunication networks date back to the 1960s, when
the ARPA (Advanced Research Project Agency) established the first wide area network
called ARPANET (ARPA Network). Initially, ARPANET was a simple packet forwarding
network connecting only two computers. However, due to its invaluable usefulness and
work facilitation, it has been rapidly developed and today it is known as the Internet
precursor [1]. Currently, telecommunication networks are an indispensable part of the
society’s everyday life, providing support for plenty of our activities—education, business,
health care, finance, social life, entertainment, etc. The extremely relevant role of networks
in our life was also revealed and emphasized during the COVID-19 pandemic, when many
important human activities (e.g., business, education) could only be realized remotely [2].
The networks” immensely relevant position in our society entails the continuous growth of
the number of network users and connected devices as well as their increasing requirements
regarding the networks [3]. According to Cisco company, there will be 5.3 billion total
Internet users (66% of global population) by 2023, up from 3.9 billion (51% of global
population) in 2018, and there will be 29.3 billion networked devices by 2023 up from
18.4 billion in 2018. Moreover, the bandwidth demands of the most popular services (for
instance video) will increase up to several times [3].

Increasing requirements regarding networks and constantly growing traffic trigger the
fast development and implementation of new network architectures and technologies [4].
The new solutions benefit from advance transmission and spectrum management tech-
niques (for instance, adaptive application of complex modulation formats and continuous
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monitoring of links/paths QoS parameters) [5]. In turn, they are able to provide superior
network performance. However, at the cost of complex network design and operational
optimization. Therefore, the adoption of these innovations entails an urgent need for
improvement in the field of network design and optimization algorithms, which can be
achieved either by revisiting existing methods or by completely new proposals [4,6].

The results of recent research in the field of networking have revealed a promising
direction in the algorithms improvement—design and implementation of traffic-aware
methods [4]. In more detail, the network traffic is not a random process and it follows
specific patterns, which come from human behaviours as a result of working habits, week-
end activities, and so on [7-9]. It was observed that the more aggregated the traffic is
(from a higher number of users), the more regular its shape is as a time function and the
patterns are more noticeable. The main idea of the traffic-based approach is to collect infor-
mation regarding observed traffic flows in networks and then to apply various modeling
approaches or/and machine learning algorithms to process that data and extract hidden
patterns [4]. The patterns might be then utilized to predict future traffic and use it to design
and optimize network performance [10]. The crucial element of the traffic-aware approach
is to collect a vast set of representative data, which might be difficult due to the privacy and
security reasons, and properly select a beneficial modeling/prediction method depending
on the data characteristics [4].

The traffic-aware methods might benefit from short-term or the long-term traffic
forecasting [4]. In the short-term prediction, the traffic forecast is made for the near future,
i.e., for a period up to several upcoming time stamps (typically only for the next time
stamp). That information may be then utilized for instance to plan the routing rules for
the approaching traffic demands. By these means, it is possible to increase the ratio of the
accepted demands while a demand switching process is realized faster [11,12]. In the long-
term prediction, which is much more challenging, the forecast is made for a longer period
(i.e., several upcoming hours or even days/months). That information might be then used
by the network operators to precisely plan the resources’ (i.e., computing and networking
infrastructure) assignment process for the forthcoming requests in such a way as to obtain
numerous benefits. For instance, in order to: (i) maximize the number of served clients,
(if) maximize their quality of service, (iii) improve the resource utilization, and (iv) reduce
the power consumption (which meets the green networking paradigm) [4,13,14]. The
long-term traffic forecasting improves also the increasingly popular model of the resource
outsourcing. In that model, a client who does not have their own computing/networking
resources, can outsource it from an external company. To this end, the client must define
their requirements, what might be realized by analyzing the long-term traffic forecast.

In this paper, we study the problem of efficient modeling and prediction of daily (i.e.,
long-term) traffic patterns in transport telecommunication networks. In our investigation,
we use two historical traffic datasets from January 2021, namely, WASK and SIX. The
datasets collect data from edge routers of two transport networks of different sizes, which
affect the traffic characteristics and then the modeling/prediction process. It is worth
mentioning that WASK is a novel dataset, which is introduced in this paper and has not
been analyzed before. For the datasets, we propose long-term modeling and prediction
approaches. For modeling, we use Fourier Transform analysis. For prediction, we propose
and compare two methodologies: (i) modeling-based prediction (the forecasting model
is assessed based on the historical traffic models) and (ii) machine learning-based (the
network traffic is handled as a data stream where chunk-based regression methods are
applied for prediction). We also perform extensive numerical experiments in order to verify
efficiency of the proposed approaches and compare them. Since the datasets significantly
differ in characteristics of the traffic, we also study how they influence the modeling and
prediction performance.

