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Abstract: The secondary users (SUs) in cognitive radio networks (CRNs) can obtain reliable spectrum
sensing information of the primary user (PU) channel using cooperative spectrum sensing (CSS).
Multiple SUs share their sensing observations in the CSS system to tackle fading and shadowing
conditions. The presence of malicious users (MUs) may pose threats to the performance of CSS
due to the reporting of falsified sensing data to the fusion center (FC). Different categories of MUs,
such as always yes, always no, always opposite, and random opposite, are widely investigated
by researchers. To this end, this paper proposes a hybrid boosted tree algorithm (HBTA)-based
solution that combines the differential evolution (DE) and boosted tree algorithm (BTA) to mitigate
the effects of MUs in the CSS systems, leading to reliable sensing results. An optimized threshold and
coefficient vector, determined against the SUs employing DE, is utilized to train the BTA. The BTA
is a robust ensembling machine learning (ML) technique gaining attention in spectrum sensing
operations. To show the effectiveness of the proposed scheme, extensive simulations are performed
at different levels of signal-to-noise-ratios (SNRs) and with different sensing samples, iteration levels,
and population sizes. The simulation results show that more reliable spectrum decisions can be
achieved compared to the individual utilization of DE and BTA schemes. Furthermore, the obtained
results show the minimum sensing error to be exhibited by the proposed HBTA employing a DE-
based solution to train the BTA. Additionally, the proposed scheme is compared with several other
CSS schemes such as simple DE, simple BTA, maximum gain combination (MGC), particle swarm
optimization (PSO), genetic algorithm (GA), and K-nearest neighbor (KNN) algorithm-based soft
decision fusion (SDF) schemes to validate its effectiveness.

Keywords: cognitive radio; machine learning; genetic algorithm; cooperative communication; parti-
cle swarm optimization; boosted trees algorithm; multipath channels

1. Introduction

The exponential growth in wireless communication devices and the demands of
high data rates require the development of new techniques to meet user and spectrum
requirements. As the static spectrum allocation policy is unable to accommodate new
applications and services, dynamic spectrum allocation (DSA) is the best alternative for
static spectrum allocation [1,2]. The cognitive radio network (CRN) has emerged as a vital
solution to the problem of an underutilized radio spectrum [3]. Of the different goals in the
CRN, spectrum sensing, in which the secondary users (SUs) sense the activity of primary
users (PUs) before accessing the channel dynamically, has attracted special attention [4,5].
Similarly, the SU vacates the channel when the PU becomes active again.
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The reliability of the sensing results of SUs may reduce due to fading, shadowing,
and hidden terminal problems between the PU and the SUs. Cooperative spectrum sensing
(CSS) is one way to obtain reliable sensing decisions [6]. In CSS, SUs at different geographi-
cal positions sense the given PU channel and report their local observations to the fusion
center (FC) for a final decision. The CSS system has two broad categories: distributed and
centralized. The SUs in the distributed CSS system perform spectrum-sensing jobs and
share their decisions without considering any central coordinator [7,8].

The sensing reliability of CSS may be seriously degraded by the participation of mali-
cious users (MUs). The MUs may report the deliberately falsified sensing information to
the FC, aiming to mislead the FCs in making their final decision. Security issues in the CSS
system are a significantly important topic, and several research works have been studied
to enhance the system’s security [9–13]. Byzantine users, jammers, and primary user emu-
lation attackers (PUEAs) are the major security concerns for researchers. In a Byzantine
attack, the MUs report false sensing data to the FC to deteriorate the network performance
and to access spectral resources for their own purposes [14]. The jammers target the fre-
quency band of the operating radio with the injection of malicious signals that interfere
with the desired receiver signal. During a PUEA, the MU transmits while pretending to be
a PU to mislead the SUs about the actual PU’s activity [15].

In [16], the FC is protected against the Byzantine users using a novel corruption strat-
egy behavior, where the message-passing algorithm helps the FC to distinguish normal
and attacking users. A contract-theory-based approach is proposed in [17] as an incentive
design mechanism, where the honest SUs are rewarded to boost future cooperation. Sim-
ilarly, in [18], contestants of the Byzantine attackers are filtered with the computation of
a noisy gradient at the tuning parameter server. The work in [19] formulates a composite
binary hypothesis test against the transmission of faulty devices and various categories of
selfish and malicious injected data. The detection process of both the MU and mobile CRN
is improved using location reliability and malicious intension (LRMI) in [20]. A recursive
updating algorithm is proposed in [21] that helps in the selection of the SUs with a higher
sensing reputation and reduces the impact of the MUs. The scheme presented in [22] allows
honest SUs to recommend decisions to the FC about a PU as final along with their local
sensing reports to guarantee the reliability of CSS. A low-density parity-check code-based
CSS scheme that protects the relayed sensing information to the FC against variations in the
wireless channel is investigated in [23]. The cryptographic scheme in [24] uses a privacy-
preserving protocol to preserve the location of an SU while maintaining sensing reliability.
Similarly, the scheme in [25] follows additional architectural and cryptographic techniques
to maintain the user’s location privacy during spectrum sensing. In another work in [26],
the effects of the false sensing data are reduced using sensing credit measurement. The data
fusion scheme in [27] helps to counter the effects of spectrum sensing data falsification
(SSDF) and PUEA in cognitive radio wireless sensor networks. A novel attack proof scheme
using an adaptive linear combination technique is analyzed in [28] for the identification
of MUs.

The work presented in [29–32] focused on the use of distance measurement, the slid-
ing window trust model, and random selection, while assuming attacking patterns to
strengthen the collusive attackers of the FC.

