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Abstract: It is very important to make an objective evaluation of colorectal cancer histological
images. Current approaches are generally based on the use of different combinations of textual
features and classifiers to assess the classification performance, or transfer learning to classify
different organizational types. However, since histological images contain multiple tissue types and
characteristics, classification is still challenging. In this study, we proposed the best classification
methodology based on the selected optimizer and modified the parameters of CNN methods. Then,
we used deep learning technology to distinguish between healthy and diseased large intestine tissues.
Firstly, we trained a neural network and compared the network architecture optimizers. Secondly,
we modified the parameters of the network layer to optimize the superior architecture. Finally, we
compared our well-trained deep learning methods on two different histological image open datasets,
which comprised 5000 H&E images of colorectal cancer. The other dataset was composed of nine
organizational categories of 100,000 images with an external validation of 7180 images. The results
showed that the accuracy of the recognition of histopathological images was significantly better
than that of existing methods. Therefore, this method is expected to have great potential to assist
physicians to make clinical diagnoses and reduce the number of disparate assessments based on the
use of artificial intelligence to classify colorectal cancer tissue.

Keywords: convolutional neural network; machine learning; deep learning; colorectal cancer

1. Introduction

Colorectal cancer (CRC) is the third most common form of cancer, accounting for
about 10% of all cases in the world [1]. The results of many studies have shown that a
more accurate classification of medical images can effectively determine the development
of colorectal cancer [2,3]. Many common tissue types, such as normal colon mucosa
(NORM), adipose tissue (ADI), polyps, cancer-associated stroma (STR), and lymphocytes
(LYM) can extract prognosticators directly from these hematoxylin and eosin stains (HE
stains), which are the principal tissue stains used in histology [2]. Optical colonoscopy
is the medical procedure that is usually used to examine a series of abnormalities on the
surface of the colon, including their location, morphology and pathological changes to
make a clinical diagnosis. This improves the accuracy of the diagnosis and the ability to
predict the severity of the disease in order to apply the most appropriate clinical treatment.
Nevertheless, although the correct classification of pathological images is an important
factor in assisting doctors to precisely identify the best possible treatment, a great deal
of time and effort is required to analyze histopathological images, and the evaluation of
tissue classification is easily affected by many subjective factors. Subjective evaluation is
generally performed by pathologists who manually review the histological slides images
of CRC tissue, which remains the standard for cancer diagnosis and staging. However,
the training, experience, evaluation condition or time pressure for each pathologist could
result different diagnosis judgement. Hence, the universal automatic classification of CRC
pathological tissue slide images for fair evaluation has an important clinical significance.
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Pathology slides provide an enormous amount of information, which has been quanti-
fied through digital pathology and classic machine learning techniques over the years [4].
Previous research has been based on machine learning approaches for judging the cell
classification in the histological slides of tumor tissue. The classification of histopatholog-
ical images using artificial intelligence not only improves the accuracy and efficiency of
the classification, but also enables doctors to make timely decisions in terms of clinical
treatment [5,6]. However, most of the proposed experimental methods rely on manual
feature labels, which is the main limitation of traditional textual analysis approaches.
Therefore, deep learning has been introduced in the last few years to solve this and other
limitations. Deep learning is a new technology that is considered to be an evolution of ma-
chine learning, since it uses multiple layers of neural networks to learn and progressively
extract higher-level features in order to reduce human intervention in the recognition of
different classes in the images. It is also effective in classifying non-image data, such as
speech recognition, social network filtering, and medical image analysis, and its advanced
approach not only reduces the need for human intervention, but it can also automatically
achieve results that are comparable to or surpassing those of humans.

Convolutional neural networks (CNN) [7,8] recently showed effective results in clas-
sifying images in the field of deep learning where a neural network might have dozens
or hundreds of layers to learn containing images with different features. A convolutional
layer composed of a small-sized kernel to generate advanced features applies weights
to the inputs and directs them through an activation function as the output. The main
advantage of using CNN compared to a traditional neural network is that it reduces the
model parameters for more accurate results.

With this in mind, we aimed to use deep learning technology to identify medical
images to increase the accuracy of the identification due to the automatic classification of
tumor types. This involved the achievement of the following objectives:

a. To compare the classification accuracy rate with different CNN models.
b. To find the best performance of deep learning techniques.
c. To compare the results of this method with those of existing techniques.

This paper consists of a systematic study of deep learning and its application for
the classification of pathological images. Past studies of deep learning will be reviewed
in Section 2, while the approach of deep learning models will be described in Section 3.
Details of the experiment will be provided in Section 4, and the paper will be concluded in
Section 5 with proposals for possible future investigations in this field.

2. Related Works and Deep Learning Methodology

Some of the prior studies in relation to the automatic classification of histopathological
images will be described and discussed in this section with a further explanation of how
deep learning works. This will be followed by a presentation of the proposed method to
conduct the current research.

2.1. Related Works

Digital technology is currently used extensively to classify medical images, as evi-
denced by the results of several methods of histopathological image classification shown in
Table 1. Kather [2] used a range of textual descriptors to analyze a multi-class problem of
tumor epithelium and simple stroma in 5000 histological images. He proposed four classifi-
cation methods: (1) the k-nearest neighbors algorithm (k-NN), (2) employ an SVM decision
function in an attempt to classify all categories, (3) assemble decision tree models using the
RUSBoost method, and (4) use a 10-fold cross validation to train the classifiers, without an
explicit stratification approach. The results indicated that SVM was the best classification
method, which achieved 87.4% accuracy over eight classes. Lately, the classification of
tumor types has been found to be more accurate using the CNN classification method.
Tsai [9] applied the CNN architecture of a deep learning technique to detect pneumonia
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from Chest X-rays and achieved an accuracy rate within 82.1% by using feature selection
and the CNN.

Table 1. Related Research.

Literature Research Objective Approach Classification
Technique Accuracy Rate (%)

[2]
Multi-class texture

analysis in colorectal
cancer histology

Texture based methods

One-nearest neighbor,
linear SVM,

radial-basis function
SVM and decision

trees.

87.4

[9]

Machine
learning-based

common
radiologist-level

pneumonia detection
on chest X-rays

Feature selection, CNN
Feature selection and
convolutional neural

network (CNN)
80.9

[10]

A deep convolutional
neural network for

segmenting and
classifying the

epithelial and stromal
regions in

histopathological
images

CNN

CNN network
comprised of two

convolutional layers,
two max-pooling

layers, and two fully
connected layers

followed by a soft-max
layer

84

[11]

Classification of tumor
epithelium and stroma

by exploiting image
features learned by
deep convolutional

neural networks

CNN
CNN with GoogLeNet

transfer learning
strategies

90.2

[12]

Large-scale tissue
histopathology image

classification,
segmentation, and

visualization via deep
convolutional

activation features

CNN

The framework transfer
features extracted from
CNN were trained by a

large natural image
database, ImageNet, to

assess the
histopathology images

and also explore the
characteristics in the

last hidden layer

97.5

[13]

Using deep
convolutional neural
networks to identify

and classify
tumor-associated

stroma in diagnostic
breast biopsies

CNN
Propose some new

geometric features of
benign biopsies

96.2

[3]

