
electronics

Article

Secure Cyber Defense: An Analysis of Network
Intrusion-Based Dataset CCD-IDSv1 with Machine
Learning and Deep Learning Models

Niraj Thapa 1, Zhipeng Liu 2, Addison Shaver 2, Albert Esterline 2, Balakrishna Gokaraju 1 and Kaushik Roy 2,*

����������
�������

Citation: Thapa, N.; Liu, Z.; Shaver,

A.; Esterline, A.; Gokaraju, B.; Roy, K.

Secure Cyber Defense: An Analysis of

Network Intrusion-Based Dataset

CCD-IDSv1 with Machine Learning

and Deep Learning Models.

Electronics 2021, 10, 1747. https://

doi.org/10.3390/electronics10151747

Academic Editors: Antonio David

Escobar Molero, José Antonio

Álvarez Bermejo and Juan Antonio

López Ramos

Received: 18 May 2021

Accepted: 17 July 2021

Published: 21 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computational Data Science and Engineering, North Carolina A&T State University,
Greensboro, NC 27411, USA; nthapa@aggies.ncat.edu (N.T.); bgokaraju@ncat.edu (B.G.)

2 Department of Computer Science, North Carolina A&T State University, Greensboro, NC 27411, USA;
zliu2@aggies.ncat.edu (Z.L.); awshaver@aggies.ncat.edu (A.S.); esterlin@ncat.edu (A.E.)

* Correspondence: kroy@ncat.edu

Abstract: Anomaly detection and multi-attack classification are major concerns for cyber defense.
Several publicly available datasets have been used extensively for the evaluation of Intrusion De-
tection Systems (IDSs). However, most of the publicly available datasets may not contain attack
scenarios based on evolving threats. The development of a robust network intrusion dataset is vital
for network threat analysis and mitigation. Proactive IDSs are required to tackle ever-growing threats
in cyberspace. Machine learning (ML) and deep learning (DL) models have been deployed recently
to detect the various types of cyber-attacks. However, current IDSs struggle to attain both a high
detection rate and a low false alarm rate. To address these issues, we first develop a Center for Cyber
Defense (CCD)-IDSv1 labeled flow-based dataset in an OpenStack environment. Five different attacks
with normal usage imitating real-life usage are implemented. The number of network features is
increased to overcome the shortcomings of the previous network flow-based datasets such as CIDDS
and CIC-IDS2017. Secondly, this paper presents a comparative analysis on the effectiveness of differ-
ent ML and DL models on our CCD-IDSv1 dataset. In this study, we consider both cyber anomaly
detection and multi-attack classification. To improve the performance, we developed two DL-based
ensemble models: Ensemble-CNN-10 and Ensemble-CNN-LSTM. Ensemble-CNN-10 combines
10 CNN models developed from 10-fold cross-validation, whereas Ensemble-CNN-LSTM combines
base CNN and LSTM models. This paper also presents feature importance for both anomaly detection
and multi-attack classification. Overall, the proposed ensemble models performed well in both the
10-fold cross-validation and independent testing on our dataset. Together, these results suggest the
robustness and effectiveness of the proposed IDSs based on ML and DL models on the CCD-IDSv1
intrusion detection dataset.

Keywords: intrusion detection system; CCD-IDSv1; machine learning; deep learning; KNN; CART;
RF; XGBoost; CNN; LSTM; ensemble

1. Introduction

Cyber defense involves anticipating adversarial actions to counter intrusions. It is
crucial to secure this infrastructure, which has deeply penetrated nearly all aspects of
our lives, including social, economic, and political systems. Over the years, researchers
have developed robust Intrusion Detection Systems (IDSs) to secure cyberspace. Secured
cyber defense can lead to normal operations by organizations that reach a certain threshold
while facing persistent threats and sophisticated attacks. It is critical to develop a proactive
secured cyber defense system with these ever-evolving technologies.

Proactive intrusion detection monitors a network for malicious activity and optimizes
itself with any new information it learns. It differs from the traditional firewall, which
is based upon a static set of rules. Signature-based and anomaly-based are some typical

Electronics 2021, 10, 1747. https://doi.org/10.3390/electronics10151747 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10151747
https://doi.org/10.3390/electronics10151747
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10151747
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10151747?type=check_update&version=1

Electronics 2021, 10, 1747 2 of 13

IDSs [1]. The signature-based detection method differs from the anomaly-based detection
method in terms of its static nature. Hence, anomaly-based IDSs that can act against
unknown attacks are preferred over signature-based IDSs.

Machine learning (ML) and deep learning (DL) models are trained for normal and
anomalous activities to build anomaly-based IDSs. Classical supervised ML models are
white-box models, which allow for the interpretability of features, whereas DL models are
black-box models focused more on higher performance metrics. Feature importance can be
generated from ML models, which can assist in further feature engineering. Hence, both
ML and DL models are implemented in this research work to account for both performance
and interpretability.

Current intrusion-based datasets need to be updated with ever-growing new threats.
Furthermore, the development of a robust and optimized ML or DL model on those datasets
is required. So, both the development of datasets and optimized ML/DL models built on
those datasets are the keys to develop effective IDSs.

In the research reported in this paper, we develop a labeled flow-based dataset, Center
for Cyber Defense (CCD)-IDSv1, for the evaluation of anomaly-based IDSs. The dataset
is generated by emulating a small network environment using OpenStack. Furthermore,
Argus is used to generate different network flow-based features. Finally, we implement
both ML and DL models on this dataset to create robust IDSs. The contribution of this
research can be summarized as: (1) data collection, (2) comparative analysis using different
ML and DL models, (3) development of two ensemble models, and (4) feature importance.