As with other disciplines, machine learning (ML) techniques are also being employed
in the CRN field. The work in [33] suggested deep cooperative sensing-based CRN,
where the spectrum sensing problem is resolved using the k-nearest neighbor (KNN)
approach. Similarly, malicious activities in vehicular-based machine-to-machine communi-
cation are detected using an ML-based trust scheme in [34]. The use of ML and statistical
analysis-based approaches presented in [35] helped against the detection of malicious
software in caters and mobile devices. The reinforcement-learning scheme proposed in [36]
helps to improve the sensing decisions of individual sensing users. Ensembling methods
are gaining acceptance among researchers to solve detection and prediction problems
in various fields, such as in depression detection, electrocardiograph artifacts, abnormal
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echo propagation in weather radar, islanding detection in smart grids, and so on [37–42].
The boosted tree algorithm (BTA) leads to improved prediction performance by forming
a strong classifier. To establish a combined ensemble model for prediction, the training
dataset trains and boosts several weak classifiers. Thus, the weak classifier is updated while
easing the re-training requirement. Since data are expected to have various characteristics
of the classification instances, the diversity in weak classifier outputs offers the advantage
of more desirable predictions. On the other hand, individual learners may result in biased
prediction; thus, an ensembling strategy to integrate and optimize individual poor results
is a superior alternative [37].

The work in [43] employs a differential evolution (DE)-based scheme that supports
the CSS system to find the PUs’ statistics in the presence of various categories of MUs.
This enables the FC to determine a suitable coefficient vector against the users’ sensing
reports, further leading to better sensing results. In contrast, in [44], the simple BTA is
investigated to find optimum sensing results. The BTA is trained based on the soft energy
reports of the users in the first phase while the algorithm searches for the suitable PU
channel availability after the collection of enough reports in the second phase.

Extending the previous work to the enhanced security and improved authentication
of CSS results, the proposed scheme combines the key features of the DE and BTA, thus de-
veloping a new scheme that is termed as hybrid BTA (HBTA) in this work. The main
contributions of the paper are summarized as follows:

• A hybrid scheme that integrates the essential features of the DE, such as an optimum
threshold with a coefficient vector, and the BTA algorithm is proposed. The adaptive
threshold with minimum sensing error obtained in the DE phase of the proposed
HBTA results in an optimum coefficient vector that assists the FC in dealing with all
the SUs according to their sensing notifications;

• One of the significant contributions of the proposed HBTA scheme is that it is trained
based on the solutions obtained through DE and not directly from the SUs, contrary
to [44], where direct sensing reports by SUs are employed to train the simple BTA.
The proposed HBTA fuses the soft energy statistics received from the SUs with the
weighted coefficient vector obtained in the DE phase to further train the BTA section
of the proposed HBTA. Thus, the reliance of the FCs on the received MU statistics is
lessened because of the penalty in the form of least weights during the training phase.

Earlier, in [43,44], the authors showed that the error probability decreases with an in-
creasing signal-to-noise-ratio (SNR) and increasing numbers of sensing samples. However,
in this paper, we further extend the earlier investigation by combining the effects of BTA
with DE. We evaluate the error probabilities against varying SNRs at two distinct levels
for (1) sensing samples, (2) algorithm iterations, and (3) population sizes. Furthermore,
the SNR range is widened for an additional analysis of the error probability’s dependency
upon (1) the heuristic algorithm iterations exhibited in Section 4 as Case 1 and (2) the
heuristic algorithm population size, shown as Case 2.

The rest of the paper is organized as follows: the system model is discussed in
Section 2. The proposed model for determining optimal sensing results using HBTA is
presented in Section 3. Section 4 illustrates the simulation outcomes. Finally, concluding
remarks and future research directions are included in Section 5. Table 1 consists of the
abbreviations employed in the paper.
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Table 1. Common abbreviations.

Abbreviation Meaning Abbreviations Meaning

DSA Dynamic spectrum allocation DE Differential evolution
CRN Cognitive radio network PSO Particle swarm optimization
SU Secondary user GA Genetic algorithm
PU Primary user MGC Maximum gain combination
MU Malicious user EGC Equal gain combination

MUC Malicious user center SDF Soft decision fusion
CSS Cooperative spectrum sensing RNN Recurrent neural network
FC Fusion center AY Always yes

PUEA Primary user emulation attacker AN Always no
LRMI Location reliability and malicious intention AO Always opposite
SSDF Spectrum sensing data falsification RO Random opposite
KNN K-nearest neighbor AYC Always yes collusion
BTA Boosted tree algorithm ANC Always no collusion

HBTA Hybrid boosted tree algorithm AOC Always opposite collusion
ML Machine learning ROC Random opposite collusion
SNR Signal-to-noise ratio AWGN Additive white gaussian noise

2. System Model

A model of the conventional centralized CSS system is shown in Figure 1. Here,
the individual SUs sense the PUs’ activity and report their sensing statistics to the FC.
The MUs report their observations to both the main FC and malicious user center (MUC).
The MUC collusion centers in the Figure 1 combine local attacks of the individual MUs
that result in more serious threats at the FC by overcoming weaknesses in the individual
attackers. In this model, the MUC reports an average of the analogous MUs sensing obser-
vations to the main FC. The MUC center of the always opposite (AO) users—i.e., the always
opposite collusion (AOC) center—receives sensing reports from all AO users, while the
random opposite collusion (ROC) center obtains sensing data from the random opposite
(RO) categories of MUs. Similarly, the MUC of an always yes (AY) user is the always yes
collusion (AYC) center and the MUC anticipated for the always no (AN) users is the always
no collusion (ANC) center. The participation of the AO and AOC center is implemented to
reduce the network data rate and increased interference for the PU, as both the AO and
AOC oppose actual PU activity in the sensing channel. As the AY reports high-energy
statistics irrespective of the actual PU status, both the AY and AYC center result in increased
false alarms in the system, thus decreasing network throughput. The AN user tries to sense
the PU channel and inform both the main FC and ANC regarding the availability of the PU
channel for access. This leads to increased interference with legitimate PU transmission.
The RO and ROC centers behave similarly to the AO and AOC, which report opposite
energy statistics with probability (P) and report normal sensing data with probability
(1 − P). The contribution of this category of MU results in unacceptable interference and
a reduced data rate for the SUs.

