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Abstract: The present article proposes a three-phase resonant boost inverter (TPRBI) to feed a per-
manent magnet brushless DC (PMBLDC) motor at the requested torque with low ripples due to
the sinusoidal current injected into the PMBLDC motor. PMBLDC motors have the highest torque-
to-weight ratio compared to other motors and are the best choice for electric vehicle applications.
Conventionally, these motors are driven by voltage source inverters (VSI) with trapezoidal current
injection, introducing unwanted torque ripples. Moreover, due to the buck operation of VSI, an extra
power conversion stage is required to elevate the battery voltage level to desired DC-link voltage.
This extra stage increases the number of components used, complexity of control and decreases the
efficiency and reliability of the overall system. TPRBI injects sinusoidal current in the PMBLDC motor
in the proposed method, thus minimizing the torque ripples. The proposed inverter also has an inher-
ent voltage boost characteristic, thus eliminating the extra power conversion stage. The single-stage
conversion from DC to boosted sinusoidal AC enhances the system reliability and efficiency and
minimizes the cost and weight of the system. A MATLAB/Simulink model is presented along with
simulation results and mathematical validation. A comparative evaluation of the proposed system
with the conventional VSI-fed PMBLDC motor is presented in terms of induced torque ripples.

Keywords: BLDC motor; boost inverter; electric drive; resonant inverter; power conversion

1. Introduction

Electric vehicles have emerged to be the most viable solution to reduce greenhouse
gas (GHG) emissions at source. Currently, the transportation sector is heavily dependent
on internal combustion engine (ICE) based vehicles, contributing to 16.2% of the global
GHG emissions [1]. With advancements in power converter technologies, various electrical
machines are now efficiently controlled and operated, forming an integral part of electric
vehicles [2]. The reported literature suggests that although induction motors are industrial
workhorses due to their high ruggedness, reliability, and simple construction and control
when used in electric vehicle applications, they fail because of their low torque to weight
ratio [3]. PMBLDC motors, on the other hand, use rare earth element magnets in the rotor,
providing very high torque to weight ratio [4], thus making it the first choice for use in
traction drives [5,6] using multiport converters [7,8].
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A three-phase voltage source inverter conventionally feeds permanent magnet brush-
less DC (PMBLDC) motors with the help of synchronizing signals from hall effect sensors.
Based on the Hall effect signals, the legs of the VSI are energized to rotate the motor at the
desired speed. However, conventional VSI injects a trapezoidal current into the PMBLDC.
Due to the trapezoidal current, the commutating and non-commutating currents are im-
balanced, causing torque ripples on the shaft. Torque ripples are detrimental the electric
vehicle stability and its dynamics. Therefore, many researchers have reported different
current injections to reduce the torque ripples in the PMBLDC motor, such as sinusoidal
current injection [9] and petal wave current injection [10].

The sinusoidal current injection minimizes the torque ripples, but generating a si-
nusoidal current from conventional VSI is a complex process and requires a lot of com-
putational power and sensor arrangement. Moreover, the battery voltage required for
the motor operation is higher than the individual cell voltage, and so it requires a com-
bination with a large number of cells in series. However, with many cells in series, the
reliability decreases and the complexity in the battery management increases [11]. Thus,
the power converters with voltage boosting ability are investigated for electric vehicle
applications [12]. The boost inverter proposed in [13] offers a solution for a single-phase
application; however, it does not account for the three-phase application. The Z-source
inverter (ZSI) proposed in [14] emerged as a new family of inverters capable of buck–boost
operation for single-phase and three-phase applications by providing varying DC-Link
voltage at an interim stage. Several modified topologies were reported based on ZSI [15–17],
with a characteristic property of varying interim DC-link voltage. Numerous modulation
strategies were investigated for these ZSIs and modified topologies [18], with their own
merits such as zero voltage switching, maximum boost control, and maximum constant
boost control.

In recent years, multilevel inverters (MLIs) capable of providing boosted AC voltage
output for low voltage DC input have gained popularity. Various topologies such as flying
capacitors and multi-H-Bridge cascading were investigated [19]. Multilevel inverters use
single or multiple sources to provide many (depending on topology and switching) DC
voltage levels at various switching times, giving a sinusoidal envelope of AC voltage at the
output [20].