The rest of the paper is organized as follows. Section 2 includes a literature review.
Section 3 covers materials and methods, which include development and description of
the dataset, preprocessing, and different ML and DL models. Section 4 presents results and
analysis, and Section 5 is discussion and conclusions.

2. Related Work

IDSs can track incoming and outgoing network traffic to detect network anomalies based
on training on the anomaly-based dataset. Several publicly available datasets, including
KDD cup 99 [1], have been used extensively for the evaluation of IDSs. However, most of
the publicly available datasets may not contain attack scenarios based on evolving threats.
The KDD99 dataset [1] is one of the widely used network intrusion datasets for binary
classification [2]. The KDD99 dataset was created from DARPA network dataset files [3].
Different ML models have been used for the classification of this dataset, with the random
forest (RF) classifier attaining the highest accuracy for detecting and classifying all KDD99
dataset attacks [4]. A deep neural network has been applied to this dataset, which gave high
accuracy as well [5]. Chowdhury et al. [6] implemented a few-shot intrusion detection system
using support vector machines (SVM) and K-Nearest Neighbor (KNN) on features extracted
from a trained deep convolutional neural network (CNN) for intrusion detection.

However, the analysis of the KDD99 dataset shows a high percentage of duplicates in
both training and test datasets. These duplications increase biasness, thus hampering the
model from attaining generalizability. Tavallaee et al. [2] developed the NSL-KDD dataset
by removing the redundant information from the KDD99 dataset and by optimizing it.
Revathi et al. [7] and Ever et al. [8] developed IDSs based on the NSL-KDD dataset using
different ML models with high test accuracies. Su et al. developed a DL-based model,
BAT [9], combining bidirectional LSTM and attention mechanisms, which was trained on
the NSL-KDD dataset. Both KDD99 and NSL-KDD are comparatively old and could be
outdated for the present intrusion threats.

An IP flow-based intrusion detection dataset has been developed by Sperotto et al. [10]
with intrusion information only, and Shiravi et al. [11] included normal user behavior as
well. However, due to its lack of external servers, it offers low practicality. Ring et al. [12,13]
developed a labeled flow-based dataset, the Coburg Intrusion Detection Data Set (CIDDS).
It contains attacks such as denial of service, brute force, and port scans. Verma et al. [14]

Electronics 2021, 10, 1747 3 of 13

developed an IDSs and applied KNN and K-means clustering on the CIDDS-001 dataset
for performance evaluation.

Sharafaldin et al. developed the CICIDS2017 [15] dataset, which contains benign and
up-to-date common attacks resembling true real-world data. It includes the results of the
network traffic analysis using CICFlowMeter and labeled flow based on the time stamp,
source and destination IPs, source and destination ports, protocols, and attacks. However,
CICFlowMeter can extract around 80 network flow-based features and does not include
source/destination bits per second and record byte offset in file or stream. In this research
work we use Argus, which can extract 127 network flow-based features.

Shurman et al. [16] proposed two models in an attempt to detect anomalies on the
CICDDoS2019 dataset [17]. The first model was a hybrid model that encompasses signature-
based method with an anomaly-based method. The second model was an LSTM model.
However, the work only attempted to detect a specific DoS attack, and the methods were
not applied on various datasets.

In this research, we develop a labeled flow-based network intrusion dataset CCD-
IDSv1 with five attacks and a higher number of network features. We then build IDSs
based on our developed dataset using different ML and DL models. We perform both
binary and multi-class classification for anomaly detection and multi-attack classification,
respectively. We develop an ensemble model to improve IDSs performance. Furthermore,
feature importance is also studied for the CCD-IDSv1 dataset.

3. Materials and Methods

In this section, we present the development of an intrusion detection dataset and
describe the different ML and DL models used.

3.1. CCD-IDSv1 Dataset

The CCD-IDSv1 dataset was developed in the CCD lab at North Carolina A&T State
University for the evaluation of an anomaly-based network intrusion detection system.
It is a labeled flow-based dataset containing NetFlow data. The dataset is generated by
emulating a small network environment using OpenStack.

3.1.1. Emulated Network Environment

OpenStack is a cloud operating system that controls large pools of computing, storage,
and networking resources throughout a data center, all managed and provisioned through
APIs with common authentication mechanisms.

The network environment, as shown in Figure 1, is implemented on OpenStack. Two
internal networks, internal_1 and internal_2, are created. Five instances of Operating
System are created for each internal network, respectively. For this research work, Linux
environments, Kali and Ubuntu, are used. Kali Linux is primarily used as a penetration
testing environment that contains different attacks by default. On the other hand, Ubuntu
is one of the most widely used Linux systems in the world. Five different Kali systems are
used to attack five different Ubuntu systems in parallel.

3.1.2. Generation of Malicious and Normal Traffic

This research contains five different attacks: man-in-the-middle (MITM), address
resolution protocol (ARP) Denial of Service (DoS), user datagram protocol (UDP) Flood
DoS, Hydra Bruteforce, and Slowloris. Table S1 (supplementary materials) contains further
details of these attacks. Our setting allows one to add more attacks easily. These attacks
are carried out by Kali systems on Ubuntu systems at random time intervals. Every Kali
system will infiltrate the Ubuntu system.

Electronics 2021, 10, 1747 4 of 13Electronics 2021, 10, x FOR PEER REVIEW 4 of 14

Figure 1. OpenStack network environment.

3.1.2. Generation of Malicious and Normal Traffic
This research contains five different attacks: man-in-the-middle (MITM), address res-

olution protocol (ARP) Denial of Service (DoS), user datagram protocol (UDP) Flood DoS,
Hydra Bruteforce, and Slowloris. Table S1 (supplementary materials) contains further de-
tails of these attacks. Our setting allows one to add more attacks easily. These attacks are
carried out by Kali systems on Ubuntu systems at random time intervals. Every Kali sys-
tem will infiltrate the Ubuntu system.