In the given centralized CSS, the users report their soft energy statistics to the FC to
make a global decision, where soft decision fusion (SDF) is employed as a combination
scheme. The challenge is to investigate the performance of the CSS in the presence of AO,
AOC, AY, AYC, AN, ANC, RO, and ROC categories of MUs.

The (H0/H1) hypothesis of the sensing channel availability presented by the jth SU in
the lth sensing slot is [9]{

H0 : xj(l) = vj(l)
H1 : xj(l) = gjc(l) + vj(l)

, j ∈ {1, 2, . . . , M}, l ∈ {1, 2, . . . , K}, (1)

where xj(l) is the jth user observation of the PU transmitted signal c(l) with mean 0 and
variance σ2

c . Here, l shows the sensing slot, M the total number of SUs, and K = 2BTs is
the total number of samples in a bandwidth B and sensing period Ts. vj(l) is the additive
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white gaussian noise (AWGN) of the channel between the PU and jth user that has mean
zero and variance σ2

v . Similarly, gj is the PU and jth user channel gain. The H0 hypothesis
in (1) states the availability of the PU channel for SU access, while the H1 hypothesis is
presented to show the transmission of the PU over the given sensing channel. Therefore,
the SUs are allowed to gain access to the PU channel under the H0 hypothesis only.

Figure 1. Conventional centralized cooperative spectrum sensing (CSS).

The K sensing observations in (1) are combined to form the energy for the threshold
detector as [9,11,45,46].

Xj(i) =


li+K−1

∑
l=li

∣∣vj(l)
∣∣2, H0

li+K−1
∑

l=li

∣∣gj c (l) + vj(l)
∣∣2, H1

(2)

As the soft energy observation Xj under both hypotheses for a sufficient number of
sensing samples K > 10 [45] closely resembles a Gaussian distribution according to the
central limit theorem, (2) is rewritten as follows [9,11,45,46]:

Xj ∼
{

N
(
µ0 = K, σ2

0 = 2K
)
, H0

N
(
µ1 = K(gj + 1), σ2

1 = 2K(gj + 1)
)
, H1

(3)
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where gj is the jth user and PU channel gain, while the mean and variance results under
both the H0 and H1 hypotheses are

(
µ0, σ2

0
)

and
(
µ1, σ2

1
)
. The energy reported from the jth

user Zj to the FC is

Zj =
K

∑
l=1

∣∣Uj(l)
∣∣2 (4)

where Uj(l) =
√

PR,jhjXj(l) + Nj(l) is the signal delivered to the FC using the channel
between jth user and FC in the lth sensing slot. Here, PR,j is the jth SU transmission power
with hj channel gain between FC and SU, whereas, the AWGN distribution has zero mean

and variance σ2
j , i.e., Nj(l) ∼ N

(
0, σ2

j

)
. Similar to the channel between the PU and

SU, the SU to the FC channel noise is also assumed to be AWGN with mean zero and
variance δ2

j .
A global decision of the PU status is generated by combining sensing reports of the M

SUs with the weighting coefficient vector as

Z(i) =
M

∑
j=1

(
wjZj(i)

)
(5)

where wj is the weighting coefficient vector that shows the authenticity of the jth user
sensing data, which is determined using DE. As an individual user reports statistics, Zj(i)
is normally distributed, and thus the resultant Z(i) is assumed to be normally distributed
in nature, as in [32].

Thus,

E(Z(i)|H0 ) =
M

∑
j=1

wjKσ2
0,j (6)

E(Z(i)|H1 ) =
M

∑
j=1

wjKσ2
1,j (7)

Var(Z(i)|H0 ) =
M

∑
j=1

2w2
j K(σ2

0,j + δ2
j )

2
=
→
w

T
ΦH0

→
w (8)

Var(Z(i)|H1 ) =
M

∑
j=1

2w2
j K(σ2

1,j + σ2
0,j)

2
=
→
w

T
ΦH1

→
w (9)

In (6) and (7), σ2
0,j and σ2

1,j are Uj(l) variances under H0/H1 of the jth user, where

σ2
0,j = PR,j

∣∣hj
∣∣σ2

vj
+ δ2

j and σ2
1,j = PR,j

∣∣gj
∣∣2∣∣hj

∣∣2σ2
c + σ2

0,j.
The goal is then to find an optimal coefficient vector that can help in determining the

appropriate threshold β with minimum sensing error. These optimal weighting coefficients
help us to train the BTA scheme in the description of the proposed model.