The rest of the paper is organized as follows. Section 2 reviews the related works.
Section 3 introduces the analyzed traffic datasets. Then, in Section 4, we describe the
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applied traffic modeling and prediction approaches. Section 5 presents the results of
numerical experiments while Section 6 concludes the work.

2. Related Works

The consideration of historical traffic datasets in research and experiments is able to
make the results more valuable and applicable in real networks. In turn, the data acquisition
and publication are gaining more and more attention. The task is not trivial due to data
privacy and security reasons. Therefore, the number of publicly available traffic datasets
is deficient while their content is limited. One of the first publicly available datasets is
SNDLIB library [15], which provides static and dynamic traffic matrices defined for several
real network topologies. Unfortunately, the library is not being regularly updated and all
the included data was gathered before 2014. Then, Seattle Exchange Point (SIX) [7] shares
history of incoming/outgoing bit-rates (within a given time window) at routers located
in the SIX. It is worth mentioning that SIX is currently one of the most popular traffic
datasets in the research society, as it shares extensive and diverse statistics. It is especially
widely applied for the task of traffic prediction in various configurations [11,12]. Similarly,
several other platforms publish general information regarding observed traffic at Internet
exchange points. However, the published information is usually only in the form of traffic
plots, with no detailed numerical data available. For example, the AMS-ix [8] shares traffic
plots from Amsterdam and collaborating locations and the ix.br [16] shares the graphical
statistics from different locations in Brazil. We can also reach data regarding traffic from
much smaller network points such as University Campus of AGH University of Science
and Technology (Krakow, Poland) [17].

Due to the numerous limitations of available traffic datasets and the impossibility
of their direct application in numerical experiments (lack of numerical data, information
from only one network point), traffic modeling becomes increasing popular. The oldest
and simultaneously most commonly used traffic model works under the assumption
that traffic demands arrive to the network according to a Poisson process while their
duration follows a negative exponential distribution [18-20]. These assumptions emerge
from the traditional telephony networks and do not meet the transmission characteristics
of nowadays telecommunication networks supporting a plethora of diversified services.
Therefore, the researchers have made a number of attempts to propose more accurate
models. For instance, the authors of [21] propose to use Pareto process for traffic modeling
in wavelength division multiplexing (WDM) networks. Then, authors of. [22,23] study
network-dedicated models built on the collected traffic flows within a specific time window.
The authors of [24] suggest to model network traffic using mathematical functions such
as piecewise linear function with mean value following the Gaussian distribution, sine
function, and the combination of two first options. The paper contains only general model
assumptions and does not provide a definition of the functions” parameters. The modeling
using trigonometric functions was also studied in [9,25]. Another interesting proposal was
presented in [26,27], where the multivariable gravity model was introduced. It relates the
bit-rate exchanged between a pair of nodes with real data related to the populations of the
regions served by the network nodes, geographical distance between the nodes, and the
economy level expressed by gross domestic product (GDP). It should be noted that each
of the proposed models suffers from some limitations and, therefore, none of them was
universally approved and applied in the research society.

Besides traffic modeling, the problem of traffic prediction has gained more and
more popularity [4]. The existing literature mainly makes use of the autoregressive inte-
grated moving average (ARIMA) method [28,29] and machine learning algorithms [30-32].
ARIMA is a statistical model that uses variations and data regressions to find patterns to
model data or to predict future data. It was applied, for instance, in [28], where the authors
used the traffic prediction module for the purpose of virtual topology reconfiguration. Sim-
ilarly, the authors of [29] applied the provided prediction for the task of the virtual network
topology adaptability. In terms of the machine learning-based forecasting, the majority
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of research makes use of various implementations of neural networks. For example, the
authors of [32,33] used long short term memory (LSTM) method to predict the network
traffic wherein The authors of [32] used the forecast to determine efficient resource reallo-
cation in the optical data center networks. The authors of [30] applied the gated recurrent
unit recurrent neural network (GRU RNN) enriched with a special evaluation automatic
module (EAM), which has the task of automating the learning process and generalizing the
prediction model with the best possible performance. The authors of [31] benefited from a
nonlinear autoregressive neural network to design efficient resource allocation procedures
for intra-data center networks. It is also worth-mentioning the paper [11], which compared
three regressors (i.e., linear regression (LR), random forest (RF) and k-nearest neighbours
(kNN)) used for the task of traffic forecasting. The presented literature reveals that the
efficiency of a forecasting method strongly depends on the traffic dataset and there is no
universal approach that performs best for all traffic flows.