Wireshark is installed in every Ubuntu system that is used to collect the network flow
information. Wireshark listens to the network traffic in and out of the Ubuntu systems
and collects the network flow information in raw PCAP format. Wireshark is compatible
with both Windows and Unix systems. This way, malicious traffic is generated.

Automated script imitating general usage by a person is used to create normal traffic.
The Bash script is used to imitate general usage with randomized web browsing, video
streaming, and file downloads. Wireshark is used to collect the network flow information
for normal traffic as well in Ubuntu system. The dataset was collected for total of seven
days. Table 1 shows the total number of instances for all attacks and normal usage.

Table 1. Total instances for different attacks and normal usage.

Dataset Instances
Normal usage 445,163

MITM 49,394
ARP DoS 33,440

UPD Flood DoS 45,003
Hydra bruteforce 2,802,864

Slowloris 4,232,788

3.1.3. Feature Extraction and Labeling
To extract the features from the raw PCAP files, first we convert the files into the

Argus compatible format. Argus is a data network transaction auditing tool that catego-
rizes and tracks network packets that match the libpcap filter expression into a protocol-

Figure 1. OpenStack network environment.

Wireshark is installed in every Ubuntu system that is used to collect the network flow
information. Wireshark listens to the network traffic in and out of the Ubuntu systems and
collects the network flow information in raw PCAP format. Wireshark is compatible with
both Windows and Unix systems. This way, malicious traffic is generated.

Automated script imitating general usage by a person is used to create normal traffic.
The Bash script is used to imitate general usage with randomized web browsing, video
streaming, and file downloads. Wireshark is used to collect the network flow information
for normal traffic as well in Ubuntu system. The dataset was collected for total of seven
days. Table 1 shows the total number of instances for all attacks and normal usage.

Table 1. Total instances for different attacks and normal usage.

Dataset Instances

Normal usage 445,163
MITM 49,394

ARP DoS 33,440
UPD Flood DoS 45,003

Hydra bruteforce 2,802,864
Slowloris 4,232,788

3.1.3. Feature Extraction and Labeling

To extract the features from the raw PCAP files, first we convert the files into the Argus
compatible format. Argus is a data network transaction auditing tool that categorizes and
tracks network packets that match the libpcap filter expression into a protocol-specific
network flow transaction model. Argus reports on the transactions that it discovers, as
periodic network flow data, that are suitable for historic and near real-time processing
for forensics, trending, and alarm/alerting. Different network flow-based features can be
generated using Argus, which is critical in the development of IDSs. Argus can extract
up to 127 network flow features. However, not all of the network features are viable.
Additionally, features such as host and source IP address, and ports, are not included, so it
can be easily deceived in real-world scenarios.

In this research, 25 features/attributes, shown in Table 2, are extracted from both
malicious and normal traffic. These attributes consist of network flow information, includ-
ing their statistical properties as well. The final CCD_IDSv1 dataset is in CSV format for

Electronics 2021, 10, 1747 5 of 13

evaluation. The dataset is labeled in two different ways: for anomaly detection and threat
or multi-attack classification. Anomaly detection is binary classification, so the dataset is
labeled into two classes: normal and attack. For threat classification, each different attack
is labeled, including normal usage for multi-class classification.

Table 2. Attribute’s description of CCD_IDSv1 dataset.

SN Attributes Description

1 Dur Total record duration

2 Runtime Total active flow run time generated through aggregation, the sum
of the records’ duration

3 Idle Time since the last packet activity
4 Mean Average duration of aggregated record
5 Stddev Standard deviation of aggregated duration times
6 Sum Total accumulated durations of aggregated records
7 Min Minimum duration of aggregated records
8 Max Maximum duration of aggregated records
9 Proto Transaction protocol
10 Cause Argus record cause code (start, status, stop, close, and error)
11 Pkts Total transaction packet count
12 Spkts Source to destination packet count
13 Dpkts Destination to source packet count
14 Bytes Total transaction bytes
15 Sbytes Source to destination transaction bytes
16 Dbytes Destination to source transaction bytes
17 Load Bits per second
18 Sload Source bits per second
19 Dload Destination bits per second
20 Rate Packets per second
21 Srate Source packets per second
22 Drate Destination packets per second
23 Offset Record byte offset in file or stream
24 Smeansz Mean of the flow packet size transmitted by the source
25 Dmeansz Mean of the flow packet size transmitted by the destination

3.1.4. Training and Testing Dataset

Furthermore, we balanced the dataset by under-sampling so that all class labels have
the same number for both anomaly detection and threat classification. This is required to
reduce biases towards any class with high representation. The total number of data was
around 7.6 million. After balancing the dataset, it is divided into 80% training and 20% test
datasets. Table 3 shows the total number of training and test data for binary classification
(anomaly detection) and multi-class classification (threat classification).

Table 3. Training and test datasets for both anomaly detection and multi-attack classification after
under-sampling.

Dataset Train Test

Anomaly Detection 712,792 177,532
Multi-Attack Classification 26,538 6420

3.2. ML Models

In this research, we performed a spot check with different ML models and selected a
few for further study. ML models such as RF [18], KNN [19], XGBoost [20], and classifica-
tion and regression trees (CART) [21] were the final models used for the study.