The H0/H1 hypotheses result in the following covariance matrices:

ΦH0 = diag
(

2Kσ4
0,j

)
(10)

ΦH1 = diag
(

2K (PR,j

∣∣∣gj

∣∣∣2∣∣∣hj

∣∣∣2σ2
S + σ2

0,j)
2
)

(11)

where σ2
0,j and σ2

1,j represent square diagonal matrices in (10) and (11).
The detection and false alarm probabilities show the occupancy of the licensee channel

by the PU and the idle status when it is falsely identified to be in use by the licensee as
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Pf = P(Z(i) > β|H0 ) = Q

(
β− E(Z(i)|H0)√

var(Z(i)|H0)

)
= Q

 β−→w
T→

µ 0√
→
w

T
ΦH0

→
w

 (12)

Pd = P(Z(i) > β|H1 ) = Q

(
β− E(Z(i)|H1)√

var(Z(i)|H1)

)
= Q

 β−→w
T→

µ 1√
→
w

T
ΦH1

→
w

 (13)

where β is the optimal threshold, represented as

β =


√

wTΦH1 wµT
0
→
w +

√
→
wΦH1 wµT

1 w√
wTΦH0 w +

√
wTΦH1 w

 (14)

Assuming the false alarm probability to be Pf = 1− Pd and Pf = Pm, where Pm is the
misdetection probability, the total error probability Pe is determined as follows:

Pe = Pf + Pm = Q

 β−→w
T→

µ 0√
→
w

T
ΦH0

→
w

+ Q

 →
w

T→
µ 1 − β√
→
w

T
ΦH1

→
w

 (15)

The error probability in (15) depends on the selection of
→
w. The optimal threshold β

using (14) is substituted in (12), (13), and (15), which produces the minimum false alarm,
high detection, and low error probability results.

Using the proposed scheme, we see in the following section that 0 < wj(i) < 1 and√
M
∑

j=1
w2

j (i) = 1, in order to reduce the selection procedure of the search space for the DE.

3. Proposed Hybrid Boosted Tree Algorithm

In the proposed model, we use the DE scheme to select weighting coefficients against
the SUs by assigning high weights to normal users and minimum significance to the sensing
of MUs. The optimal weighting coefficients identified in the first part are further utilized
to train the BTA scheme.

Unlike the training procedure in [44], where the reporting users’ soft energy informa-
tion is used to train the BTA, this work collects both soft energy reports of the users along
with optimal coefficient vectors from the DE, allowing the BTA to rely strongly on the
sensing decisions of the normal SUs. An abstract block diagram of the proposed method is
shown in Figure 2.

3.1. Differential Evolution-Based Solution

DE is a population-based search algorithm following crossover, mutation, and se-
lection methods as in [8,43]. The major difference between DE and other optimization
algorithms, while searching for the best fitness, is that DE selection depends on mutation.
In addition, DE uses a non-uniform crossover, where child vector parameters of one parent
are taken into consideration strongly in comparison with other parents. The DE has the
ability to identify the global minimum irrespective of some initial parameters and exhibits
quick convergence to the problem solution with fewer control parameters.

The self-adaptability in DE introduced via the mutation and selection procedure is
its major advantage. Storm and Price were the first to suggest DE as a population-based
stochastic search algorithm for the optimization of continuous functions in [47].
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Figure 2. Abstract functional block diagram of the hybrid boosted tree algorithm (HBTA).

In this part of the proposed scheme, DE is employed to determine the optimal coeffi-
cient vector against the users’ reporting statistics. The selected coefficient vector in the final
stage of the DE assigns a high weight to the sensing of a normal user to make their reports
more authentic. Similarly, different categories of MUs are charged with minimum weights
that enable the FC to rely on the reports of normal sensing users. The steps involved in DE
finding an optimal threshold and coefficient vectors are as follows.

Step 1: Initialization

In this work, a total of N candidate solutions (individuals) for DE have been consid-
ered. The algorithm starts with a population initialization that has N candidate solutions
and M dimensions equal to the total number of SUs; i.e.,

→
wx = [w1 w2 . . . wM]T , x ∈

1, . . . , N:
wx = L + (H − L)× rand(N, M) (16)

where L and H are the lower and upper limits of the x coefficient vector. The fitness
value of each coefficient vector is determined in terms of the error probabilities Pe(

→
wx(1) ),

Pe(
→
wx(2) ), . . . , Pe(

→
wx(N) ). Therefore, the vector with the minimum error probability out

of all N vectors is selected along with corresponding threshold β value as an optimal
threshold.

Step 2: Random Numbers Selection

In the second step, dissimilar random numbers n1, n2, n3 are produced such that none
of them is equal to any other.
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Step 3: Mutation

In this step, the initial population, wx, and dissimilar random numbers n1, n2, n3 from
step 2 are used to generate a new population as

wy = wx(n1) + F× (wx(n2)− wx(n3)) (17)

where wy is the mutant or mutation vector. The difference employed in the result of (17)
forms the given algorithm DE. The selection of the constant number, F, is dependent on
the problem, which is placed to keep the value of genes in the range of L and H.

Step 4: Crossover

A crossover operation is performed in this step using wx and the mutant vector, wy,
to select genes among wx and wy as

wz =

{
wy i f aj ≤ CR or j = jrand
wx otherwise

}
(18)

where aj is a uniformly distributed random number between 0 and 1, while j is the element
number of the candidate solution and jrand is an integer randomly selected from 1 to M.
Similarly, the value of CR in (18) is 0 ≤ CR ≤ 1.

Step 5: Particles Fitness

The suitability of the wz coefficient vectors is determined in this step using the error
probabilities Pe (

→
wz ( 1 ) ), Pe (

→
wz ( 2 ) ), . . . , Pe(

→
wz (N) ). Therefore, the coefficient vector

with the minimum error probability is identified as the new global best vector and its
associated threshold, β, is selected as the new global best threshold.