The above-mentioned papers focus on short-term traffic prediction (i.e., the forecasting
traffic volume for a next time stamp). To the best of the authors” knowledge, long-term
traffic prediction (i.e, traffic forecasting for a significantly longer period (several hours or
a day)) in telecommunication networks has to yet to be addressed. Moreover, the research
is generally deficient in studies covering long-term traffic prediction regardless of the
traffic interpretation (network traffic, crowd traffic, cars traffic, etc). The only attempts to
address the problem were presented in [34,35], where the authors apply neural networks
to predict traffic of, respectively, cars in a highway and people in a Chinese city. Therefore,
the presented paper fills the literature gaps by studying long-time traffic modeling and
prediction in telecommunication networks.

3. Traffic Datasets

In this paper, we focus on two historical traffic datasets. The first one is novel and
has not been studied in the literature so far. It is called WASK and refers to the flows
observed at the edge routers of Wroclaw Academic Computer Network (Wroclaw, Poland).
The second one is called SIX since it summarizes information regarding traffic volumes
observed at Seattle Exchange Point (SIX) routers. The traffic observed in both points differs
significantly in terms of its volume and characteristics (i.e., the shape as a time function
and samples autocorrelation). The datasets used in the investigation are available online
(https:/ /www.kssk.pwr.edu.pl/goscien/trafficmodeling/ (accessed on 20 May 2021)).

3.1. WASK Dataset

WASK (polish: Wroctawska Akademicka Sie¢ Komputerowa) stands for Wroctaw
(in Poland) Academic Computer Network. The WASK network connects the academic
institutions of Wroctaw, providing them with access to Polish national network PIONIER
and European network GEANT?2. Its infrastructure includes 23 nodes and over 120 km of
fibre-optic routes. The nodes are located mainly in the buildings of Wroclaw universities.
The backbone of the network is based on the Alcatel-Lucent 7750 SR-7 switches as well as
on Juniper MX switches (MX80, MX480, MX960). Both devices are equipped with 10 G
interfaces. The edge router is Juniper M120 with Gigabit interfaces and 10 GE interface
capability. This router is connected to Netlron XMR 16,000 edge switch of the PIONIER
network by 10GE interface capability. It allows to connect the WASK network directly to
the switches in Zielona Géra (Poland) and Opole (Poland) at the speed of 10 GB. In the
years 2006-2008, additional nodes in Legnica, Polkowice, and Lubin were created as a part
of the WASK network [36].

The WASK network connects over 500 local networks and over 15,000 computer
stations. It is linked with the PIONIER network and with the European network GEANT2.
WASK also has interconnection points with such networks as TK TELEKOM, UPC, Dialog
and direct connections with such operators as EXATEL, TK TELEKOM, TPSA. WASK is
supervised and monitored by Wroctaw Center for Networking and Supercomputing (abrr.
WCSS) using OpenNMS platform, which allows to monitor the traffic on random routers,
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active WASK networks (routers, switches), and resources (network services servers and
HPCs). For more details regarding WASK network, we refer to [36].

The WASK traffic data is prepared from the Flow (NetFlow) from a Firewall Device
resources shared through the Open Science Resource Atlas (AZON) project. The project
is made for sharing the resources of scientific units created in research, educational, and
popularizing processes. Resources are integrated and adapted so that they can be easily
searched and reused in science or business. For more details regarding the project, we
refer to [37]. Resources contain anonymized output data of firewall devices, i.e., network
traffic flows (connections established on the Internet) to and from the infrastructure of the
Wroctaw Centre for Networking and Supercomputing, collected from devices that protect
the resources of this unit. The daily average of entries is around 320 million. An example
resource can be obtained at [38].

3.1.1. Data Acquisition

At the end of each day, the output of the Nfdump [39] program is sent to the storage
server. Data files were accessed directly from there. For the observed time of January
2021, there were 31 files with an overall size of about 3.126 TB. The processing of this data
consists of mapping, reducing, and aggregation steps which are about to be described.