As Z-source inverters provide interim boosted DC-link voltage, switches are exposed
to a higher blocking voltage. Higher blocking voltage across the switches results in a higher
TBV of the converter topology [21–23]. Higher TBV signifies higher semiconductor costs
and higher semiconductor loss. Multilevel inverters [24,25] and switched capacitor in-
verters [26] depend on high switching, and passive component counts for increasing the
number of levels at the output side. It increases the cost and complexity of the system.
Moreover, all the inverter topologies investigated employ high switching frequency at
some or all stages of their operation. Higher switching frequency gives rise to higher
switching loss, thereby increasing the heat-sink requirement of the converter.

This work proposes a three-phase boost inverter based on fundamental frequency
switching capable of providing a high gain boost factor and sinusoidal current injection in
the PMBLDC motor. The proposed TPRBI provides torque ripple minimization compared
to the PMBLDC motor and eliminates an extra boost stage at the input side.

Thus, the novelty of this research study is as follows:

1. A new three-phase resonant impulse inverter (TPRBI) is proposed to drive a PMBLDC
at high torque, but with low ripples due to the sinusoidal current injected into the
PMBLDC motor;

2. The proposed inverter has an inherent voltage increase characteristic that leads to an
increase in its efficiency by eliminating the extra boost power conversion stage, which
is usually used by a voltage source inverter (VSI) feeding a PMBLDC;

3. The maximum torque per ampere is higher in the proposed TPRBI-fed PMBLDC
motor than the conventional VSI-fed PMBLDC motor drive.
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The paper is organized into five sections. Section 2 explains the circuit and working of
TPRBI, Section 3 details the operation of PMBLDC with TPRBI and a comparison between
square wave and sinusoidal current injection operation. Simulation results are shown in
Section 4, followed by a conclusion in Section 5.

2. Three-Phase Resonant Boost Inverter: Circuit and Operation

The circuit diagram of the proposed TPRBI is shown in Figure 1. LC pairs (L—inductor
and C—capacitor) are connected to the legs of a conventional three-leg three-phase VSI.
The load is connected differentially to the mid-points of the LC pairs. VDC is the amplitude
of the input DC voltage source.
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Figure 1. TPRBI: circuit with resistive load.

All inductor and capacitor values are kept the same to ensure that the inverter is
symmetric. As the input voltage source is parallel to all three legs, each leg can be attributed
to the individual operation. The working of all the legs is the same and differs only in
phase shift. The switching of the proposed inverter’s power semiconductor devices is
performed at the fundamental frequency, and the duty cycle is changed from 0 to 0.5 as per
load variation and required gain. The different switching states are explained in Table 1.

Each leg of the topology works in two modes, as illustrated in Table 1. These modes
depend on the switching of the top or bottom switch. For dynamic modeling, each leg
can be subdivided into two parts, i.e., synchronous switches for pulse generation and LC
resonant pair for DC-biased sinusoidal wave generation, as shown in Figure 2. Where ST
denotes top switch and SB bottom switch, Vpg denotes phase to DC ground voltage, and
Req is equivalent resistance.
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Table 1. Switching states for operation of TPRBI.
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From Figure 2, for the synchronous switch part, the output equation can be written as:

Vint =

{
DVdc, t = DTs
0, t 6= DTsint

(1)

The second part of the circuit behaves as a single-ended two-pole filter. The transfer
function for the circuit is given by:

G(s) =
Vpg(s)
Vint(s)

=
1

1 + sL
Req

+ s2LC
(2)

The resonant frequency of the system (ωr) is

ωr =
1√
LC

(3)
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Rephrasing Equation (2) in a standard second-order form by substituting ωr from (3),

G(s) =
Vpg(s)
Vint(s)

=
ωr

2

s2 + αsωr + ωr2 (4)

where α = 1
R

√
L
C .

Now by replacing s by jω in (4) results in:

G(jω) =
ωr

2

(jω)2 + α(jω)ωr + ωr2
(5)

The gain of the system is given by:

|G(jω)| = 1√{
1−

(
ω
ωr

)2
}2

+ α2
(

ω
ωr

)2
(6)

At the resonant frequency, i.e., ω = ωr. Equation. (6) gives the value of gain to be
1/α, i.e.,

|G(jω)| = 1
α
= R

√
C
L

(7)

Now, for a pulse input, the response of an LC resonant circuit is a DC clamped sinusoid.
Thus, the overall response of the system when switched at the resonant frequency is:

VPG = VDC + DR

√
C
L

VDC sin(ωt) (8)

where D is the duty cycle, and VDC is the input DC voltage.