Step 6: Population and Global Best Vector Up-Gradation

The fitness values of wz is compared with the initial population, wx, to search for any
up-gradation as

wx =

{
wz Fitness (wz) > Fitness (wx)
wx otherwise

}
(19)

Similarly, the fitness of the new global best in wz is compared with that of wx to
upgrade the global best and optimum threshold results accordingly.

Step 7: Stopping Criteria

In this step, a check is made to start recycling DE in step 2 or to end the DE process by
inspecting the fitness function; i.e., whether the minimum error probability results have
been achieved or the required number of iterations has been reached. The algorithm finally
returns the global best coefficient vector and optimum threshold results.

3.2. Boosted Tree Algorithm

The working principle used by the BTA to solve the given problem is categorized into
three major steps.

In the first step, N sensing observations consisting of user energy statistics along with
coefficient vectors from the DE are collected at the FC and stored as feature vectors for
the proposed BTA scheme. In step 2, the BTA is trained with the AdaBoost ensembling
method. A more suitable and accurate decision is made using the BTA by accumulating
and strengthening weak classifiers in this step. The detection and false alarm probabilities
in step 3 are determined by considering the results in step 2 to make a global decision.

Step 1: Data Matrix Formulation

A history-reporting matrix is formed at the FC, consisting of a combination of individ-
ual users’ soft energy statistics and weighting coefficient vectors, as shown below.
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S =
[
sij
]
=


s11 s12 . . . s1M
s21 s22 . . . s2M
s31 s32 . . . s3M

...
...

. . .
...

sN1 sN2 · · · sNM

, i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , M}, (20)

where sij = Zj(i) × wj(i) is the jth user’s sensing statistics in combination with the jth

component of the coefficient vector. The M users sensing data including both normal
and malicious participants are accumulated in N sensing periods with K sensing samples.
The spectrum sensing falsification effects of MUs are minimized by the proposed technique
in the following steps. The ML algorithms can find natural patterns in the data, which helps
in decision making and produces improved prediction results.

Step 2: BTA Training Phase

The BTA scheme proposed in this paper uses adaptive boosting (AdaBoost) as an en-
semble method, where weak classifiers are ensembled to make a strong classifier. The train-
ing set consists of T =

{(
sij, yi

)}N
i=1, sij ∈ <N , yi ∈ {−1, 1}, where yi = 1 represents the

class label presence of PU activity, whereas yi = −1 denotes the availability of the PU chan-
nel for SU access. The training set T is constructed as an N × (M + 1) with dimensional
space T ∈ <N×(M+1) and is written as

T =


s11 s12 . . . s1M
s21 s22 . . . s2M
...

...
. . .

...
sN1 sN2 . . . sNM

∣∣∣∣∣∣∣∣∣
y1
y2
...

yN

, (21)

where s1 =


s11
s12
...

s1M


T

, s2 =


s21
s22
...

s2M


T

, s3 =


s31
s32
...

s3M


T

and sN =


sN1
sN2

...
sNM


T

are the N

feature vectors used to train the BTA scheme consisting of weighted soft energy reports of
the M SUs. The training set, T, consists of two sub matrices, S and Y, where sub matrix
S ∈ <N×M is the matrix of the weighted soft energy statistics of the users’ data, while
Y ∈ <N×1 are the N label (targets) values of the actual PU activity.

In this work, a total of k classifiers at the FC participate in making sensing decisions
in case si is used as the ith feature vector. The different classifiers used here try to predict
a class label for the feature vector si, where the final output is determined using a linear
combination of the label estimation predicted by different classifiers. In the linear com-
bination, each individual term is the product of the classifiers’ predicted value and the
weight assigned to the classifier-predicted values. AdaBoost is a boosted classifier such
that each kth classifier is assigned decision weights, while taking into consideration the
already known predicted (k − 1) classifiers as

ek−1

(
si
)
=

k−1

∑
p=1

αphp

(
si
)

, p ∈ {1, 2, . . . , k− 1}, i ∈ {1, . . . , N}, (22)

where hp(si) is the prediction of the pth classifier and αp is the weight assigned to the
predicted value of the pth classifier.
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The prediction performance of the kth classifier is combined with hk(si) as the predicted
value of the classifier and αk as the optimum weight of the classifier to establish a better
boosted classifier. To determine αk, the process is as follows:

ek(si) =
k−1

∑
p=1

αphp(si) + αkhk(si) (23)

Similarly, (23) is written using the value from (22) as

ek(si) = ek−1(si) + αkhk(si) (24)

where ek
(
si) is the compound predicted value aggregated through the prediction results of

the k classifiers. The aim is to form a closed form formula for αk that assigns αk a value such
that the total prediction error is minimized. As the total prediction error in AdaBoost is
equal to the sum of the negative natural exponent of yiek(si) for all training examples [48] as

E =
n

∑
i=1

e−yi [ek−1(si)+αkhk(si)], (25)

the representation of the total prediction error, E, now takes the form below:

E =
n

∑
i=1

wi
ke−yiαkhk(si) (26)

where wi
k = e−yiek−1(si) is the corresponding weight in the case of a classifier number of

k > 1. The total prediction error, E, in (26) is split into cases with correct prediction as
(yihk(si) = 1) and the case that leads to an incorrect prediction (yihk(si) = −1) as

E = ∑
yi=h(si)

wce−yiαkhk(si)+ ∑
yi 6=h(si)

wee−yiαkhk(si),

= ∑
yi=h(si)

wce−αk + ∑
yi 6=h(si)

weeαk ,

= e−αk ∑
yi=hk(si)

wc + eαk ∑
yi 6=hk(si)

we,

= Wc e−αk + We eαk ,

(27)

where Wc = ∑
yi= hk(si)

wc and We = ∑
yi 6= hk(si)

we. The object is to minimize the loss function,

E, for the chosen weak classifier, hk, selected earlier. Thus, the total error of prediction, E,
is differentiated with the classifier weight, αk, where the minimization condition is set to
zero as