The output data produced by Nfdump is a 48-column csv file. The vast majority
of those columns are, in the context of this research, irrelevant, so the first step was to
strip those files to only three-columns files which contained the start, end, and size of
each Netflow entry. Time marks are presented as standard timestamps while the size is
a number of bytes which were transferred over the network during a given traffic flow.
Then, the flows were processed in order to get the sampling rate of 1 min. At the end, the
dataset consists of 44,640 aggregated flows, evenly distributed for each day. A total traffic
volume for this dataset is about 173.88 TB for the whole time interval with a mean traffic
slightly over 5.6 TB for each day.

The data acquisition, processing, and dataset generation were implemented with
Python over the network through the ssh connection between the work station and the
storage server, using the Dask Dataframe library [40] which allows for scalable analytics of
larger-than-memory data. Such approach was necessary since the massive amount of data
could not be computed using the standard approaches such as Pandas library [41] which is
designed to always read the whole data into the memory.

3.1.2. Dataset Presentation

WASK dataset considered in this paper consists of traffic flows observed in January
2021. We have 31 days of observations wherein in each day the aggregated traffic volume
was gathered every 1 min. Overall, the dataset consists of 31 days of 1440 observations
what gives 44,640 data points in total.

Figure 1 presents the observed traffic volume on the 1st of January 2021. The traffic
volume as a time function has a complicated and irregular process. It indicates that
there are numerous components (i.e., network services) affecting and shaping the traffic.
Nevertheless, we can notice a pattern there regarding intense traffic transmission at the
night time (it starts at 20:00, then intensifies about 24:00, and decreases until 5:00). It
is mainly determined by the data backups and inter-city synchronisations scheduled in
the night-time, when typical end network users are less active. In order to check if the
same patterns are also observed for other days, in Figure 2, we present the traffic volume
observed during 31 days of January 2021 (each day is represented by a different colour)
and in Figure 3, the dataset autocorrelation function. The first figure shows that traffic
patterns observed within 31 subsequent days differ, wherein they have some common
elements. For instance, the traffic intensification between 20:00 and 24:00 and the traffic
decrease about 5:00 were observed in the majority of days. Moreover, many observations
reveal intense traffic volume between 24:00 and 5:00. The autocorrelation function value
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for that set increases to approximately 0.4 after every 1440 lags, which indicates a moderate

ccorrelations between data observed for subsequent days.
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Figure 1. WASK dataset presentation: traffic observed on 1 January 2021.
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Figure 2. WASK dataset presentation: traffic observed each day in January 2021.
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Figure 3. WASK dataset: data autocorrelation function.

3.2. SIX Dataset

The SIX is an Internet Exchange Point in Seattle, Washington. They provide an
interconnection between member networks in the Northwest United States and beyond.
Networks connect at speeds from 1 to N x 100 Gbps. At the time of writing, SIX included
342 ASNs, 390 routers, and 344 members; 92 member-facing 100 GbE ports, 1 member-
facing 40 GbE port, 277 member-facing, 10 GbE ports and 42 member-facing GigE ports.
For more details regarding SIX, we refer to [7].

3.2.1. Data Acquisition

The SIX traffic data is available publicly on the Point’s website. The amounts of
aggregated traffic are presented in the form of graphs. The raw values can be downloaded
in a rrd format and later analysed using RRDTool. There are two sampling rates available,
namely, 5 min and 1 min. We collected the 5 min sampling rrd files weekly, since that is the
capacity of the published databases. That way, data with the same granularity is available
for the whole investigated period.

3.2.2. Dataset Presentation

SIX dataset considered in this paper consists of traffic flows observed in January 2021.
We have 31 days of observations wherein each day, the aggregated traffic volume was
gathered every 5 min. Overall, the dataset consists of 31 days of 288 observation, which
gives 8928 data points in total.

Figure 4 presents the observed traffic volume on the 1 January 2021. Compared to
the WASK, the traffic time process has a significantly more regular and simple shape. It
might suggest that due to the high data aggregation, there are fewer traffic components
(i.e., services), which affect the traffic process in a noticeable way. The average SIX traffic
volume is about two ranges of magnitude higher than that of WASK. The presented data
reveals a flow intensification at SIX during the daytime (the traffic begins to increase
about 20:00 and reaches its highest volume about 10:00-15:00). To verify whether there are
common traffic patterns observed every day at SIX, we present Figure 5 with the traffic
volume observed during 31 days of January 2021 (each day is represented by a different
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colour) and Figure 6 with the dataset autocorrelation function. According to Figure 5,
almost the same traffic pattern is observed every day at SIX wherein the traffic volume (i.e.,
signal amplitude) changes. The existence of a common traffic pattern is also proved by
the autocorrelation function (see Figure 6), which has a very regular shape and takes the
highest values (initially above 0.9) every 288 lags, corresponding to consecutive days. That
implies high daily seasonality.
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Figure 4. SIX dataset presentation: traffic observed on 1 January 2021.
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Figure 5. SIX dataset presentation: traffic observed each day in January 2021.
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4. Traffic Modeling and Prediction Methods

In this section, we present methods used for the purpose of traffic modeling and
prediction. We also discuss their configuration and main application assumptions.