Predicting survival
from colorectal cancer
histology slides using

deep learning, a
retrospective

multicenter study

CNN

Evaluated the
performance of five

different CNN models:
VGG19, AlexNet,

SqueezeNet,
GoogLeNet, Resnet50

98.7

Xu [10] used the CNN model and feature extraction approaches to compare two
datasets of breast cancer and colorectal cancer. The two types of tissues in the histological
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images were epithelial (EP) and stromal (ST). He used automated segmentation or the
classification of color features, which included intensive pixels in different color spaces,
and analyzed the tumor microenvironment. In his study, Du [11] proposed that learning
the basic features of CNN methods outperformed handcrafted features, and automatically
distinguished the epithelial and stromal regions in the breast. In addition, he found that
colorectal tumors could be distinguished from tumor tissue using a network architecture
layer approach with results that were 84% accurate. Transfer learning is a methodology
that consists of deep learning techniques to distinguish the features of leverages images.
Du [10] discussed the use of transfer learning methods to accurately distinguish breast or
ovarian cancer from histological images and of CNN for fine tuning the feature extractor of
images. Additionally, he discussed how to distinguish high-level and low-level features
inside the neural network. A deep neural network may have multiple layers, the first
of which will learn the low-level features and then the more they progress toward the
output layer, the more the layers will learn the high-level features. Du [11] also used a
transfer learning approach with GoogLeNet and achieved 90.2% accuracy, suggesting the
feasibility of using it to classify the tumor stroma ratio (TSR). Xu et al. [12] improved the
activation features of the AlexNet model and proposed the characteristic of visualizing
the neurons in the last hidden layer to classify and segment them. Trained by ImageNet,
the framework successfully transferred the features extracted from the network into little
histopathology images features for training and visualization and a test accuracy rate of
97.5% was reported. Bejnordi et al. [13] proposed deep convolutional neural networks
with some new geometric features, and trained the algorithm networks to classify stroma
images, including stroma, fat tissues, other situ lesions and to predict the stroma regions.
Bejnordi analyzed the stroma between surrounding invasive cancer and situ lesions and
achieved a 96.2% accuracy. Additionally, Kather [3] replaced the classification layer and
the best accuracy rate was 98.7% with VGG19.

2.2. Advantages and Limitations of Using Machine Learning Approaches

Machine learning teaches computers to simulate and implement human learning
behavior based on computational methods to learn knowledge from sample data. It is
widely used in various applications such as image, content recommendation, computer
vision, etc., in which it is difficult to develop conventional algorithms and solve the above
problems to achieve the required tasks [14]. There are two main techniques: supervised
learning (used to learn mapping between input and output) and unsupervised learning
(involves using a model to extract relationships from data). The goals of machine learning
are feature extraction, selection, prediction and recognition. The detailed processes are
shown in Figure 1. This technology can automatically learn knowledge based on the data
process in order to make accurate reaction, which generally can save a great deal of time.
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The deep learning approach generally requires massive amount of data for training
which means that the more data there is to train a model, the better it will perform.
However, experts are needed for manual identification and labelling of histological images.
It subjects to potential time-consumption and high expense issues. Even the underlying
method automatically pays attention to discriminative information for better classification,
prospective validation studies are still required to firmly establish routine biomarker for
clinical use. In short, highly trained pathologists remain the decision-makers during the
subjective evaluation for cancer diagnosis. The techniques developed by deep learning can
assist the doctors for more accurate projection but not to replace the duty of physicians.

2.3. How Deep Learning Works

Deep Learning is another major subfield of machine learning. Hubel [15] used it
to find corresponding relationships between neuron systems based on the cortex cells.
Deep learning is inspired by biological nervous systems, and combine multiple nonlinear
processing layers and hidden layers to learn features directly from data. Hinton [16,17]
proposed that using multi-hidden layers to learn features is conducive to classification, as
shown in Figure 2.
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The use of deep learning to learn features from multi-hidden layers of a large volume
of data enhances the accuracy of predictions and a set of labels can be produced by using a
GPU to train this model. Back propagation facilitates statistical regularity. Deep learning is
based on the concept of learning from the first layer and automatically learning the features
of many images from the combined layers. Each layer uses the output of the previous layer
as input and learns to classify new images through to the next layer, and make a prediction.

Many different deep learning models have been developed for image recognition [18]
over the past few years, such as histopathological image, facial recognition, and many
advanced driver assistance technologies. CNN, which was proposed by Lecun [18,19],
has a shared weights multi-neural layer network. The image is directly used as the input,
which can reduce the complexity and parameters of the network. Besides, the structure of
the network is invariant for image recognition. It is usually composed of two independent
neurons, the first of which is an S layer of the characteristic extraction as the number of
input connections to the mode, and the neurons are of equal weight. The feature map has
displacement invariance, being activated by the small sigmoid function. Another neuron,
feature C layer, is the feature extraction layer for anti-deformation. When part of the feature
is extracted, its positional relationship with each input neuron connects with the previous
layer.

A basic CNN consists of an input layer, output layer, and hidden layers, including
ReLU, pooling layers, and fully connected layers:
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(1) Input layer: the input layer is the beginning of the artificial neural network, and brings
the initial data, which comprises of a number of images, height, width, input channels,
etc., into the system for further processing by subsequent layers of artificial neurons.

(2) Convolutional layers: This layer is used to extract the various features from the input
images, such as corners and edges. In this layer, the operation of convolution is
performed between the input image and a filter of an image size, which are used to
operate the convolution of the input data and set the stride of pixels to scan the full
image. Later, this feature map is fed into other layers to learn several other features of
the input image.

(3) Rectified Linear Unit (ReLU): ReLU is the most common activation function in artifi-
cial neural networks. It is also known as transfer for better gradient propagation and
efficient computation. f(x) = max (0, x). This function is defined as the positive part
of its argument, where x is the input to a neuron, the function used to determine the
output of the neural network, and then maps the resulting values between 0 to 1.

(4) Pooling layers: The pooling layers provide an approach to address this sensitivity to
down sampling features by summarizing their presence in patches of the feature map.
This capability of local translation invariance has the effect of making the resulting
features focus on changes in the position of the featured images.

(5) Fully connected layers: This layer is the end of the network. It is often accompanied
by the classifier to make the classification decision, and can be stacked.

2.4. CNN Architecture and Models
2.4.1. CNN Architecture

The structure of the CNN is designed for different purposes [20]. As seen in common
neural networks, the neurons in a fully connected layer can be stacked and related to
activations in the previous layer. This puts the filtered image on a higher level and puts it
into a vote. With each additional layer, the network can learn more complex combinations
of functions, which helps to make better decisions. These votes are expressed as the
weight of the connection between each value or category. Therefore, their activation can be
calculated by matrix multiplication and bias offset, and the main operations are performed
by the backpropagation algorithm and the random gradient descent of the momentum
algorithm, and fed back to the optimization method of weight update [20].

CNN is a cascaded filter, the first block of which is dedicated to detecting lower-level
features (such as sharp points and surfaces folds), and the subsequent one is aggregated
by the previous activation. From the perspective of deep learning, the main advantage of
this architecture compared to traditional networks is that it can reduce the parameters of
the image. CNN is composed of multiple connected kernels. Continuous layer learning
features are gradually improved at the abstract level, and the input information can be
represented hierarchically by combining low-level and high-level features. The objective of
the fully connected layer is to take the results of the convolution to classify the images.

Currently, CNN [21] is widely used for image recognition by deep learning methods.
Convolutional neural networks replace feature extraction, feature selection and classifica-
tion. Different combinations of convolutional layers contain a series of fixed-size filters,
which are used to manipulate the convolution of input data to generate so-called feature
value maps (feature maps). During training in the context of convolutional neural networks,
these filters can provide useful modules for image recognition, such as line detectors, regu-
lar edges and changes in image color. The ReLU layer usually follows the operation of the
convolutional layer and provides a non-saturated activation function f(x) = max (0, x) for
the output. According to Krizhevsky’s research [22], these equations can be used to train
fast-converging neural network convolutions, and can also solve the gradient problem,
thereby accelerating the training.
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2.4.2. Five Different CNN Models Networks

In this paper, we used five common deep neural networks based on CNN models and
proposed an improved classification model for systematic colorectal cancer (CRC) tissue.