∂E(αk)

∂αk
= 0 (28)

As in (27), the minimization of the total error with reference to αk is the same as if we
minimize (Wce−αk + Weeαk ) with respect to αk:

∂E(αk)

∂αk
= −Wce−αk + Weeαk (29)

The solution of (29) in terms of αk is as follows:

αk =
1
2

ln
(

Wc

We

)
(30)
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As Wc = W −We, with W the total sum of the weights, therefore, is

αk =
1
2

ln
(

W −We

We

)
(31)

Finally, the expression for weight αk in its final form is

αk =
1
2

ln
(

1− em

em

)
(32)

where em = We
W is the weighted error rate of the weak classifier hk.

Step 3: Global Decision Using Proposed Scheme

There are a several combination schemes that should be employed at the FC while
making a global decision. These include equal gain combination (EGC) and maximum
gain combination (MGC). The EGC scheme assigns equal weights to the sensing reports of
all SUs as

GEGC(i) =

 H1 : 1
M

M
∑

j=1
sj(i) ≥ γ

H0 : otherwise
(33)

The MGC scheme at the FC observes sensing reports from different branches and
assign a high weight to users with high SNR reports, while the low SNR reports receive
minimum weights. Thus, strong signal branches receive amplification and branches with
weak signals are further weakened as

GMGC(i) =

 H1 :
M
∑

j=1

(
ej × sj(i)

)
≥ γ

H0 : otherwise
(34)

where ej =
g(j)

M
∑

j=1
g(j)

.

The system is trained based on users’ reported sensing data received from all SUs and
the optimum coefficient vector identified using DE. The HBTA considers the following
sensing observations and coefficient vectors of the DE to make the final PU channel
predictions as

GBTA(i) =
{

H1 : HBTA (si) = 1
H0 : otherwise

, (35)

where HBTA refers to the trained hybrid BTA algorithm that takes a new input feature
vector, si, to estimate the occupancy of the PU channel. GBTA is a global decision of the
hybridized HBTA scheme. The channel is considered occupied if HBTA (si) = 1 results in
1; otherwise, the channel is considered vacant. Detection and false alarm probabilities at
the FC based on (35) are calculated as

Pd−HBTA = Pr{GHBTA(i) = 1|H1 } = Pr
{

HBTA (si) = 1|H1
}

,
Pf−HBTA = Pr{GHBTA(i) = 1|H0 } = Pr

{
HBTA (si) = 1|H0

}
.

(36)

An flowchart diagram of the proposed HBTA scheme is shown in Figure 3.
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Figure 3. Flowchart diagram of the proposed HBTA scheme.

4. Simulation Results

In the simulations, the total number of SUs was kept at 14 to observe the changes in
error probability concerning SNRs, sensing samples, the population size of the algorithm,
and the number of iterations. The SNRs varied in the range of −20 dB to +20 dB, while the
iterations of the algorithm changed from 50 to 110. Similarly, the population size varied in
the range of 20 to 80, while the sensing samples changed from 270 to 335. The SUs were
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placed in different SNRs to sense the PU channel independently. The genetic algorithm
(GA) and particle swarm optimization (PSO) showed the total number of N chromosomes
with M total gene bits. The maximum number of sensing iterations of the GA and PSO was
kept at 50. Similarly, the GA crossover rate was randomly selected in the range of 1 to M.
The performance of the proposed HBTA-based SDF algorithm was compared with the PSO,
GA, DE, BTA and KNN-based SDF combination schemes.

The simulation environment was divided into six different cases. Case 1 showed the
probability of error results against varying algorithm iterations. Case 2 showed the proba-
bility of error results with the contribution of varying population sizes. Similarly, Case 3
showed the error probability results with increasing sensing samples. Case 4 explored
the total probability of error results versus varying SNRs at two different iteration levels.
The results of the error probability at varying SNRs and with two different population sizes
were explored in Case 5. Finally, Case 6 showed the error probabilities with two different
sensing samples and a fixed population size, iteration number, and total number of users.

Case 1:

In this part of the simulation, the error probability was determined against an increas-
ing number of algorithm iterations. The SNRs, algorithm population, sensing samples,
and the total number of SUs were kept constant, as shown in Figures 4–6. In Figure 4,
the error probability results are compared for the GA, DE, PSO, BTA, KNN, and HBTA
schemes against varying iteration levels at average SNRs of−9.5 dB and−0.5 dB. The result
in Figure 4 shows that the proposed HBTA scheme exhibited better sensing performance
with minimum sensing error compared with the other schemes at different iteration levels
in the presence of the AY category of MUs. The results in Figure 5 were collected in the
presence of an AN-ANC user in CSS. These results show improved sensing performance
with the proposed HBTA scheme, followed by the PSO, DE, KNN, and simple BTA schemes.
The simple GA scheme showed the worst sensing performance, with high sensing error in
the presence of the AN-ANC category of MUs. Similarly, the effects of an AO-AOC user
in terms of misleading the FC’s decision about the PU channel is investigated in Figure 6.
The results in Figure 6 show the error probability against varying algorithm iterations at
two different average SNRs of −0.5 dB and −9.5 dB with a fixed population size and total
number of users. It is clear from the graphical illustrations in Figure 6 that the proposed
HBTA scheme showed better performance for all algorithm iterations followed by the
simple BTA scheme and KNN in terms of sensing. The GA and MGC-SDF schemes showed
poor sensing performance with high sensing error.