4.1. Traffic Modeling

Based on the analysis of WASK and SIX datasets (see Section 3), we assume that
the traffic volume as a time function can be modeled using a trigonometric cosine signal
according to Equation (1). The signal is a sum of a constant component ay, N cosine
functions (i.e., harmonics) a, - cos(wy, - t + ¢, ) and a noise o.

f()y=ao+ Y an-cos(wy-t+¢u) +0 (1)
neN

where:

ap constant component.
0 noise component.
ay - cos(wy, - t + ¢, ) n-th harmonic with amplitude a,, pulsation w, and initial phase ¢y,.

In order to determine signal’s harmonics, we perform its spectral analysis using
Fourier Transform [42,43]. That mathematical transformation allows us to determine the
constant component and signal harmonics with all their characteristics (i.e., amplitude,
pulsation, and initial phase). To eliminate a noise signal from the signal modeling (i.e., to
not model it as a signal harmonic), we take into account only harmonics with amplitude
and phase higher than € = 107°.

Based on the initial experiments, we assume that each day is a one-signal period and,
therefore, we build a traffic model separately for each observation day. That assumption
allows to achieve significantly higher modeling accuracy compared to the situation when
one model is created for a period of several days.

The traffic modeling was implemented and evaluated using Matlab R2021a environ-
ment and build-in functions.
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4.2. Traffic Prediction

For the purpose of traffic prediction, we propose and analyze two approaches—
modeling-based and machine learning-based. For both approaches, we take into account
a long-term traffic prediction where the size of a prediction window varies from 6 up to
24 h (the whole next day).

4.2.1. Modeling-Based Traffic Prediction

In the modeling-based traffic prediction, we build a traffic model (using Fourier
Transform) for each historical day of traffic observations and then use the models to
forecast traffic for the next day. We propose two approaches for traffic forecasting based
on historical models—previous days (PD) and previous same days (PSD). The PD assumes
that similar traffic patterns are observed for each day of the week. The prediction model is
calculated here as a an average from a number of already built traffic models. The method
is evaluated in two versions: (i) PD (1)—only one directly previous day (model) is taken
into account, (ii) PD (all)—all previous days (models) are considered. Then, in the PSD,
we assume that there are some separate traffic patterns observed for each day of the week
(i.e., Monday, Tuesday, etc). The prediction model is defined here as an average from
a number of already built traffic models for the same days of the week. Two method’s
versions are studied: (i) PSD (1)—only one directly previous same week day (model) is
taken into account, (ii) PSD (all)—all previous same week days (models) are taken into the
consideration. T

Since we build a particular traffic model for a period of one day (24 h), the size of
a prediction window in modeling-based approach is always 24 h.

4.2.2. Machine Learning-Based Traffic Prediction

Network traffic is an example of a data stream. That means it is a setting, where data
comes to the system continuously and the dataset is constantly growing. Because of its
potentially infinite volume, it is not possible to store and analyse the entire data stream
in a real-life scenario, due to time and memory restrictions. For that reason, data streams
are often divided into small portions called data chunks. That allows us to continuously
update the model with new observations, so that it adjusts to the current conditions without
the need for retraining. Such online methods are suitable to predict a series of values for
different time horizons [44].

In this section, we compare instances of two main approaches used for chunk-based
learning in data streams: an effective single estimator and an ensemble of estimators [45].
Because of a rather complex nature of WASK dataset, after initial testing of a number of
classical machine learning algorithms, we propose a neural network-based approach. As
the base estimator, we use the scikit-learn [46] implementation of the Multilayer Perceptron
Regressor (MLP). For a direct comparison, we use it both stand-alone and as a base
estimator for the Accuracy Weighted Ensemble (AWE) [47]. In the latter method, each
estimator entering the pool is trained the same way but around a different data block and
the forecast is a result of a weighted voting by the estimators present in the ensemble. With
every iteration, a new estimator trained around the newest data chunk is added to the
ensemble and the worst-performing one is deleted, so the size of the ensemble is constant.