KNN [20] is a non-parametric supervised learning algorithm. Initially, the number of
neighbors is assigned as K. It then predicts the class of a new point based on the nearest
distance (Euclidean, Manhattan, or Minkowski distance measure function) between the

Electronics 2021, 10, 1747 6 of 13

new point and the training samples. RF [18] incorporates a large number of decision
trees working collectively as an ensemble. The collective votes from all individual trees
determine the final decision or class prediction. XGBoost [21] is a highly efficient gradi-
ent boosting algorithm that improves upon gradient boosting machines through system
optimization and improvement in algorithms. Time cost has also been improved through
parallelization, distributed computing, out-of-core computing, and cache optimization.
These features enable multi-machine training for the optimization of data structures to
achieve the best global minimum and run time. CART [22] can be used as a classification
tree that is not significantly impacted by outliers in the input variables and can incorporate
the same variables more than once in different parts of the trees. The tree grows from
the root node and splits at each node, while the leaf nodes provide the output variable.
The decision tree stopping criteria, as pointed out by Zhang [22], is that each leaf node
represents a single class by attaining homogeneity within prespecified training counts.

3.3. DL Models

In this research, we use CNN [23] and long short-term memory (LSTM) [24], used in
our previous research [25], as base DL models. The embedding layer, which is generally
used in natural language processing [26], is used for encoding. The embedding layer takes
the input and transfers encoded data to DL models [27]. It is initialized with random
weights, which are optimized with every epoch. Due to its dynamic nature, embedding
performs better than static encodings such as one-hot encoding [27].

Firstly, for CNN, output from the embedding layer is fed into a first 2D convolutional
layer with filter size 2 × 2. The output from the first convolutional layer is fed into another
2D convolutional layer with 128 filters (size 2 × 2). The dropout layer is used to minimize
overfitting and maximize generalization. Next, a third 2D convolutional layer is used.
Thereafter, a 2D max-pooling layer followed by another 2D convolutional layer is used.
Then, after flattening, dense layers with four hidden layers are used. Adam [28] was
used as an optimizer for the CNN architecture; it uses adaptive learning rates to calculate
individual learning rates for each parameter. Softmax is used as an activation function. It
assigns probabilities to each class that sum up to one.

The detailed parameter description for the CNN model is shown in Table 4. Learning
rate was set to default 0.001. Furthermore, due to decent size of our dataset, we were able to
utilize higher number of filters for extraction of more information from our input. Standard
dropout rate was chosen throughout to achieve highly generalizable model. Higher tensor
cores in our GPU enabled us to use higher batch size, but we limited to 512 to limit the
possibility of missing global minima during gradient decent. Finally, Checkpointer function
was used to extract best model based on highest validation accuracy and lowest loss.

Table 4. Parameter description of CNN model with embedding layer.

Parameters Settings

Learning Rate 0.001
Batch Size 512
Dropout 0.4

Conv2d_1 filter (filter size) 64 (2 × 2)
Conv2d_2 filter (filter size) 128 (2 × 2)
Conv2d_3 filter (filter size) 256 (2 × 2)

MaxPooling2d_1 2 × 2
Conv2d_4 filter (filter size) 128 (2 × 2)

MaxPooling2d_2 2 × 2
Dense_1 768
Dense_2 256
Dense_3 128
Dense_4 64

Output layer activation function Softmax
Checkpointer Best validation accuracy

Electronics 2021, 10, 1747 7 of 13

For LSTM, similar to CNN, output from the embedding layer is fed into two consecu-
tive LSTM layers followed by dropout layers. Then, the output is fed into the dense layers,
with the final output at the end. A model checkpoint function is used for both models to
extract the best model out of all the epochs based on the validation dataset. The detailed
parameter description for the LSTM model is shown in Table 5.

Table 5. Parameter description of LSTM model with embedding layer.

Parameters Settings

Learning rate 0.001
Batch size 512

LSTM layer 1 memory units 128
LSTM layer 2 memory units 64

LSTM layer 2 dropout 0.5
Dense layer 1 128

Dropout 0.4
Dense layer 2 64

Dropout 0.4
Output layer activation function Softmax

Checkpointer Best validation accuracy

3.4. Ensemble Model

The ensemble model combines different models trained on the different datasets or with
different algorithms to improve performance. In this research, we develop two ensemble models:
Ensemble-CNN-10 and Ensemble-CNN-LSTM. Ensemble-CNN-10 combines ten different
models trained during 10-fold cross-validation using Stacking ensemble [29], as shown in
Figure 2. The stacked ensemble uses a meta-learning algorithm to find the best combination of
these models. In this model, we used a neural network as a meta-learning algorithm. We can
further optimize the model by changing the meta-learning algorithm as well.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 14

Figure 2. Stacking ensemble model combining 10 models from 10-fold cross-validation.

The second model, Ensemble-CNN-LSTM, as shown in Figure 3, combines CNN and
LSTM models trained on the same dataset using the Stacking ensemble used before in the
Ensemble-CNN-10 model. Both of the aforementioned models give high flexibility for op-
timization. With further increase in the number of features and complexity with the addi-
tion of more attacks, a highly optimized and versatile model is required.

Figure 3. Stacking ensemble model combining CNN and LSTM models.

Figure 2. Stacking ensemble model combining 10 models from 10-fold cross-validation.

Electronics 2021, 10, 1747 8 of 13

The second model, Ensemble-CNN-LSTM, as shown in Figure 3, combines CNN and
LSTM models trained on the same dataset using the Stacking ensemble used before in
the Ensemble-CNN-10 model. Both of the aforementioned models give high flexibility for
optimization. With further increase in the number of features and complexity with the
addition of more attacks, a highly optimized and versatile model is required.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 14

Figure 2. Stacking ensemble model combining 10 models from 10-fold cross-validation.