AlexNet

AlexNet [22] is a widely-applied deep convolutional neural network, which can still
achieve a competitive performance in classification compared to other kinds of networks.
In the training stage of the AlexNet model, the input image is resized to 224 × 224 pixels
and fed into the network. The architecture of AlexNet firstly adopts a convolutional layer
to perform convolution and max pooling with local response normalization (LRN) using
96 different size 11 × 11 receptive filters. The max pooling operations are performed with
3 × 3 filters with a stride size of 2. The same operations are performed in the second layer
with 5 × 5 filters. The 3 × 3 filters are used in the third, fourth and fifth convolutional layers
with 384, 384, and 296 feature maps respectively. The output of the two fully connected
(FC) layers is used as an extracted feature vector with dropout followed by a softmax layer
at the end.

SqueezeNet

SqueezeNet [23] is a small CNN architecture, which achieves AlexNet-level accuracy
on ImageNet with 50x fewer parameters. Additionally, model compression techniques
enabled us to compress SqueezeNet to less than 0.5 MB (510× smaller than AlexNet). The
SqueezeNet begins with a standalone convolution layer (conv1), followed by 8 Fire modules
(fire2–9), ending with a final convolution layer (conv10). We gradually increased the
number of filters per fire module from the beginning to the end of the network. SqueezeNet
performed max-pooling with a stride of 2 after layers conv1, fire4, fire8, and conv10.

VGGNet

VGGNET [24] was the runner up of the 2014 ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). The main contribution of VGGNET is that it shows that the depth of
a network is a critical component to achieve better recognition or classification accuracy
in CNNs. The VGG architecture consists of two convolutional layers both of which use
the ReLU activation function, which is followed by a single max pooling layer and several
fully connected layers, which also use the ReLU activation function. The final layer of the
VGGNet model is a Softmax layer for classification. In addition, the size of the convolution
filter is changed to a 3 × 3 filter with a span of 2 in VGG-E.

GoogLeNet

The GoogLeNet [25] main architecture improves the computing resources inside the
network model to incorporate inception layers with the objective and reducing complexity.
It not only increases the depth of the architectural approach (adding 1 × 1 convolutional
layers to the network) with a different kernel, but also the width of the network. This
reduces the number of computation layers to capture sparse correlation patterns.

ResNet

The ResNet [26] has a residual learning framework with ultra-deep networks, and
the residual functions can ease networks that did not lose out from a vanishing gradient
problem. Unexpectedly, as the depth of the ResNet framework network increases, the
accuracy is saturated, but adding more layers causes training errors.

3. Research Method

Deep learning has gained enormous popularity in scientific computing due to CNN,
and its algorithms are widely used by industries to solve complex problems. In this study,
we observed different network architectures [22–26] for comparison purposes.
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3.1. Experimental Steps

The diagram in Figure 3 illustrates the recognition process, which can be divided into
three stages. The first stage is model training, the second is finding the superior architecture
and parameters, and the third is model testing:
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Model Training

In this step, we used two different datasets. The first dataset we used was NCT-
CRC-HE-100K [3] image documents of histological images with a 150 × 150-pixel format,
which included nine different tissue classes. We divided it into 70% training dataset, 15%
validation dataset, and 15% test dataset. Since the number of each type in the original
dataset was not the same, we used the number ratio of each type to take the corresponding
number of training, validation and test for tissue classification in order to ensure the right
proportion. Another dataset, the Kather-texture-2016-image [2] represents a collection of
textures of eight tissue categories of human colorectal cancer in 5000 histological images of
150 × 150 pixels. Each image belongs to exactly one of the eight tissue categories, and the
group sizes balanced (625 images per set). We divided it into 70% training dataset, 15%
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validation dataset, and 15% test dataset, as shown in Table 2. Secondly, we used 5 different
CNN models for training: AlexNet [22], SqueezeNet [23], VGG19 [24], GoogLeNet [25],
and Resnet50 [26].

Table 2. CRC dataset of histological images.

Dataset Diagnosis
Entire Training Validate Testing

# WSI (%) # WSI (%) # WSI (%) # WSI (%)

NCT-CRC-HE-100K [3]

ADI 10,407 10.41 7285 10.41 1561 10.41 1561 10.41
BACK 10,566 10.57 7396 10.57 1585 10.57 1585 10.57
DEB 11,512 11.51 8058 11.51 1727 11.51 1727 11.51
LYM 11,557 11.56 8090 11.56 1734 11.56 1734 11.56
MUC 8896 8.90 6227 8.90 1334 8.90 1334 8.90
MUS 13,536 13.54 9475 13.54 2030 13.54 2030 13.54

NORM 8763 8.76 6134 8.76 1314 8.76 1314 8.76
STR 10,446 10.45 7312 10.45 1567 10.45 1567 10.45

TUM 14,317 14.32 10,022 14.32 2148 14.32 2148 14.32

CRC-VAL-HE-7K [3]

ADI 1338 18.64 0 0 0 0 1338 18.64
BACK 847 11.80 0 0 0 0 847 11.80
DEB 339 4.72 0 0 0 0 339 4.72
LYM 634 8.83 0 0 0 0 634 8.83
MUC 1035 14.42 0 0 0 0 1035 14.42
MUS 592 8.25 0 0 0 0 592 8.25

NORM 741 10.32 0 0 0 0 741 10.32
STR 421 5.86 0 0 0 0 421 5.86

TUM 1233 17.17 0 0 0 0 1233 17.17

Kather-texture-2016-image [2]

TUMOR 625 78.125 468 12.48 93 12.48 93 12.48
STROMA 625 78.125 468 12.48 93 12.48 93 12.48
COMPLEX 625 78.125 468 12.48 93 12.48 93 12.48
LYMPHO 625 78.125 468 12.48 93 12.48 93 12.48
DEBRIS 625 78.125 468 12.48 93 12.48 93 12.48

MUCOSA 625 78.125 468 12.48 93 12.48 93 12.48
ADIPOSE 625 78.125 468 12.48 93 12.48 93 12.48
EMPTY 625 78.125 468 12.48 93 12.48 93 12.48

Finding the Superior Architecture and Parameters

To gauge the performance of the network architectures of these CNN models, in
the first research experiment we compared three training network method optimizers:
stochastic gradient descent with momentum (SGDM), root mean square propagation
(RMSProp) and adaptive moment estimation (Adam) with an NCT-CRC-HE-100K [3]
dataset. As a result, the root-mean-square prop (RMSprop) method used the training
options as input to the argument to select the training network to train, validate and test
the CNN model to the highest accuracy, as shown in Table 3. In the second experiment,
we trained the 5 different CNN models neural network with the root-mean-square prop
(RMSprop) method. We further compared the replaced mini-batch size and epoch to test
the models.
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Table 3. Comparison of network optimizers (CRC-VAL-HE-100K).