As can be seen from the figures presented in Section 3, there is seasonality in the
data. That means similar traffic patterns can be observed every day in considered datasets.
Therefore, we use temporal additional features to improve the prediction quality, as proved
tobe useful in [11]. As in this work we consider a long-term forecast, we cannot use the most
correlated previous timestamps as features. For that reason, we use the amount of traffic
24 h before the predicted datapoint as the first additional feature. As the second feature, we
use a number indicating the day of the week, to take into account the weekly seasonality.

Machine learning-based traffic prediction was implemented in Python, using Scikit-
learn, Pandas, SciPy and NumPy. After initial testing, we decided to change some of the
default parameters of the MLP regressor to improve the prediction quality and time. The
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values of these parameters chosen after tuning are presented in Table 1. The remaining
parameters were left with their default values.

Table 1. Tuning the parameters for the MLP regressor.

Parameter Chosen Value
‘hidden_layer_sizes’ 4,
“activation’ ‘identity’
‘max_iter’ 1000
‘warm_start’ True

For AWE, our own implementation was used. We applied the above-mentioned
MLP regressor as the base estimator with the ensemb]e size set to 10. As shown in [48],
quality metrics can be used as weighting methods in chunk-based learning in data streams,
including AWE. For that reason, we used weighted voting proportional to the mean squared
error. We applied the test-then-train evaluation [49], which means that every data chunk is
used first for testing and then for training, and the model is updated incrementally after
each data chunk.

5. Results and Discussion

In this section, we evaluate efficiency of the proposed traffic modeling and prediction
approaches applied to WASK and SIX datasets.

5.1. Research Methodology

Before presenting the results of numerical experiments, let us briefly summarize and
discuss the general research methodology including data acquisition and processing (if
necessary) as well as the efficiency evaluation.

In all studies, the results accuracy is measured using mean absolute percentage error
(MAPE) metric. For the sake of simplicity, we refer to this metric as error in the rest of the
paper. Having an M-elements vector of historical data y and a vector of corresponding
values obtained via modeling/prediction ', MAPE metric is calculated according to
Equation (2).

_ ly(m) —y'(m)]
MAPE = U )y )

Traffic Modeling

The idea of the traffic modeling and its efficiency evaluation is presented in Figure 7. At
the beginning, it is necessary to create a traffic dataset by gathering traffic flows according
to the sampling frequency (i.e., every 1 min for WASK and every 5 min for SIX). Then,
the data has to be divided into the subsets grouping flows observed during the same day.
In our study, the flows were gathered during January 2021 and 31 subsets were obtained
for each dataset. In the next step, out modeling procedure is applied (see Section 4.1) to
create a traffic model for each of the subsets (i.e., a separate traffic model is built for each
day). The model efficiency is evaluated separately for each day by calculating average error
value according to the MAPE metric. Please note that the results are averaged over 31 days
and a number of observations during a single day (1440 for WASK and 288 for SIX).

5.2. Modeling-Based Traffic Prediction

Then, the methodology of the modeling-based traffic prediction is presented in
Figure 8. Since the approach benefits from the traffic modeling, it requires the same
first steps as the traffic modeling (i.e., data acquisition, creation of one-day subsets, models
creation for each of the days). Next, the approach moves to the creation of the forecasting
model based on the selected already built traffic models (the number of including models
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depends on the selected forecasting algorithm and is described in detail in the next subsec-
tions). Please note that a forecasting model can be built only for a day with a history. Then,
the accuracy of the forecasting models is evaluated separately for each day by calculating
average error value according to the MAPE metric. Please not that the results are averaged
over a number of days (with a history) and a number of observations during a single day
(1440 for WASK and 288 for SIX).

Step 1: Gather aggregated traffic flows
according to the sampling frequency.

1

Step 2: Process the flows into subsets group-
ing data from the same day.

1

Step 3: For each of the subsets: use Fourier
Transform to determined the constant ele-
ment, the number of harmonics N and their
parameters.

]

Step 4: For each of the subsets: build the
traffic model as a sum of the constant ele-
ment and harmonics (Equation (1)).

1

Step 5: For each of the subsets: evaluate the
model efficiency based on the comparison
with the real data and MAPE metric.

Figure 7. Traffic modeling-the methodology.

Step 1: Gather aggregated traffic flows
according to the sampling frequency.

1

Step 2: Process the flows into subsets group-
ing data from the same day.

1

Step 3: For each of the subsets: use Fourier
Transform to determined the constant ele-
ment, the number of harmonics N and their
parameters.