The second model, Ensemble-CNN-LSTM, as shown in Figure 3, combines CNN and
LSTM models trained on the same dataset using the Stacking ensemble used before in the
Ensemble-CNN-10 model. Both of the aforementioned models give high flexibility for op-
timization. With further increase in the number of features and complexity with the addi-
tion of more attacks, a highly optimized and versatile model is required.

Figure 3. Stacking ensemble model combining CNN and LSTM models.

Figure 3. Stacking ensemble model combining CNN and LSTM models.

3.5. Performance Metrics

In this research work, 10-fold cross-validation was used to evaluate the performance
of the model and to determine its generalizability. In 10-fold cross-validation, the data is
partitioned into ten equal parts. Then, one part is left out for validation, and training is
performed on the remaining nine parts. This process is repeated until all parts have been
used for validation.

Confusion matrix, precision, recall, and F1-score were used as performance metrics.
For binary classification, the dimension of the confusion matrix is 2 × 2, and for multi-class
classification with six classes, the dimension is 6 × 6. The diagonal of the matrix gives
the counts of true predicted values. It consists of true-positive (TP), false-positive (FP),
true-negative (TN), and false-negative (FN). Furthermore, time cost has also been evaluated
for different models to determine their efficiency. The following metrics are used:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (1)

Precision =
TP

TP + FP
× 100 (2)

Recall =
TP

TP + FN
× 100 (3)

F1 Score =
Precision × Recall
Precision + Recall

× 2 (4)

4. Results

In this section, we present the results for anomaly detection and multi-attack classi-
fication by various implemented ML and DL models. Model benchmarking and feature
importance are also studied.

Electronics 2021, 10, 1747 9 of 13

4.1. Anomaly Detection

Firstly, different ML models and DL models were applied for the analysis of the CCD-
IDSv1 dataset with two classes: intrusion (includes all attacks) and normal usage. The
dataset was divided into training and test sets with an 80:20 ratio. Ten-fold cross-validation
was applied in the training dataset to determine the robustness and overall generalization
of the model. The results are shown in Table 6. Both ML and DL models were able to
achieve 100% mean accuracy with almost zero standard deviation. CART achieved 100%
mean accuracy in 10-fold cross-validation with the lowest training time of 18.73 s out of all
the methods. Of the two DL models, CNN had a shorter training time although still far
longer than the ML models.

Table 6. Performance metrics for anomaly detection for 10-fold cross-validation with standard deviation and independent test.

Models
10-Fold Cross-Validation Independent Test

Mean Accuracy (%) Execution Time (s) Accuracy (%) Precision Recall F1-Score Training Time (s)

KNN 100 ± 0.00 167.92 99.99 1.00 1.00 1.00 4.96
RF 100 ± 0.00 872.46 100 1.00 1.00 1.00 61.85

XGBoost 100 ± 0.00 724.48 100 1.00 1.00 1.00 41.54
CART 100 ± 0.00 18.73 100 1.00 1.00 1.00 0.99
LSTM 100 ± 0.01 3495.41 99.99 1.00 1.00 1.00 320.54
CNN 100 ± 0.01 1200.89 99.99 1.00 1.00 1.00 98.09

An independent test was performed on the 20% of the independent dataset that was
not used for the training. The results are shown in Table 6. No further complex models
were added to the existing ML models (KNN, RF, XGBoost, and CART) and DL models
(CNN and LSTM) since these models were able to achieve perfect performance metrics
in 10-fold cross-validation. CART achieved an accuracy of 100%, with a lowest execution
time of 0.99 s. KNN achieved 99.99% accuracy, whereas both RF and XGBoost achieved
100% accuracy but with longer training times than CART. Both DL models—LSTM and
CNN—were able to achieve 99.99% accuracy with much longer training times than the ML
models. LSTM CNN training times were 320.54 and 98.09 s, respectively.

4.2. Multi-Attack Classification

The next step in this analysis was the multi-class classification of different attacks
as well as normal usage. In total, there were six classes (five intrusion-based and one
normal usage). Similar to intrusion detection, different ML models and DL models were
applied for the multi-class analysis of the CCD-IDSv1 dataset. The dataset was divided
into training and test sets with a 80:20 ratio, and 10-fold cross-validation was applied. The
results are shown in Table 7. KNN achieved the lowest accuracy, 77.13%, with a standard
deviation of 0.65. Other ML models—RF, XGBoost, and CART—were able to achieve ~95%
mean accuracy. Although XGBoost attained marginally better accuracy, CART had the
shortest training time of only 1.45 s. Both base DL models—LSTM and CNN—were able to
achieve ~97% accuracy, with CNN slightly better with shorter training time. For multi-class
classification, due to added complexity, DL models were able to perform slightly better
than ML models.

Electronics 2021, 10, 1747 10 of 13

Table 7. Performance metrics for multi-attack classification for 10-fold cross-validation with variance and independent test.

Models

10-Fold Cross-Validation Independent Test

Mean Accuracy (%) Execution Time (s) Accuracy (%) Precision Recall F1-Score Training
Time (s)

KNN 77.13 ± 0.65 6.02 77.79 0.77 0.78 0.77 0.28
RF 95.26 ± 0.30 31.88 95.31 0.95 0.95 0.95 1.71

XGBoost 95.78 ± 0.45 128.93 95.48 0.96 0.95 0.95 7.35
CART 95.25 ± 0.36 1.45 95.36 0.95 0.95 0.95 0.08
LSTM 96.51 ± 0.73 515.04 96.18 0.91 0.88 0.87 79.39
CNN 96.90 ± 0.31 117.80 96.51 0.93 0.92 0.92 57.97

Ensemble-CNN-10 95.40 0.93 0.93 0.93 153.16
Ensemble-CNN-LSTM 96.62 0.93 0.93 0.93 316.39