Now, replacing R
√

C
L with G in (8),

VPG = VDC + DGVDCsin(ωt) (9)

The three legs are phase-shifted by 120◦, the dynamic equation for each leg is given
by (10):

VAG = VDC + DGVDCsin(ωt)
VBG = VDC + DGVDCsin(ωt− 120◦)
VCG = VDC + DGVDCsin(ωt− 240◦)

(10)

The line-to-line voltage is:

VAB =
√

3DGVDCsin(ωt + 30◦)
VBC =

√
3DGVDCsin(ωt− 90◦)

VCA =
√

3DGVDCsin(ωt + 150◦)
(11)

Equation (11) represents the overall equation of the converter, which shows that the
proposed converter produces a three-phase voltage controlled by duty cycle variation.

3. PMBLDC Operation: Square vs. Sinusoidal Current Injection

The circuit diagram of a conventional VSI-fed trapezoidal back emf PM BLDC is
represented in Figure 3. Where, vao, vbo and vco are the voltages from the motor stator
terminal to the negative battery reference; vno is voltage from the virtual neutral point to
the negative battery reference; and ia, ib and ic are stator input currents. R and L is per
phase stator resistance and inductance, respectively. Applying Kirchhoff’s voltage law
(KVL), we obtain:

VPo = iPR + L
diP
dt

+ eP + vno (12)
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The index P represents phases, i.e., a, b, and c, for three phases. Multiplication with iP
to both sides of (12) gives:

iPVPo = i2PR + LiP
diP
dt

+ iPeP + iPvno (13)

By adding (13) for phases a, b, and c, we obtain:

∑
P=a,b,c

iPVPo = R ∑
P=a,b,c

i2P + L ∑
P=a,b,c

iP
diP
dt

+ ∑
P=a,b,c

iPeP + ∑
P=a,b,c

iPvno (14)

PM BLDC motor has an isolated neutral point, so the sum of currents is constrained (15).

∑
P=a,b,c

iP = 0 (15)

The useful mechanical power obtained from the electrical power is given by (16).

pm = ∑
P=a,b,c

iPeP (16)

The mechanical power obtained at all times of operation from the instantaneous
electrical power is obtained by substituting Equations (15) and (16) in Equation (14) and
thus results in the overall Expression (17).

pm = τmωm = ∑
P=a,b,c

vPoiP − R ∑
P=a,b,c

i2P (17)

Here, the motor shaft speed (ωm) and electromagnetic torque (τm) have a relation as
shown in Equation (18).

τm =
1

ωm

(
∑

P=a,b,c
vPoiP − R ∑

P=a,b,c
i2P

)
(18)

Equation (18) provides information about the torque variation of a PMBLDC motor
fed by a three-phase source irrespective of the current injection type. In the following sub-
sections, the injected current waveforms for square and sinusoidal injection are calculated,
and the analytical torque variation is shown.
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3.1. Square-Wave Current Injection (Conventional VSI)

When a conventional VSI feeds the PMBLDC, it injects a square wave current with an
amplitude I. Then the sum of squares of current, i.e., ∑P=a,b,c i2P, is given by Equation (19)

∑
P=a,b,c

i2P = 2
(

1− ioutiin
i2nc

)
i2nc (19)

where iout, iin, and inc are shown in Figure 4 for a single commutation.

Electronics 2021, 10, 1799 8 of 13 
 

3.1. Square-Wave Current Injection (Conventional Vsi) 

When a conventional VSI feeds the PMBLDC, it injects a square wave current with 
an amplitude I. Then the sum of squares of current, i.e., ∑ 𝑖௉ଶ௉ୀ௔,௕,௖ , is given by Equation 
(19) ෍ 𝑖௉ଶ௉ୀ௔,௕,௖ = 2 ൬1 − 𝑖௢௨௧𝑖௜௡𝑖௡௖ଶ ൰ 𝑖௡௖ଶ  (19)

where iout, iin, and inc are shown in Figure 4 for a single commutation. 

 
Figure 4. Commutating (in and out) and non-commutating current for a single commutation cycle. 