1

Step 4: For each of the subsets: build the
traffic model as a sum of the constant ele-
ment and harmonics (Equation (1)).

1

Step 5: For each of the subsets with the re-
quired history: use the built traffic models
and s selected modeling-based prediction
algorithm to create the traffic forecast.

1

Step 6: For each of the subsets with the
required history: evaluate the forecast accu-
racy based on the comparison with the real
data and MAPE metric.

Figure 8. Modeling-based traffic prediction—the methodology.
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Machine Learning-Based Traffic Prediction

Finally, the methodology of the machine learning-based traffic prediction is presented
in Figure 9. Similarly to traffic modeling and modeling-based prediction, the first step
is to create a traffic dataset. In machine-learning based approaches, additional features
are needed to make a forecast. In this work, they are created based on the seasonality
analysis of considered datasets (see Section 3) and contain the amounts of traffic in past
significant points in time. We use a chunk-based data stream approach, and for that reason,
in the third step, the dataset is divided into smaller chunks. In the next step, a regression
model is built around the first data chunk. On every consecutive data chunk, the model is
continuously updated using test-then-train methodology. That means the model outputs a
prediction for all samples in the chunk, which is then compared to real traffic values and
the model is updated according to calculated MAPE value. To evaluate the overall forecast
accuracy, the mean MAPE metric value is calculated from all the data chunks.

Step 1: Gather aggregated traffic flows
according to the sampling frequency.

1

Step 2: Create temporal additional features
based on seasonality analysis.

1

Step 3: Divide the dataset into chunks of
chosen time-window size (e.g., 24 h).

1

Step 4: Build a regression model on the first
chunk of data.

1

Step 5: Update the model on consecutive
data chunks using test-then-train evalua-
tion.

1

Step 6: Evaluate the forecast accuracy cal-
culating the mean MAPE from all data
chunks.

Figure 9. Machine learning-based traffic prediction-the methodology.

5.3. Traffic Modeling

First, we focus on the performance of the traffic modeling. For each dataset, we build
a traffic model separately for each day of the month. Thus, the evaluation is prepared based
on the evaluation of 31 models. Table 2 reports the efficiency for two considered datasets.
Since the results vary between different days of the month, we present a detailed analysis
of the obtained errors and the corresponding standard deviation. Firstly, we observe that
the quality of results obtained for two datasets differs much and is significantly higher
for the SIX (the errors for SIX are smaller than these observed for WASK up to almost
several orders of magnitude). For the WASK dataset, the average obtained error was 6.31%.
However, the modeling efficiency significantly varies for different observation days. In
turn, the minimum error was 0.12% while the highest was equal to 86.05%. It is worth
mentioning than there were only two days of observation for which the modeling error
was higher than 5%. The noticeable differences between modeling performance for various
days are also confirmed by the high value of the standard deviation. Concurrently, the
modeling accuracy for the SIX dataset is stable and outstanding—the maximum obtained
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error was equal to 0.16% while the average error was less than 0.1%. Moreover, the results
were stable and characterized by a low standard deviation.

The outstandingly high modeling accuracy observed for SIX dataset proves that
the applied sampling frequency (i.e., flows gathered every 5 min) for that traffic was
properly selected. Since the modeling precision for WASK dataset was about two ranges
of magnitude smaller, we can conclude that the sampling frequency (i.e., flows gathered
over 1 min) applied for that traffic was not high enough to accurately project the signal
process and variability. Therefore, the modeling accuracy for WASK might be improved by
applying a higher sampling frequency.

Table 2. Traffic modeling efficiency for WASK and SIX datasets.

WASK SIX

min error 0.0012 0.0000032033

avg error 0.0631 0.0009654600

max error 0.8605 0.0018000000
25th percentile error 0.0243 0.0007621800
50th percentile error 0.0310 0.0009330600
75th percentile error 0.0372 0.0012000000
standard deviation 0.1542 0.0003916600
avg processing time 0.0181s 0.0030 s

Figure 10 vizualizes the modeling performance for WASK and SIX datasets. The
results are presented for two selected days for which the modeling approach performed
the worst (i.e.,, maximum error obtained). Despite the high error values, the modeled signal
properly follows the pattern of real data and the differences between the signal are hardly
visible to the naked eye.

T T 1.8 T

3+ traffic model i traffic model
real traffic

real traffic
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Traffic volume [b]
Traffic volume [b]
o
T
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Figure 10. Traffic modeling efficiency—observed and modeled traffic as a time function. (a) WASK dataset, 19 January 2021,
(b) SIX dataset, 26 January 2021.