An independent test was performed on the 20% of the dataset that was not used for
the training. The results are shown in Table 7. A similar trend was seen on the independent
test as well. For the ML models, KNN had the lowest accuracy, with other ML models
achieving ~95% accuracy. The CART models took the shortest training time, 0.08 s. The
base DL models—LSTM and CNN—achieved better accuracies than their ML counterparts.
CNN had slightly better accuracy and training cost than LSTM. To extend the research,
two ensemble models were tested based on these two DL models. The Ensemble-CNN-10
model combined 10 CNN models developed from 10-fold cross-validation using stacking
ensemble. However, there was no improvement in terms of performance. The ensemble
was only able to improve slightly on recall and F1-score. The Ensemble-CNN-LSTM model
improved overall metrics slightly, attaining a highest accuracy of 96.62%. Precision, recall,
and F1-score have class dependencies due to which they were better for ML models.

4.3. Model Benchmarking

We implemented the ML and base DL models used in this study using the publicly
available network intrusion datasets CIDDS [12,13] and CICIDS2017 [15] for model bench-
marking. The results are shown in Table 8. Both ML and DL models performed well in the
independent tests on both datasets, with 99% accuracy on average, as demonstrated in [25].

Table 8. Performance of ML and DL models on CIDDS and CIC-IDS2017 dataset.

Models
Accuracy (%)

CIDDS External CIC-IDS2017

RF 98.89 99.95
XGBoost 98.88 99.95

CART 99.38 99.97
LSTM 99.14 99.95
CNN 99.11 99.96

4.4. Feature Importance

Classical supervised ML models are white-box models, which allow us to analyze the
importance of the features used. These models help us determine the effects of each feature for
both binary and multi-class classification. This information enables further feature engineering
to improve the performance of the model. Each feature is given a score from 0 to 1 such that
its total sum is 1. In this research, feature importance was calculated using RF. In scikit-learn,
we implement the feature importance as described by Breiman et al. [21]. It is based on
Gini importance or means decrease impurity, defined as the total decrease in node impurity
averaged over all ensemble trees. These values are relative to a specific dataset; thus, these
values cannot be compared between different datasets. Hence, we have calculated feature
importance for anomaly detection and multi-threat classification separately.

Feature importance for cyber anomaly detection, which is binary classification, is
shown in Figure 4. The idle feature, which is the time between the packets, got the highest

Electronics 2021, 10, 1747 11 of 13

score, showcasing its impact on the classification. It achieved a scaled score of 0.32. Some
other features, such as offset and Dmeansz (mean of flow packet size transmitted), achieved
more than 0.1 scores (10% impact).

Electronics 2021, 10, x FOR PEER REVIEW 12 of 14

Figure 4. Feature importance for intrusion detection.

Feature importance for multi-threat classification, which is multi-class classification,
is shown in Figure 5. The idle feature scored high in this classification as well; however,
the offset feature achieved the highest score. Offset had almost 5% more impact in multi-
class threat classification than in binary intrusion detection classification. Almost ten fea-
tures had an impact of an around 5%. There was marginal improvement in the impact of
a few features in this classification.

Figure 5. Feature importance for threat classification.

5. Discussion and Conclusions
In this research work, we developed a CCD-IDSv1 labeled flow-based dataset for the

evaluation of an anomaly-based network IDSs. OpenStack was used to emulate a small
network environment for the development of this dataset. Five different attacks, including

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Du
r

Rt
im

e
Id

le
M

ea
n

St
dd

ev
Su

m
M

in
M

ax
Pr

ot
o

Ca
us

e
Pk

ts
Sp

kt
s

Dp
kt

s
By

te
s

Sb
yt

es
Db

yt
es

Lo
ad

Sl
oa

d
Dl

oa
d

Ra
te

Sr
at

e
Dr

at
e

Of
fs

et
Sm

ea
ns

z
Dm

ea
ns

z

Sc
or

e

Features

Anomaly Detection Feature Importance

0

0.05

0.1

0.15

0.2

0.25

Du
r

Rt
im

e
Id

le
M

ea
n

St
dd

ev
Su

m
M

in
M

ax
Pr

ot
o

Ca
us

e
Pk

ts
Sp

kt
s

Dp
kt

s
By

te
s

Sb
yt

es
Db

yt
es

Lo
ad

Sl
oa

d
Dl

oa
d

Ra
te

Sr
at

e
Dr

at
e

Of
fs

et
Sm

ea
ns

z
Dm

ea
ns

z

Sc
or

e

Features

Multi-attack Classification Feature Importance

Figure 4. Feature importance for intrusion detection.

Feature importance for multi-threat classification, which is multi-class classification, is
shown in Figure 5. The idle feature scored high in this classification as well; however, the
offset feature achieved the highest score. Offset had almost 5% more impact in multi-class
threat classification than in binary intrusion detection classification. Almost ten features
had an impact of an around 5%. There was marginal improvement in the impact of a few
features in this classification.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 14

Figure 4. Feature importance for intrusion detection.

Feature importance for multi-threat classification, which is multi-class classification,
is shown in Figure 5. The idle feature scored high in this classification as well; however,
the offset feature achieved the highest score. Offset had almost 5% more impact in multi-
class threat classification than in binary intrusion detection classification. Almost ten fea-
tures had an impact of an around 5%. There was marginal improvement in the impact of
a few features in this classification.

Figure 5. Feature importance for threat classification.