Accuracy Rate (%)
(Times) Mini-Batch Size

Algorithms Epoch 8 16 32 64 128

sgdm

30 95.08
(668 min 16 s)

95.21
(709 min 44 s)

95.36
(761 min 6 s)

95.11
(821 min 44 s)

95.17
(889 min 22 s)

25 95.09
(659 min 31 s)

95.19
(701 min 25 s)

95.35
(748 min 55 s)

95.17
(812 min 53 s)

95.16
(874 min 37 s)

20 95.02
(647 min 22 s)

95.24
(691 min 15 s)

95.37
(741 min 32 s)

95.19
(809 min 47 s)

95.17
(870 min 49 s)

15 94.54
(611 min 15 s)

95.24
(689 min 46 s)

95.37
(733 min 27 s)

95.21
(807 min 32 s)

95.17
(869 min 18 s)

10 94.14
(592 min 46 s)

94.95
(680 min 21 s)

95.31
(726 min 41 s)

95.14
(806 min 58 s)

95.12
(858 min 45 s)

rmsprop

30 96.35
(853 min 24 s)

96.85
(852 min 17 s)

97.09
(805 min 53 s)

97.13
(828 min 44 s)

96.93
(912 min 17 s)

25 96.34
(850 min 18 s)

96.88
(841 min 34 s)

97.22
(892 min 41 s)

97.14
(897 min 13 s)

96.98
(901 min 28 s)

20 96.32
(847 min 6 s)

96.88
(838 min 21 s)

97.23
(867 min 44 s)

97.14
(893 min 36 s)

97.01
(900 min 39 s)

15 96.32
(842 min 11 s)

96.85
(831 min 19 s)

97.22
(871 min 12 s)

97.14
(890 min 11 s)

97.03
(899 min 47 s)

10 96.32
(838 min 37 s)

96.69
(820 min 47 s)

97.08
(869 min 44 s)

97.01
(884 min 19 s)

97.03
(898 min 7 s)

adam

30 95.28
(814 min 8 s)

95.59
(824 min 33 s)

96.36
(807 min 22 s)

95.38
(830 min 45 s)

94.20
(824 min 37 s)

25 95.29
(810 min 39 s)

95.41
(822 min 14 s)

96.36
(806 min 35 s)

95.37
(818 min 50 s)

94.17
(820 min 49 s)

20 95.28
(807 min 52 s)

95.38
(812 min 26 s)

96.37
(802 min 42 s)

95.37
(814 min 59 s)

94.19
(820 min 17 s)

15 95.27
(796 min 6 s)

95.38
(800 min 32 s)

96.37
(803 min 15 s)

95.39
(809 min 38 s)

94.21
(815 min 29 s)

10 95.27
(790 min 28 s)

95.38
(798 min 38 s)

95.36
(808 min 14 s)

95.38
(809 min 9 s)

93.21
(811 min 8 s)

Bold symbols represent the maximum values of each column in the tables.

Model Testing

The last stage of our architectural parameters involved classifying the histological
images through each CNN model’s neural network architecture by training the model
to identify the types from different tissue classes. After neural network training all the
100,000 image patches (which were derived from 86 whole-slide images) in the first dataset
(NCT-CRC-HE-100K), we used the dataset for testing purposes. Besides, we assessed
the accuracy of the tissue classification and the convolutional neural network using an
independent external dataset (CRC-VAL-HE-7K), which contained 7180 image patches
derived from 25 hematoxylin and eosin (H&E) slides of human CRC tissue. Additionally,
we used 70% of the dataset (Kather-texture-2016-image) consisting of 5000 images in eight
classes of colorectal cancer tissue for training, 15% for validation and the other 15% for
testing. We created a confusion matrix chart of the experimental results and showed the
precision of each class using column and row summaries. The percentage of correctly and
incorrectly classified observations for the true class were shown in the normalized row,
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while the percentage of correctly and incorrectly classified observations for the predicted
class were shown in the normalized column.

3.2. Data Availability
3.2.1. Images of Nine Tissue Classes

In this experiment, we used the open histological dataset of nine tissue classes from
NCT-CRC-HE-100K for model training. These images were generated by Kather et al. [3],
and have 86 hematoxylin and eosin stain (H&E) slides of tissue. The labels of the histolog-
ical images of the available data were taken from the NCT-UMM website. The example
images of the nine tissue classes are listed in Figure 4. The dimensions of all the images
were 224 × 224 pixels (112 × 112 µm), and they were presented to the model network
sequentially for training, validation and testing. After training and testing our network
framework with the “NCT-CRC-HE-100K”, we also assessed the accuracy of the tissue
classification with an external validation set, data description “CRC-VAL-HE-7K”, which
contained 7180 image patches for testing purposes only. The nine classes are categorized as
following (Figure 4):

(a) ADI: adipose tissue is mainly composed of adipocytes.
(b) BACK: histological image background.
(c) DEB: debris is widely used in histopathology and diagnoses.
(d) LYM: lymphocytes are the main type of cells found in the lymphatic system.
(e) MUC: mucus is produced by many tissues in the body, and acts as a protective force.
(f) MUS: smooth muscle.
(g) NORM TISSUE: tissues of colon mucosa.
(h) STR: stroma tissues associated with cancer.
(i) TUM: epithelium tissues of adenocarcinoma.
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3.2.2. Images of Eight Tissue Classes

We used the open dataset Kather-texture-2016-image to verify the accuracy of our
optimized deep neural network architecture in distinguishing other tissue classes. This
dataset was collected from the Institute of Histological Images of Pathology of Human
Colorectal Cancer taken from the pathology archive by Kather, et al. [2]. The dataset
consisted of 5000 non-duplicated histological images of human colorectal cancer (CRC)
using hematoxylin and eosin (H&E) and healthy normal tissue images. This dataset created
images with 150 × 150 pixels (74 × 74 µm) each for every RGB color, and contained eight
different tissue texture features and original tissue images with a size of 5000 pixels (e.g.,
Figure 5).
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Figure 5. Example images of the eight tissue classes represented in the Kather-texture-2016-image-
5000 dataset. (a–h) defined in Section 3.2.2.

The eight classes are categorized as following (Figure 5):

(a) TUMOR: a tumor is an abnormal new growth of cells.
(b) STROMA: stroma is the part of a tissue or organ with a structural or connective role.
(c) COMPLEX: complex stroma contain a single or a few tissue cells.
(d) LYMPHO: lymphoma is a group of blood malignancies that develop from lymphocytes.
(e) DEBRIS: debris or H&E stain is one of the principal tissue stains used in histology.
(f) MUCOSA: mucus is produced by many tissues in the body, and acts as a protec-

tive force.
(g) ADIPOSE: adipose tissue is mainly composed of adipocytes.
(h) EMPTY: histological image background.

3.3. Software and Tools Platform

In this study, we used the MATLAB of R2020a based on deep neural network ar-
chitecture to train and test on two Intel workstation computers with high-level NVIDIA
QUADRO GeForce GTX 1070 GPUs, and OS Windows 10 64-bit Core i7 i7-7700 with
3.60 GHz Processor (4 Core).

4. Experiments and Discussion

A series of experiments on different convolutional neural networks (CNNs) models
were conducted in this study, including AlexNet, SqueezeNet, VGGNet, GoogLeNet and
ResNet50. In Experiment I, we compared the accuracy rate of three training network
optimizer methods: the stochastic gradient descent with momentum (SGDM), the root
mean square propagation (RMSProp), which utilizes the magnitude of recent gradients
to normalize the gradients, and the adaptive moment estimation (Adam), which is an
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optimization algorithm that can be used for a classical stochastic gradient descent. In
addition, parts of the parameters in the network layers were modified, such as the mini-
batch size and different epoch. Next, we used our approach to identify the accuracy rate of
the colorectal cancer tissue types from the histological images in different open datasets,
and the results are presented in the next section.

4.1. Experiment I: Comparing the Accuracy Rate of Network Optimizers
4.1.1. Approach
Load and Explore Image Data

Firstly, we loaded three different open datasets of histological images. The first dataset
consisted of 100,000 histological images (NCT-CRC-HE-100K) of colorectal cancer, including
nine classes of tissues. The second dataset was (CRC-VAL-HE-7K), which contained 7180
image patches. The last dataset consisted of 5000 histological images of colorectal cancer,
including eight different types of tissue. The image store automatically labeled the images
based on folder names and efficiently read batches of images while training a convolutional
neural network.

Randomly Split the Dataset

Next, we split the image dataset into three data stores: 70% into training data and 15%
each into testing and validation, so that none of them overlapped with the others.

Define the Convolutional Neural Network Architecture

At this stage, we used 5 different CNN models for the training dataset: AlexNet [22],
SqueezeNet [23], VGG19 [24], GoogLeNet [25], and Resnet50 [26]. The architecture included
different convolutional layers, rectified linear units layer (ReLU layer), max-pooling layer,
and fully connected layers.