Figure 4. Error probability vs. iterations in the presence of AY-AYC users with SNRs1 (−9.5 dB) and
SNRs2 (−0.5 dB).



Electronics 2021, 10, 1687 15 of 25

Figure 5. Error probability vs. iterations in the presence of AN-ANC users with SNRs1 (−9.5 dB)
and SNRs2 (−0.5 dB).

Figure 6. Error probability vs. iterations in the presence of AO-AOC users with SNRs1 (−9.5 dB) and
SNRs2 (−0.5 dB).

Case 2:

Case 2 showed the error probability results against varying population sizes of the
optimization algorithms at two different SNR levels of−9.5 dB and−0.5 dB. Here, the total
number of sensing iterations was kept at 50, with 270 sensing samples and a total number
of 14 SUs. The error probability results collected against the FC’s decision with the contri-
butions of AY-AYC, AN-ANC, and AO-AOC categories of MUs are shown in Figures 7–9.
The result in Figure 7 when the AY-AYC category of MUs participated in CSS shows better
sensing performance for the proposed HBTA scheme with SNRs of both −9.5 dB and
−0.5 dB. Similarly, the simple BTA and KNN schemes, as shown in the figure, were able to
dominate PSO, DE, and GA schemes with minimum sensing, while the GA-based com-
bination scheme was able to produce high sensing error at both SNR values. The results
with the contribution of the AN-ANC category of MUs in CSS are illustrated in Figure 8.
The results in Figure 8 show improved sensing results for the proposed HBTA scheme,
followed by the results of the simple BTA and KNN schemes. The GA scheme in Figure 8
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showed the worst sensing performance of all schemes. Finally, in Case 2, the performance
of CSS was investigated with the participation of the AO-AOC category of MUs, which
always negates the actual PU channel statistics. In Figure 9, the proposed HBTA scheme
can be seen to show high sensing reliability with minimum sensing error as compared with
all other schemes.

Figure 7. Error probability vs. population size in the presence of AY-AYC users with SNRs1 (−9.5 dB)
and SNRs2 (−0.5 dB).

Figure 8. Error probability vs. population size in the presence of AN-ANC users with SNRs1

(−9.5 dB) and SNRs2 (−0.5 dB).

Case 3:

Case 3 explored the error probability results with varying sensing samples of the SUs
at two different SNR values of −9.5 dB and −0.5 dB, as shown in Figures 10–12. The total
number of sensing iterations was kept at 50, the population size was 30, and the total num-
ber of SUs was 14. The AY-AYC, AN-ANC, and AO-AOC MUs were differently investigated
in the simulation results. The result in Figure 10 shows that the proposed HBTA dominated
all other schemes with all sensing sample values and both SNR levels. The proposed HBTA
scheme’s results were followed by the simple BTA and KNN schemes, which had initially
high sensing error results, but as the sensing sample increased, they could outperform the
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PSO, DE, GA, and MGC schemes. The result in Figure 11 shows the error probability results
when the AN-ANC category of MUs participated in reporting their location decisions to
the FC. Similarly, the DE combination scheme in this part could dominate the simple BTA,
KNN, PSO, and GA combination schemes. The GA combination schemes in this part
showed a high sensing error, leading to minimum sensing performance. Figure 12 shows
the error probability results against increasing sensing samples at two different SNR values
of−9.5 dB and−0.5 dB. The graphical results in the figure were collected with the presence
of the AO-AOC category of MUs in CSS, with improved sensing performance shown by the
proposed HBTA scheme in comparison with all other schemes, while the GA combination
scheme can be seen to have exhibited the worst sensing reliability in Figure 12. Thus, it is
concluded from the various graphical results in Case 2 that the proposed HBTA scheme
has the best sensing reliability in producing improved sensing results as compared with
the KNN, simple BTA, GA, PSO, and DE optimization schemes.

Figure 9. Error probability vs. population size in the presence of AO-AOC users with SNRs1 (−9.5 dB)
and SNRs2 (−0.5 dB).

Figure 10. Error probability vs. sensing samples in the presence of AY-AYC users with SNRs1

(−9.5 dB) and SNRs2 (−0.5 dB).
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Figure 11. Error probability vs. sensing samples in the presence of AN-ANC users with SNRs1

(−9.5 dB) and SNRs2 (−0.5 dB).

Figure 12. Error probability vs. sensing samples in the presence of AO-AOC users with SNRs1

(−9.5 dB) and SNRs2 (−0.5 dB).

Case 4:

In this portion of the simulation results, error probabilities were collected with in-
creasing SNR values at two different numbers of algorithm iterations: 60 and 85. Here,
the SU sensing samples were fixed at 270 with an algorithm population size of 20 and total
number of SUs of 14.

Figure 13 shows the error probability results of the proposed approach and all other
schemes with the contribution of AY-AYC MUs. The results in Figure 13 show improved
sensing results for the proposed HBTA scheme at both algorithm iteration levels. It is
visible from the graphical illustrations that the DE-based combination scheme resulted
in the best sensing decision with minimum sensing error in comparison with PSO, GA,
KNN, and the simple BTA and MGC schemes, with the highest error probability results
obtained for the MGC scheme. The results in Figure 14 show that AN-ANC user effects
were strongly overwhelmed by the proposed scheme while making a global decision;
therefore, the proposed HBTA scheme resulted in the minimum error probability results in
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comparison with all other schemes. In this part of the simulation, the simple BTA scheme
was able to surpass the KNN, MGC, DE, PSO, and GA combination schemes when the
SNRs were increased beyond certain limits, as shown in the figure. The GA scheme was
able to reduce the error probability to a minimum by a sufficient increase in the SNR values.
The proposed HBTA scheme was capable of keeping error probability at minimum with
the contribution of AO-AOC users in Figure 15, in a similar manner to the AN-ANC users
who participated in the CSS system.