5. Discussion and Conclusions
In this research work, we developed a CCD-IDSv1 labeled flow-based dataset for the

evaluation of an anomaly-based network IDSs. OpenStack was used to emulate a small
network environment for the development of this dataset. Five different attacks, including

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Du
r

Rt
im

e
Id

le
M

ea
n

St
dd

ev
Su

m
M

in
M

ax
Pr

ot
o

Ca
us

e
Pk

ts
Sp

kt
s

Dp
kt

s
By

te
s

Sb
yt

es
Db

yt
es

Lo
ad

Sl
oa

d
Dl

oa
d

Ra
te

Sr
at

e
Dr

at
e

Of
fs

et
Sm

ea
ns

z
Dm

ea
ns

z

Sc
or

e

Features

Anomaly Detection Feature Importance

0

0.05

0.1

0.15

0.2

0.25

Du
r

Rt
im

e
Id

le
M

ea
n

St
dd

ev
Su

m
M

in
M

ax
Pr

ot
o

Ca
us

e
Pk

ts
Sp

kt
s

Dp
kt

s
By

te
s

Sb
yt

es
Db

yt
es

Lo
ad

Sl
oa

d
Dl

oa
d

Ra
te

Sr
at

e
Dr

at
e

Of
fs

et
Sm

ea
ns

z
Dm

ea
ns

z

Sc
or

e

Features

Multi-attack Classification Feature Importance

Figure 5. Feature importance for threat classification.

Electronics 2021, 10, 1747 12 of 13

5. Discussion and Conclusions

In this research work, we developed a CCD-IDSv1 labeled flow-based dataset for the
evaluation of an anomaly-based network IDSs. OpenStack was used to emulate a small
network environment for the development of this dataset. Five different attacks, including
normal usage scenarios, were implemented to collect both malicious and normal traffic,
respectively. Furthermore, Argus was used to extract 25 network features. Both anomaly
detection (a binary classification problem) and multi-attack classification (a multi-class
classification problem) were performed. Different ML and DL models were applied on
3 datasets and used for a comparative analysis.

Overall, for the anomaly detection, ML models (KNN, RF, XGBoost, and CART) and
DL models (LSTM and CNN) were able to achieve 100% accuracy in both 10-fold cross-
validation as well as an independent test. The training time was shortest for CART and
longest for LSTM. There were added complexities for threat classification resulting in lower
accuracies for all the models compared to near-perfect performance for anomaly detection.
KNN suffered most in terms of accuracy. RF, XGBoost, and CART maintained around 95%
accuracy, while LSTM and CNN maintained around 96% accuracy.

Two ensemble models were developed in this research to try to improve the perfor-
mance in threat classification. The first model, Ensemble-CNN-10, combined 10 CNN
models developed from 10-fold cross-validation, whereas Ensemble-CNN-LSTM combined
base CNN and LSTM models. Both ensemble approaches used the Stacking algorithm in
combination with a neural network as a meta learner. However, Ensemble-CNN-10 was
not able to improve performance. Ensemble-CNN-LSTM was able to improve performance
but only slightly, attaining the highest accuracy 96.62%, in this research.

Furthermore, feature importance using RF was evaluated for both anomaly detection
and threat classification. The idle attribute got the highest score for anomaly detection,
whereas offset attributes achieved the highest score for threat classification. There was
marginal improvement in the score for a few other features in threat classification. Training
and testing of these models were carried out in a system with an Intel i7-9750 processor,
64GB RAM, and Nvidia 2080 graphics card. Training time was reduced by utilizing CUDA
cores in the graphics card, which is a resource exploited by Tensorflow. In this research,
higher predictability was achieved using DL models, and interpretability with lower
training cost while maintaining good predictability was achieved using ML models.

For future work, the next version of CCD-IDSv1 will be developed, adding more
attacks and improving upon the network environment to imitate real-life scenarios. Fur-
thermore, different cloud servers can be considered for these environments. With improve-
ments in datasets, further optimization of models will be required to compensate for the
added complexities. Hence, further development of the ML and DL models is also required
to attain better performance without sacrificing interpretability.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/electronics10151747/s1, Table S1: Attacks Description, Table S2: 10-fold Cross validation for
different CNN configurations.

Author Contributions: N.T. developed dataset and ML/DL models and wrote the draft, Z.L. devel-
oped dataset and revised the draft, and A.S. developed dataset. A.E., B.G., and K.R. conceived and
designed the experiment and revised the manuscript, and KR supervised the overall project. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported partially by CISCO Inc., a research grant. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of CISCO Inc. Equipment has been sourced through North Carolina
A&T State University, Greensboro, NC 27411, US.

Data Availability Statement: Publicly available at https://github.com/nthapa-ds/CCD-IDSv1
(accessed on 13 May 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/electronics10151747/s1
https://www.mdpi.com/article/10.3390/electronics10151747/s1
https://github.com/nthapa-ds/CCD-IDSv1

Electronics 2021, 10, 1747 13 of 13

References
1. KDD Cup 1999 Data. 2007. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on

1 February 2021).
2. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009 IEEE

Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009; pp. 1–6.
3. Cunningham, R.K.; Lippmann, R.P.; Fried, D.J.; Garfinkel, S.L.; Graf, I.; Kendall, K.R.; Webster, S.E.; Wyschogrod, D.; Zissman, M.A.

Evaluating intrusion detection systems without attacking your friends: The 1998 darpa intrusion detection evaluation. In Proceedings
of the Third Conference and Workshop on Intrusion Detection and Response, San Diego, CA, USA, 9–13 February 1999.

4. Obeidat, I.; Hamadneh, N.; Al-kasassbeh, M.; Almseidin, M. Intensive Preprocessing of KDD Cup 99 for Network Intrusion
Classification Using Machine Learning Techniques. arXiv 2018, arXiv:1805.10458.