Specify a Set of Options for Training

The network was trained using stochastic gradient descent with three training method
optimizers after defining the network structure: stochastic gradient descent with momen-
tum (SGDM), root mean square propagation (RMSProp), adaptive moment estimation
(Adam) with an initial learning rate of 0.01 and four training periods on the entire dataset.

Train the Network

Train the network of histological images, and monitor the accuracy rate.

Predict Classification Accuracy

Predict the test data with three open datasets to calculate the final accuracy rate and
execution time.

4.1.2. Experimental Results

Since deep learning technique will be adopted in this study, the performance of a CNN
model depends on many factors in general. For example, the weight initialization, batch
sizes, epochs, learning rates, activation function, optimizer, loss function, network topol-
ogy, etc. The optimizer selection study of [27] for brain tumor segmentation in magnetic
resonance images (MRI) suggests that a good optimizer could be a critical issue for the pro-
posed approach. The authors of [27] listed 10 different state-of-the-art optimizer including:
adaptive gradient (Adagrad), adaptive delta (AdaDelta), stochastic gradient descent (SGD),
adaptive momentum (Adam), cyclic learning rate (CLR), adaptive max pooling (Adamax),
root mean square propagation (RMS Prop), Nesterov adaptive momentum (Nadam), and
Nesterov accelerated gradient (NAG) for CNN. The Adam optimizer achieved the best
accuracy in study of [27] for MRI. Comprehensive analyses have been performed during
this study for those optimizers. Based on the performance of final results, only SGDM,
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RMSProp, Adam are listed since their performance are overall better than other optimizers
for different network models.

Firstly, the open dataset description (Kather-texture-2016-image), which included 5000
images in eight tissue classes are trained and the results of the experiment are shown in
Table 4, and the plot of the confusion matrix in Figure 6.

Table 4. Experiment I: the best results of eight tissue classes (Kather-texture-2016-image).

Accuracy Rate (%)
(Times) Algorithms

Model Sgdm Rmsprop Adam

ResNet18 91.89
(17 min 22 s)

92.41
(21 min 15 s)

92.33
(25 min 51 s)

ResNet50 93.27
(19 min 12 s)

94.18
(28 min 22 s)

94.02
(33 min 56 s)

ResNet101 92.98
(21 min 19 s)

94.11
(32 min 33 s)

93.99
(43 min 43 s)

GoogLeNet 91.89
(8 min 25 s)

92.17
(11 min 11 s)

92.13
(15 min 29 s)

VGG19 88.91
(11 min 27 s)

90.85
(15 min 3 s)

89.94
(17 min 54 s)

SqueezeNet 85.22
(14 min 57 s)

86.31
(16 min 01 s)

86.11
(19 min 29 s)

AlexNet 87.93
(17 min 27 s)

88.81
(19 min 36 s)

88.24
(21 min 17 s)

Bold symbols represent the maximum values of each row in the tables.
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Figure 6. Experiment I: the accuracy of eight classes (Kather-texture-2016-image-5000).

Secondly, we used the data description (NCT-CRC-HE-100K) image documents with
a 224 × 224-pixel format to classify the histological images, which included 100,000 images
in nine different tissue classes, and display the precision for each class by using column and
row summaries to plot the confusion matrix, as shown in Figure 7. In addition, we tested
the classification performance with another independent set of 7000 images from different
patients (CRC-VAL-HE-7K), and plotted the confusion matrix, as shown in Figure 8. The
detailed results are shown in Table 5.
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Among the selected optimizer, unlike Adam achieved the highest accuracy for brain
tumor segmentation in magnetic resonance images, root-mean-square prop (RMSprop)
network optimizer consistently have the highest accuracy rates for colorectal cancer tissues
shown in Tables 4 and 5. Therefore, RMSprop optimizer will be adopted in the following
experiments.
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Figure 8. Experiment I: the accuracy of nine classes (CRC-VAL-HE-7K).
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Table 5. Experiment I: the best results of nine tissue classes (CRC-VAL-HE-7K).

Accuracy Rate (%)
(Times) Algorithms

Model Sgdm Rmsprop Adam

ResNet18 94.81
(6 s)

96.33
(11 s)

95.93
(11 s)

ResNet50 96.94
(11 s)

97.22
(10 s)

96.37
(14 s)

ResNet101 95.35
(14 s)

97.14
(13 s)

96.82
(17 s)

GoogLeNet 95.89
(5 s)

97.05
(6 s)

96.18
(5 s)

VGG19 96.12
(3 s)

97.08
(3 s)

97.01
(7 s)

SqueezeNet 95.77
(4 s)

96.04
(6 s)

96.05
(13 s)

AlexNet 96.88
(14 s)

97.02
(17 s)

97.00
(10 s)

Bold symbols represent the maximum values of each row in the table.

4.2. Experiment II: Our Trained Deep Learning Approaches
4.2.1. Approach

Using the same split dataset method as shown in Experiment 1, we trained the neural
network of five different CNN models with the most accurate optimizer: root-mean-square
prop (RMSprop) and compared it with the replaced mini-batch size and epoch. Parts of
the network layer were extracted to a new mode in the model revision process, which
was used to extract the image features to modify the parameter. We improved this stage
based on five cycles of the minimum batch size per training. We considered different
models of convolutional neural networks (CNNs), such as AlexNet, SqueezeNet, VGGNet,
GoogLeNet and ResNet for the classification of the pathological images.

The architectural design of the convolutional neural network (CNN) ResNet50 can
be seen in Table 6. (ONV + POOL)_maxrepresents the convolutional layer, followed by
the use of the maximum generalized pooling layer, and (CONV + POOL)_avg is a pooling
layer that follows the generalization of the average.

Table 6. Summary of parameters for ResNet50.

Name Type Activations Learnable
Parameters

1 data
224 × 224 × 3 Image Input 224 × 224 × 3 -

2 Conv1-7 × 7_s2 Convolution 112 × 112 × 64
Weights 7 × 7 × 3

× 64
Bias 1 × 1 × 64

3 Conv1-relu_7 × 7 ReLU 112 × 112 × 64 -

4 Pool-3 × 3_s2 Max Pooling 56 × 56 × 64 -

5 Pool1-norm1 Cross Channel
Normalization 56 × 56 × 64 -

6 Conv2-3 × 3_reduce Convolution 56 × 56 × 64
Weights 1 × 1 × 3

× 64
Bias 1 × 1 × 64
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Table 6. Cont.

Name Type Activations Learnable
Parameters

7 Conv2-relu_3 ×
3_reduce ReLU 56 × 56 × 64 -

8 Conv2-3 × 3 Convolution 56 × 56 × 192
Weights 3 × 3 × 64

× 192
Bias 1 × 1 × 192

9 Conv2-relu_3 × 3 ReLU 56 × 56 × 192 -

10 Conv2-norm2 Cross Channel
Normalization 56 × 56 × 192 -

11 Pool2-3 × 3_s2 Max Pooling 28 × 28 × 192 -

12 Inception_3a-1 × 1 Convolution 28 × 28 × 64
Weights 1 × 1 ×

192 × 164
Bias 1 × 1 × 64

...
...

...
...

...

144 Output Classification
Output - -

4.2.2. Experimental Results

In the second part, we compared five different CNN networks with the replaced
mini-batch size and epoch from the network to form a new model. We began by using the
data “NCT-CRC-HE-100K” documents of histological images for the model training with a
224 × 224-pixel format for classification, including 100,000 images of nine different tissue
classes, and displaying the precision of each class by using column and row summaries to
plot the confusion matrix, as shown in Figure 9. The detailed results are shown in Table 7.
Secondly, we tested the classification performance in an independent dataset of 7180 images
from “CRC-VAL-HE-7K”, and plotted the confusion matrix as shown in Figure 10. The
detailed results are shown in Table 8. In addition, we used the open dataset description
“Kather-texture-2016-image”, which included 5000 images in eight tissue classes. The
experimental results are shown in Table 9, and the plot of the confusion matrix is shown in
Figure 11.
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Table 7. Experiment II: the best results of nine tissue classes (CRC-VAL-HE-100K).