It is also worth mentioning that the number of significant harmonics for WASK
was 1440 while for the SIX was 720 for each of the considered days. That proves our
initial assumptions regarding time shapes of both traffics. WASK flow is determined by
significantly more components (i.e., services) than SIX flow due to the different level of
users/data aggregation.

Please note that the number of the harmonics influences also the modeling processing
time (see Table 2), which is about six times higher for WASK dataset. Nevertheless, the
calculation of a traffic model is a fast process and takes less than a second.
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5.4. Traffic Prediction

The efficiency evaluation of traffic prediction is performed separately for modeling-
based and machine learning-based approach.

5.5. Modeling-Based Traffic Prediction

In the context of modeling-based traffic prediction, the period for which the modeling
is applied (i.e., 24 h) determines the size of a prediction window. The forecasting efficiency is
summarized in Tables 3 and 4, accordingly, for WASK and SIX datasets. The analysis comes
from 30 days of observations (starting from 02.01.2021) and corresponding predictions. For
both datasets the best results were obtained by PSD (all) method. It proves the hypothesis
that different traffic patterns are observed for different days of the week. The prediction
errors for SIX dataset reached up to almost 10% while keeping its average value on the level
about 3—4%. The errors yielded for WASK dataset are much larger (even several orders
of magnitude) and characterized by high standard deviation. Therefore, the investigation
shows that modeling-based traffic prediction is suitable only for an easy dataset (such
as SIX) and does not tackle well with complex data (such as, for instance, WASK traffic).
Please note the accuracy of modeling-based traffic prediction is strongly determined by
the precision of the built traffic models (see Table 2), which were outstanding for SIX and
significantly weaker for WASK dataset.

The processing time of the modeling-based prediction includes the time required to
build the history models and the time required to build a forecasting model. Therefore,
it is mostly determined by the number of historical models, which are required. In turn,
it is the shortest for PSD (1)/PD (1) and the longest for PD (all). We also observe that the
calculations take slightly longer for the SIX dataset; however, they are fast and smaller than
a second.

To better visualize method performance, Figure 11 presents a comparison of the
predicted and real traffic for WASK on 31.01.2021. Similarly, Figure 12 reports the same
dependence for SIX dataset. In both cases, we can clearly notice the differences between the
real and predicted signal. They are especially significant for WASK dataset, where the tra-
jectories of two signals differ. For the SIX dataset, the predicted signal correctly follows the
real signal trajectory while the errors emerge from the amplitude over/under estimation.

Table 3. Efficiency of modeling-based traffic prediction for WASK dataset.

PD (1) PD (All) PSD (1) PSD (All)
min error 32.0721 0.3469 0.3550 0.3604
avg error 139.0686 4.4537 4.1392 3.9610
max error 2007.7000 83.3229 45.5051 42.0399
25th percentile error 37.4813 0.4845 0.4627 0.5007
50th percentile error 43.7405 0.6688 0.6154 0.6113
75th percentile error 51.4728 0.7857 1.0215 1.0046
standard deviation 390.0556 16.0119 11.6286 11.1107
average processing time 0.0183 s 0.2801 s 0.0183 s 0.0455 s

Table 4. Efficiency of modeling-based traffic prediction for SIX dataset.

PD (1) PD (Al PSD (1) PSD (All)
min error 0.0175 0.0165 0.0157 0.0169
avg error 0.0416 0.0416 0.0322 0.0336
max error 0.0853 0.0695 0.0950 0.0950
25th percentile error 0.0294 0.0345 0.0218 0.0229
50th percentile error 0.0384 0.0383 0.0268 0.0280
75th percentile error 0.0515 0.0515 0.0385 0.0399
standard deviation 0.0166 0.0121 0.0167 0.0167

average processing time 0.0031 s 0.0466 s 0.0031 s 0.0076 s
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Figure 11. Efficiency of modeling-based prediction for WASK dataset—observed and predicted traffic as a time function.
(a) PD (1) method, (b) PD (all) method, (c) PSD (1) method, (d) PSD (all) method.
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Figure 12. Efficiency of modeling-based prediction for SIX dataset—observed and predicted traffic as a time function.
(a) PD (1) method, (b) PD (all) method, (c) PSD (1) method, (d) PSD (all) method.
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5.6. Machine Learning-Based Traffic Prediction

In this section, we compare the prediction