5. Jia, Y.; Wang, M.; Wang, Y. Network intrusion detection algorithm based on deep neural network. IET Inf. Secur. 2019, 13, 48–53.
[CrossRef]

6. Chowdhury, M.M.; Hammond, F.; Konowicz, G.; Xin, C.; Wu, H.; Li, J. A few-shot deep learning approach for improved
intrusion detection. In Proceedings of the 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication
Conference (UEMCON), New York, NY, USA, 19–21 October 2017; pp. 456–462.

7. Revathi, S.; Malathi, A. A Detailed Analysis on NSL-KDD Dataset Using Various Machine Learning Techniques for Intrusion
Detection. Int. J. Eng. Res. Technol. 2013, 2, 1848–1853.

8. Ever, Y.K.; Sekeroglu, B.; Dimililer, K. Classification Analysis of Intrusion Detection on NSL-KDD Using Machine Learning
Algorithms. In Proceedings of the Mobile Web and Intelligent Information Systems (MobiWIS 2019), Istanbul, Turkey, 26–28
August 2019; pp. 111–122.

9. Su, T.; Sun, H.; Zhu, J.; Wang, S.; Li, Y. BAT: Deep Learning Methods on Network Intrusion Detection Using NSL-KDD Dataset.
IEEE Access 2020, 8, 29575–29585. [CrossRef]

10. Sperotto, A.; Schaffrath, G.; Sadre, R.; Morariu, C.; Pras, A.; Stiller, B. An Overview of IP Flow-Based Intrusion Detection. IEEE
Commun. Surv. Tutor. 2010, 12, 343–356. [CrossRef]

11. Shiravi, A.; Shiravi, H.; Tavallaee, M.; Ghorbani, A.A. Toward developing a systematic approach to generate benchmark datasets
for intrusion detection. Comput. Secur. 2012, 31, 357–374. [CrossRef]

12. Ring, M.; Wunderlich, S.; Grüdl, D.; Landes, D.; Hotho, A. Creation of Flow-Based Data Sets for Intrusion Detection. J. Inf. Warf.
2017, 16, 40–53.

13. Ring, M.; Wunderlich, S.; Grüdl, D.; Landes, D.; Hotho, A. Flow-based benchmark data sets for intrusion detection. In Proceedings
of the 16th European Conference on Cyber Warfare and Security (ECCWS 2017), Dublin, Ireland, 29–30 June 2017; pp. 361–369.

14. Verma, A.; Ranga, V. Statistical analysis of CIDDS-001 dataset for Network Intrusion Detection Systems using Distance-based
Machine Learning. Procedia Comput. Sci. 2018, 125, 709–716. [CrossRef]

15. Sharafaldin, I.; Habibi Lashkari, A.; Ghorbani, A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization. In Proceedings of the 4th International Conference, ICISSP 2018, Funchal, Madeira, Portugal, 22–24 January
2018; pp. 108–116.

16. Shurman, M.; Khrais, R.; Yateem, A.R. DoS and DDoS Attack Detection Using Deep Learning and IDS. Int. Arab J. Inf. Technol.
2020, 17, 655–661. [CrossRef]

17. Sharafaldin, I.; Habibi Lashkari, A.; Hakak, S.; Ghorbani, A. Developing Realistic Distributed Denial of Service (DDoS) Attack
Dataset and Taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai,
India, 1–3 October 2019. [CrossRef]

18. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
19. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
20. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. arXiv 2016, arXiv:1603.02754.
21. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth & Brooks/Cole Advanced

Books & Software: Monterey, CA, USA, 1984.
22. Zhang, Z. Decision tree modeling using R. Ann. Transl. Med. 2016, 4, 2. [CrossRef] [PubMed]
23. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
24. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
25. Thapa, N.; Liu, Z.; KC, D.B.; Gokaraju, B.; Roy, K. Comparison of Machine Learning and Deep Learning Models for Network

Intrusion Detection Systems. Future Internet 2020, 12, 167. [CrossRef]
26. Bengio, Y.; Ducharme, R.; Vincent, P.; Janvin, C. A Neural Probabilistic Language Model. J. Mach. Learn. Res. 2003, 3, 1137–1155.
27. Thapa, N.; Chaudhari, M.; McManus, S.; Roy, K.; Newman, R.; Saigo, H.; Kc, D. DeepSuccinylSite: A deep learning based

approach for protein succinylation site prediction. BMC Bioinform. 2020, 21. [CrossRef] [PubMed]
28. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
29. Zhang, C.; Ma, Y. Ensemble Machine Learning: Methods and Applications; Springer Publishing Company, Incorporated: NewYork,

NY, USA, 2012.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://doi.org/10.1049/iet-ifs.2018.5258
http://doi.org/10.1109/ACCESS.2020.2972627
http://doi.org/10.1109/SURV.2010.032210.00054
http://doi.org/10.1016/j.cose.2011.12.012
http://doi.org/10.1016/j.procs.2017.12.091
http://doi.org/10.34028/iajit/17/4A/10
http://doi.org/10.1109/CCST.2019.8888419
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1109/TIT.1967.1053964
http://doi.org/10.21037/atm.2016.05.14
http://www.ncbi.nlm.nih.gov/pubmed/27570769
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.3390/fi12100167
http://doi.org/10.1186/s12859-020-3342-z
http://www.ncbi.nlm.nih.gov/pubmed/32321437

	Introduction
	Related Work
	Materials and Methods
	CCD-IDSv1 Dataset
	Emulated Network Environment
	Generation of Malicious and Normal Traffic
	Feature Extraction and Labeling
	Training and Testing Dataset

	ML Models
	DL Models
	Ensemble Model
	Performance Metrics

	Results
	Anomaly Detection
	Multi-Attack Classification
	Model Benchmarking
	Feature Importance

	Discussion and Conclusions
	References