Accuracy Rate (%) (Times) Mini-Batch Size

Model Epoch 8 16 32 64 128

ResNet18

30 98.12 (689 min 43 s) 98.27 (707 min 39 s) 98.60 (709 min 45 s) 98.65 (711 min 45 s) 98.48 (720 min 08 s)
25 98.09 (671 min 22 s) 98.27 (692 min 44 s) 98.61 (694 min 17 s) 98.64 (698 min 55 s) 98.47 (799 min 49 s)
20 98.09 (665 min 19 s) 98.24 (680 min 18 s) 98.61 (681 min 22 s) 98.66 (690 min 29 s) 98.49 (796 min 05 s)
15 98.02 (639 min 28 s) 98.07 (669 min 27 s) 98.61 (672 min 18 s) 98.66 (684 min 05 s) 98.48 (789 min 34 s)
10 98.01 (622 min 17 s) 98.01 (643 min 19 s) 98.02 (666 min 16 s) 98.44 (771 min 33 s) 98.48 (770 min 31 s)

ResNet50

30 98.35 (757 min 08 s) 99.02 (758 min 31 s) 99.67 (769 min 04 s) 99.46 (790 min 22 s) 99.41 (792 min 12 s)
25 98.29 (739 min 33 s) 99.02 (756 min 05 s) 99.68 (762 min 18 s) 99.46 (788 min 09 s) 99.45 (789 min 55 s)
20 98.31 (733 min 29 s) 98.89 (749 min 22 s) 99.69 (756 min 03 s) 99.46 (781 min 26 s) 99.44 (782 min 17 s)
15 98.21 (719 min 16 s) 98.72 (736 min 05 s) 99.68 (731 min 07 s) 99.46 (768 min 17 s) 99.45 (769 min 38 s)
10 98.21 (709 min 15 s) 98.77 (728 min 17 s) 99.68 (729 min 19 s) 99.45 (742 min 11 s) 99.45 (761 min 21 s)

ResNet101

30 98.89 (797 min 21 s) 99.03 (792 min 27 s) 99.30 (798 min 41 s) 98.79 (809 min 39 s) 98.50 (829 min 10 s)
25 98.81 (789 min 17 s) 99.03 (790 min 07 s) 99.31 (793 min 28 s) 98.77 (795 min 48 s) 98.54 (827 min 01 s)
20 98.79 (780 min 54 s) 99.02 (787 min 52 s) 99.32 (788 min 18 s) 98.81 (794 min 27 s) 98.54 (818 min 35 s)
15 98.77 (775 min 15 s) 99.02 (778 min 17 s) 99.31 (780 min 26 s) 98.81 (761 min 39 s) 98.59 (815 min 29 s)
10 98.77 (771 min 17 s) 99.01 (773 min 32 s) 99.30 (776 min 09 s) 98.78 (759 min 05 s) 98.59 (813 min 16 s)

GoogLeNet

30 98.01 (523 min 29 s) 98.53 (529 min 49 s) 98.54 (527 min 49 s) 98.49 (532 min 47 s) 98.43 (654 min 51 s)
25 97.75 (509 min 17 s) 98.53 (510 min 24 s) 98.56 (525 min 37 s) 98.48 (528 min 44 s) 98.45 (639 min 51 s)
20 97.58 (501 min 22 s) 98.51 (509 min 17 s) 98.56 (513 min 18 s) 98.49 (516 min 15 s) 98.44 (617 min 42 s)
15 97.44 (498 min 27 s) 98.47 (506 min 24 s) 98.57 (507 min 09 s) 98.49 (508 min 27 s) 98.45 (612 min 33 s)
10 97.02 (485 min 54 s) 98.47 (501 min 35 s) 98.56 (503 min 38 s) 98.48 (507 min 44 s) 98.45 (592 min 37 s)

VGG19

30 98.49 (576 min 43 s) 98.49 (578 min 26 s) 98.49 (581 min 52 s) 98.48 (503 min 37 s) 98.41 (509 min 33 s)
25 98.45 (558 min 17 s) 98.49 (566 min 33 s) 98.51 (577 min 49 s) 98.46 (496 min 47 s) 98.46 (504 min 18 s)
20 98.45 (537 min 55 s) 98.49 (541 min 34 s) 98.52 (562 min 22 s) 98.43 (470 min 29 s) 98.49 (501 min 24 s)
15 98.46 (528 min 18 s) 98.49 (527 min 15 s) 98.52 (512 min 06 s) 98.43 (451 min 14 s) 98.46 (489 min 46 s)
10 98.44 (501 min 09 s) 98.49 (518 min 48 s) 98.51 (512 min 48 s) 98.42 (438 min 42 s) 98.46 (484 min 17 s)

SqueezeNet

30 98.07 (522 min 24 s) 98.21 (524 min 45 s) 98.31 (549 min 42 s) 98.22 (456 min 16 s) 98.29 (486 min19 s)
25 98.06 (519 min 18 s) 98.25 (520 min 36 s) 98.27 (540 min 15 s) 98.19 (441 min 18 s) 98.31 (483 min 28 s)
20 98.07 (511 min 04 s) 98.21 (516 min 49 s) 98.29 (538 min 57 s) 98.18 (438 min 45 s) 98.33 (469 min 34 s)
15 98.06 (509 min 19 s) 98.19 (510 min 39 s) 98.30 (529 min 42 s) 98.14 (435 min 57 s) 98.42 (463 min 05 s)
10 98.06 (501 min 31 s) 98.25 (509 min 24 s) 98.26 (519 min 16 s) 98.18 (424 min 19 s) 98.31 (453 min 01 s)

AlexNet

30 97.71 (535 min 45 s) 97.73 (539 min 55 s) 97.77 (541 min 07 s) 97.39 (451 min 38 s) 97.72 (473 min 17 s)
25 97.69 (532 min 44 s) 97.73 (534 min 49 s) 97.76 (539 min 33 s) 97.28 (447 min 42 s) 97.69 (466 min 35 s)
20 97.72 (532 min 19 s) 97.70 (533 min 16 s) 97.81 (539 min 17 s) 97.68 (443 min 22 s) 97.91 (457 min 08 s)
15 97.70 (531 min 28 s) 97.69 (531 min 49 s) 97.77 (534 min 16 s) 97.24 (441 min 17 s) 97.67 (453 min 03 s)
10 97.71 (530 min 46 s) 97.70 (531 min 04 s) 97.70 (533 min 35 s) 97.23 (438 min 19 s) 97.67 (423 min 39 s)

Bold symbols represent the maximum values of each column in the tables.
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Table 8. Experiment II: the best result of nine tissue classes (CRC-VAL-HE-7K).