Figure 13. Error probability vs. SNRs in the presence of AY-AYC users with sensing iterations1 (60)
and iterations2 (85).

Figure 14. Error probability vs. SNRs in the presence of AN-ANC users with sensing iterations1 (60)
and iterations2 (85).
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Figure 15. Error probability vs. SNRs in the presence of AO-AOC users with sensing iterations1 (60)
and iterations2 (85).

Case 5:

Case 5 explored the error probability results against increasing SNR values with two
different algorithm population sizes: 30 and 55. The total number of sensing samples for
the SUs was selected as 270, with 50 algorithm iterations, as shown in Figures 16–18. These
results were investigated in the presence of AY-AYC, AN-ANC, and AO-AOC categories of
MUs. In the first part of Case 4, the participation of AY was investigated in CSS to obtain
the error probability results at different levels of SNRs. Figure 16 shows that satisfactory
sensing results were achieved by the proposed HBTA, DE, and GA schemes. The simple
MGC and PSO algorithm results were the worst of all investigated schemes. The results
achieved with the contribution of AN-ANC users that always negate the actual states of the
PU channel and result in constant channel availability are shown in Figure 17. The result
shows the dominant performance of the proposed HBTA scheme. The third part of Case 5
explored the results obtained from the proposed and existing schemes with the AO-AOC
category of MUs that negate the actual PU status by reporting high-energy states when
a PU is absent and reporting low energy states when the PU is available in the given
spectrum. The results in Figure 18 clarify the superiority of the proposed scheme to obtain
a low sensing error at low levels of SNRs. It is also clear from the figure that simple BTA
and KNN schemes performed better than the proposed scheme. The DE algorithm showed
better sensing results in comparison with the PSO, GA, and MGC combination schemes.
It is also visible from this part of the simulation results that the global decisions made using
MGC and GA schemes exhibited minimum reliability with a high sensing error at both
population levels.
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Figure 16. Error probability vs. SNRs in the presence of AY-AYC users with population1 (30) and
population2 (55).

Figure 17. Error probability vs. SNRs in the presence of AN-ANC users with population1 (30) and
population2 (55).

Case 6:

Finally, the error probability results were collected at varying SNRs, and two different
levels of sensing samples were employed by the SUs: 280 and 305. To obtain the results,
error probabilities were determined with the participation of AY-AYC, AN-ANC, and AO-
AOC categories of Mus, as shown in Figures 19–21. The error probability results in
Figure 19 when AY-AYC participated in the CSS show improved sensing performance
with low sensing error results for the proposed HBTA scheme. The result of the proposed
HBTA scheme was followed by the DE and GA schemes, which showed improved sensing
performance in comparison with the simple BTA, KNN, PSO and MGC schemes. The MGC
scheme employed at the FC to make a global decision about the PU channel showed the
highest sensing error of all schemes at different levels of SNRs. In the second part of
Case 6, when AN-ANC users were allowed to participate in CSS, is shown in Figure 20.
The figure shows that better sensing results with minimum sensing error were achieved
by the proposed scheme in comparison with all other schemes. The MGC scheme results
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were reliable, producing minimum sensing error, as compared with the DE, PSO, and GA
combination schemes. These results were followed by the simple BTA and KNN schemes,
while the GA optimization scheme results were the worst of all schemes. In the third part
of Case 6, the proposed HBTA scheme was compared with all other schemes with the
participation of the AO-AOC category of MU. The proposed HBTA scheme in this part
greatly outperformed all other schemes by producing minimum sensing error results. It is
also clear from the results in Figure 21 that the simple BTA and KNN schemes in this
part of the simulation showed improved sensing results as compared with GA, DE, PSO,
and MGC combination schemes. Similarly, the MGC combination scheme was observed
to have the worst sensing performance with the participation of the AO-AOC category
of MUs.

Figure 18. Error probability vs. SNRs in the presence of AO-AOC users with population1 (30) and
population2 (55).

Figure 19. Error probability vs. SNRs in the presence of AY-AYC users with sensing samples1 (280)
and samples2 (305).
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Figure 20. Error probability vs. SNRs in the presence of AN-ANC users with sensing samples1 (280)
and samples2 (305).

Figure 21. Error probability vs. SNRs in the presence of AO-AOC users with sensing samples1 (280)
and samples2 (305).

5. Conclusions and Future Work

The sensing reliability of SUs leads to challenges in the Raleigh fading environment.
The proposed hybrid scheme in this paper combines the DE optimization scheme with
the ML-based BTA algorithm with the aim of augmenting the sensing performance of
CSS. The simulation results were obtained considering a variety of MU categories in CSS.
To evaluate the effectiveness of the proposed scheme, sensing error was evaluated for
multiple cases based on variations in SNRs, algorithm iterations, algorithm population,
and sensing samples in the presence of AY-AYC, AN-ANC, and AO-AOC. The results
validate the superiority of the proposed HBTA scheme in comparison with several other
existing schemes.

To extend this work in the future, we intend to compare the proposed HBTA scheme
with deep learning algorithms, such as the recurrent neural network (RNN). Furthermore,
we plan to reduce sensing costs by reducing the sensing time and energy consumption
while utilizing ML and deep learning techniques.
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