Accuracy Rate (%) (Times) Mini-Batch Size

Model Epoch 8 16 32 64 128

ResNet18

30 98.03 (11 s) 98.07 (14 s) 98.10 (16 s) 98.15 (18 s) 98.08 (18 s)
25 98.01 (10 s) 98.07 (12 s) 98.11 (13 s) 98.04 (16 s) 98.07 (18 s)
20 97.91 (7 s) 98.04 (7 s) 98.20 (10 s) 98.16 (12 s) 97.99 (16 s)
15 97.92 (5 s) 97.97 (6 s) 98.09 (12 s) 98.16 (12 s) 97.11 (14 s)
10 97.91 (4 s) 97.91 (4 s) 98.08 (8 s) 98.14 (9 s) 97.08 (11 s)

ResNet50

30 98.56 (14 s) 99.01 (16 s) 99.28 (17 s) 99.09 (19 s) 99.10 (20 s)
25 98.53 (14 s) 99.01 (14 s) 99.31 (15 s) 99.15 (18 s) 99.17 (19 s)
20 98.51 (7 s) 98.90 (7 s) 99.32 (9 s) 99.19 (12 s) 99.09 (12 s)
15 98.51 (5 s) 98.88 (7 s) 99.30 (9 s) 99.27 (10 s) 99.09 (12 s)
10 98.51 (5 s) 98.81 (6 s) 99.30 (7 s) 99.14 (9 s) 99.19 (11 s)

ResNet101

30 98.26 (15 s) 97.81 (16 s) 98.07 (18 s) 98.75 (20 s) 98.56 (20 s)
25 98.25 (14 s) 97.92 (15 s) 98.29 (16 s) 98.71 (17 s) 98.54 (19 s)
20 98.29 (14 s) 97.92 (15 s) 98.41 (16 s) 98.76 (17 s) 98.33 (19 s)
15 98.31 (10 s) 97.83 (11 s) 98.31 (12 s) 98.74 (12 s) 98.19 (13 s)
10 98.19 (10 s) 97.90 (10 s) 98.30 (11 s) 98.71 (12 s) 98.09 (13 s)

GoogLeNet

30 97.22 (7 s) 98.03 (8 s) 98.04 (8 s) 98.13 (9 s) 98.04 (11 s)
25 97.34 (7 s) 98.03 (7 s) 98.16 (7 s) 98.17 (8 s) 98.27 (10 s)
20 97.29 (6 s) 98.01 (7 s) 98.16 (7 s) 98.19 (8 s) 98.23 (9 s)
15 97.17 (6 s) 97.97 (6 s) 98.07 (7 s) 98.17 (7 s) 98.12 (9 s)
10 97.06 (6 s) 97.97 (6 s) 98.06 (6 s) 98.18 (7 s) 98.19 (7 s)

VGG19

30 97.22 (5 s) 97.32 (5 s) 97.51 (7 s) 97.55 (7 s) 97.01 (8 s)
25 97.05 (4 s) 97.11 (4 s) 97.47 (5 s) 97.22 (6 s) 97.16 (6 s)
20 97.07 (4 s) 97.17 (5 s) 97.51 (5 s) 97.29 (5 s) 97.03 (6 s)
15 97.19 (4 s) 97.13 (4 s) 97.49 (4 s) 97.21 (5 s) 97.14 (6 s)
10 97.11 (4 s) 97.14 (4 s) 96.37 (4 s) 97.16 (4 s) 97.07 (5 s)

SqueezeNet

30 96.95 (8 s) 96.13 (8 s) 96.09 (8 s) 97.24 (9 s) 97.32 (11 s)
25 96.95 (5 s) 96.11 (6 s) 96.07 (6 s) 97.17 (7 s) 97.21 (10 s)
20 96.91 (5 s) 96.18 (5 s) 96.11 (6 s) 97.12 (7 s) 97.40 (9 s)
15 96.90 (5 s) 96.17 (5 s) 96.07 (5 s) 97.14 (7 s) 97.43 (9 s)
10 96.90 (4 s) 96.11 (4 s) 96.01 (5 s) 97.14 (6 s) 97.44 (8 s)

AlexNet

30 95.11 (9 s) 95.27(9 s) 95.29 (11 s) 95.07 (13 s) 95.17 (13 s)
25 95.05 (9 s) 95.27 (10 s) 95.28 (10 s) 95.08 (12 s) 95.16 (14 s)
20 95.03 (8 s) 95.25 (10 s) 95.30 (10 s) 95.07 (11 s) 95.18 (11 s)
15 94.97 (8 s) 95.22 (8 s) 95.28 (9 s) 95.08 (10 s) 95.18 (11 s)
10 94.94 (7 s) 94.25 (8 s) 95.27 (8 s) 95.07 (10 s) 95.14 (9 s)

Bold symbols represent the maximum values of each column in the tables.

By the same token, based on the experimental results, it can be seen that, when revising
the parameters, ResNet50 was found to have achieved the highest accuracy rate at 15 epoch
shown in Figure 12a, and 32 mini-batch size for nine classes of CRC images, as shown in
Figure 12b. Furthermore, the same parameters of the ResNet50 neural network used for
eight types of CRC images achieved a ratio of 94.86% accuracy, as shown in Figure 13a,b.
Further extensive experiments have been conducted to verify the efficacy of different
variants of the ResNet architecture, such as ResNet18, ResNet50 and ResNet101 [26]. It is
also worth noting that an accuracy rate of 99.69% can be achieved using 177 layers of a
neural network (ResNet50), which is better than the 98.61% using 71 layers of ResNet18 and
the 99.31% using 347 layers of ResNet101. Furthermore, an accuracy rate of 94.86% can be
achieved using 177 layers and the same parameters of a ResNet50 neural network for eight
classes of CRC images, which is better than the 92.86% using 71 layers of ResNet18 and
the 94.16%, using 347 layers of ResNet101. The differences between ResNet18, ResNet50
and ResNet101 are highlighted in Figure 14. It can be seen from the previous experiments
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that the best classification accuracy rate can achieved by revising the parameters and
using ResNet50.

Table 9. Experiment II: the best result of eight tissue classes (Kather-texture-2016-image).

Accuracy Rate (%) (Times) Mini-Batch Size

Model Epoch 8 16 32 64 128

ResNet18

30 94.12 (38 min 41 s) 94.14 (39 min 09 s) 94.16 (39 min 28 s) 94.18 (39 min 47 s) 93.24 (40 min 15 s)
25 94.12 (37 min 22 s) 94.16 (37 min 49 s) 94.11 (38 min 19 s) 94.14 (38 min 49 s) 93.28 (39 min 42 s)
20 94.11 (37 min 35 s) 94.16 (37 min 21 s) 94.15 (37 min 52 s) 94.16 (38 min 11 s) 93.29 (38 min 39 s)
15 94.09 (37 min 06 s) 94.17 (35 min 38 s) 94.16 (36 min 43 s) 94.21 (36 min 27 s) 93.27 (37 min 54 s)
10 94.10 (35 min 49 s) 94.13 (35 min 17 s) 94.13 (36 min 22 s) 94.12 (36 min 19 s) 93.28 (36 min 21 s)

ResNet50

30 94.38 (41 min 11 s) 94.45 (41 min 35 s) 94.85 (43 min 41 s) 94.56 (43 min 52 s) 94.71 (44 min 29 s)
25 94.38 (40 min 57 s) 94.45 (41 min 09 s) 94.85 (42 min 18 s) 94.54 (43 min 16 s) 94.78 (44 min 48 s)
20 94.35 (40 min 23 s) 94.43 (40 min 44 s) 94.86 (40 min 22 s) 94.56 (41 min 25 s) 94.72 (43 min 45 s)
15 94.32 (39 min 43 s) 94.41 (40 min 01 s) 94.86 (40 min 18 s) 94.56 (40 min 07 s) 94.79 (43 min 52 s)
10 94.33 (39 min 17 s) 94.38 (39 min 44 s) 94.77 (40 min 02 s) 94.55 (40 min 27 s) 94.79 (43 min 31 s)

ResNet101

30 92.59 (41 min 32 s) 92.69 (42 min 54 s) 92.74 (42 min 57 s) 92.66 (43 min 17 s) 91.52 (53 min 41 s)
25 92.59 (41 min 18 s) 92.69 (41 min 31 s) 92.76 (42 min 26 s) 92.65 (43 min 49 s) 91.50 (53 min 16 s)
20 92.55 (40 min 55 s) 92.71 (41 min 18 s) 92.76 (41 min 46 s) 92.66 (42 min 59 s) 91.49 (52 min 58 s)
15 92.48 (40 min 49 s) 92.67 (41 min 01 s) 92.75 (41 min 36 s) 92.66 (41 min 43 s) 91.50 (52 min 19 s)
10 92.45 (40 min 44 s) 92.69 (40 min 52 s) 92.76 (41 min 18 s) 92.65 (41 min 37 s) 91.50 (51 min 47 s)

GoogLeNet

30 90.61 (30 min 31 s) 91.39 (30 min 45 s) 92.39 (31 min 47 s) 92.36 (31 min 59 s) 92.16 (31 min 30 s)
25 90.59 (30 min 17 s) 91.39 (30 min 42 s) 92.39 (30 min 53 s) 92.36 (31 min 56 s) 92.17 (30 min 46 s)
20 90.60 (30 min 01 s) 91.37 (30 min 19 s) 92.42 (30 min 17 s) 92.36 (31 min 44 s) 92.15 (30 min 17 s)
15 90.60 (29 min 55 s) 91.32 (30 min 11 s) 92.33 (30 min 46 s) 92.36 (31 min 09 s) 92.14 (29 min 52 s)
10 90.59 (29 min 34 s) 91.33 (29 min 54 s) 92.36 (30 min 34 s) 92.36 (30 min 54 s) 92.15 (29 min 29 s)

VGG19

30 90.91 (26 min 29 s) 90.86 (26 min 17 s) 91.30 (26 min 17 s) 91.29 (27 min 21 s) 90.89 (27 min 29 s)
25 90.90 (25 min 37 s) 90.86 (25 min 51 s) 91.35 (25 min 59 s) 91.25 (26 min 48 s) 90.87 (27 min 16 s)
20 90.91 (25 min 11 s) 90.85 (25 min 32 s) 91.37 (25 min 22 s) 91.29 (24 min 27 s) 90.89 (24 min 54 s)
15 90.91 (24 min 58 s) 90.84 (25 min 08 s) 91.31 (25 min 08 s) 91.29 (24 min 03 s) 90.89 (24 min 22 s)
10 90.89 (24 min 36 s) 90.84 (24 min 27 s) 91.32 (24 min 43 s) 91.27 (23 min 44 s) 90.89 (24 min 09 s)

SqueezeNet

30 88.09 (25 min 27 s) 88.16 (25 min 44 s) 88.17 (26 min 14 s) 88.24 (26 min 47 s) 87.37 (28 min 49 s)
25 88.09 (25 min 14 s) 88.17 (25 min 28 s) 88.17 (25 min 52 s) 88.25 (26 min 19 s) 87.29 (27 min 42 s)
20 88.07 (25 min 02 s) 88.17 (25 min 25 s) 88.17 (25 min 44 s) 88.24 (25 min 58 s) 87.24 (27 min 19 s)
15 88.09 (24 min 46 s) 88.18 (25 min 09 s) 88.11 (25 min 26 s) 88.27 (25 min 37 s) 87.29 (26 min 27 s)
10 88.09 (24 min 25 s) 88.17 (24 min 49 s) 88.08 (24 min 38 s) 88.24 (25 min 06 s) 87.19 (25 min 38 s)

AlexNet

30 90.18 (30 min 05 s) 91.94 (31 min 27 s) 91.92 (32 min 44 s) 91.91 (33 min 52 s) 89.40 (45 min 05 s)
25 90.17 (29 min 45 s) 91.94 (31 min 43 s) 91.94 (31 min 16 s) 91.93 (33 min 27 s) 89.42 (45 min 19 s)
20 90.18 (29 min 33 s) 91.94 (30 min 22 s) 91.94 (30 min 41 s) 91.91 (32 min 41 s) 89.44 (45 min 37 s)
15 90.18 (29 min 12 s) 91.94 (29 min 49 s) 91.91 (30 min 22 s) 91.94 (32 min 36 s) 89.41 (46 min 27 s)
10 90.19 (28 min 58 s) 91.94 (29 min 23 s) 91.87 (29 min 27 s) 91.94 (30 min 11 s) 89.49 (45 min 44 s)

Bold symbols represent the maximum values of each column in the tables.
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4.3. Discussion

After the detailed explanation of the approach and experiments, it is necessary to com-
pare the performance of the proposed techniques with published data. In Reference [13],
Kather et al. applied the same NCT-HE-100K data set of 100,000 histological images to
train a VGG19 CNN model and tested the classification performance in an independent set
of 7180 images from different patients (CRC-VAL-HE-7K). The overall nine-class accuracy
was close to 99% in an internal testing set and 94.3% in an external testing set. Unlike the
approach in [13], the experimental results of ResNet50 outperform the data of VGG19 in
Table 7. We had achieved 99.69% accuracy rate in the same internal testing set and 99.32%
in the same external testing set from Figure 14. Through comprehensive and thorough
analyses, this study suggests that ResNet50 could be a better deep learning architecture for
colorectal cancer tissue than VGG19.

To further validate our claim, the independent data set with eight classes of [2] is also
utilized for comparison purpose. Through our study, ResNet50 achieved 94.86% accuracy
in Figure 14 and [2] reported the best accuracy rate was 87.4%. Through comprehensive
studies and comparison, it is highly suggested that ResNet50 with suggested settings of
this study could be the most efficient and accuracy deep learning techniques to classify
colorectal cancer tissue.

Since deep neural networks have been adopted in this study as the classifier, the
modular design of those models conveniently provides their architecture to specific needs.
Many factors could easily be modified like weight initialization, batch sizes, epochs, learn-
ing rates, activation function, optimizer, loss function, network topology, etc. to improve
the classification accuracy. Among various settings for the superior classification perfor-
mance, several studies [28–30] have suggested that loss function could be critical to affect
the deep learning models and learning efficiency, as well as the classifier robustness to
various situation.

In this study, the authors adopted the transfer learning of deep learning architecture
for the classification of colorectal cancer tissue, those network models are optimized based
on the pre-trained data from ImageNet [22]. Since ImageNet is a large labeled dataset
of real-world images, it is one of the most widely used dataset in latest computer vision
research and several well-known models are the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winners. The loss functions for each network adopted in this study are
cross entropy loss function for all network models. The authors would pay extra attention
to optimize the selection of loss function for future research in order to further improve the
overall accuracy, class imbalance awareness and convergence speed for the classification
of colorectal cancer tissue. Therefore, our research could effectively classify the medical
images in aiding clinical care and treatment.

5. Conclusions

This study was based on exploring different deep learning models for the recognition
of colorectal cancer tissue using CNN. An improved version of deep learning parameters
was proposed in this article to improve the accuracy of classification. In order to verify
our optimized parameters, we used CRC histological images as the experimental dataset,
and compared the ability of the five most commonly-used deep learning network models
to accurately distinguish colorectal cancer tissues. Based on the experimental results, our
method was superior to the techniques described in the literature and achieved a high
recognition rate. In summary, the nine-class accuracy of NCT-HE-100K data set of 100,000
histological images was close to 99% in an internal testing set and 94.3% in an external
testing set in [3]. However, the experimental results of ResNet50 in this study achieved
99.69% accuracy rate in the same internal testing set and 99.32% in the same external
testing set which outperform the data of VGG19 of [3]. In addition, the independent
data set with eight classes of [2] is also utilized for comparison purpose. Consequently,
ResNet50 achieved 94.86% accuracy and [2] reported the best accuracy rate was 87.4%.
Through comprehensive studies and comparison, it is highly suggested that ResNet50 with



Electronics 2021, 10, 1662 25 of 26

suggested settings of this study could be the most efficient and accuracy deep learning
techniques to classify colorectal cancer tissue.

In short, the experimental results demonstrate that artificial intelligence has a broad
application in classifying colorectal cancer (CRC) histology images, and it can also en-
hance doctors’ critical thinking skills and enable them to make suitable decisions in the
diagnostic process.
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