Commutating currents vary with the speed of the PMBLDC motor and have a varia-
ble value at each commutation cycle; thus, the value obtained from Equation (19) induces 
torque ripples at every commutating step when substituted in Equation (18). The variation 
of torque ripple in a PMBLDC motor when fed by a conventional VSI in an ideal and non-
ideal setting is shown in Figure 5. 
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Commutating currents vary with the speed of the PMBLDC motor and have a variable
value at each commutation cycle; thus, the value obtained from Equation (19) induces
torque ripples at every commutating step when substituted in Equation (18). The variation
of torque ripple in a PMBLDC motor when fed by a conventional VSI in an ideal and
non-ideal setting is shown in Figure 5.

3.2. Sinusoidal Current Injection (Tprbi)

When a three-phase resonant boost inverter feeds the PMBLDC, it injects sinusoidal
current into the stator. The peak value of the injected sinusoidal current is Ipeak.

Now for a balanced sinusoidal phase current injection, the sum of squares of current,
i.e., ∑P=a,b,c i2P is:

∑
P=a,b,c

i2P =

[
sin2θ + sin2

(
θ − 2π

3

)
+ sin2

(
θ +

2π

3

)]
I2
peak =

3
2

I2
peak (20)

Substituting the Equation (20) in Equation (18), we obtain:

τm =
1

ωm

(
∑

P=a,b,c
vPoiP −

3
2

RI2
peak

)
(21)

Now, Equation (21) denotes the torque ripple produced by the PMBLDC motor when
fed by the proposed three-phase resonant boost inverter. As shown in the above equation,
the second term is constant and does not vary with speed or commutation, as was the
case when conventional VSI feeds PMBLDC. Thus, analytically, the PMBLDC fed by the
proposed TPRBI has much lower torque ripples and has a smooth operation; moreover,
due to fundamental frequency switching, zero current switching is obtained in TPRBI, thus
minimizing the losses.
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Now, Equation (21) denotes the torque ripple produced by the PMBLDC motor when 
fed by the proposed three-phase resonant boost inverter. As shown in the above equation, 
the second term is constant and does not vary with speed or commutation, as was the case 
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4. Results

The proposed system was simulated using the Simscape electrical toolbox in the MAT-
LAB Simulink environment. The specification of the PMBLDC motor used for simulation
is depicted in Table 2.

Table 2. PMBLDC motor rating.

Parameter Notation Value

Terminal voltage Vt 48 Volts
Rated current ip 50 Amps

Resistance per phase Rph 50 mΩ
Inductance per phase Lph 75 µH

Motor constant Kv 0.32 V s/rad
Number of poles Np 8

The circuit diagram of the PMBLDC drive fed by TPRBI is shown in Figure 6.
It can be observed from Figure 7 that the amplitude of current injected, when fed with

TPRBI, is close to the ideal sinusoid and leads to a torque ripple-free operation, while in
the case of VSI-fed PMBLDC, the injected current has lots of harmonics resulting from
commutations. The resulting torque produced by both TPRBI and VSI-fed PMBLDC motors
is shown in Figure 8a,b, respectively.
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It can be observed from Figure 8 that the torque ripples are minimized in the proposed
TPRBI-fed PMBLDC drive; moreover, the maximum torque produced per ampere is higher
in the case of the proposed system. A comparative evaluation of the proposed TPRBI-fed
PMBLDC drive and conventional VSI-fed PMBLDC drive is presented in Table 3.

TBV =
∑n

i=0 PIV(i)
Vo

(22)

where, n is the number of switches and VO is the output voltage. For VSI, the minimum
PIV for each switch is VDC, and the maximum output is VDC, so the TBV is six because six
switches are used. While for TPRBI, the max gain is 4, at that point PIV of switches is equal
to VDC, but the output VO is four times VDC; thus, the TBV of the TPRBI is 1.5. The low
value of the TBV signifies lower semiconductor cost and loss.

Table 3. Comparative Evaluation.

Parameter VSI TPRBI

DC-link Voltage Should be ≥48 Volts
(buck operation)

Wide range operation from
12 to 48 Volts

(Boost operation)
Semiconductor Switching Hard Switching Soft Switching

Switching Loss High Zero (ZCS)
Peak Inverse Voltage (PIV) Higher than DC-link Voltage Equal to DC-link voltage

Total Blocking Voltage (TBV) ** 6 1.5
Efficiency Low High

** TBV is given by Equation (22)

5. Conclusions

The present article reports a three-phase resonant boost inverter-fed permanent
magnet brushless DC motor for electric vehicle applications. The working of the three-
phase resonant boost inverter was mathematically represented and validated with
simulation results. The generalized torque equations were obtained for a PMBLDC
motor fed by a three-phase supply irrespective of the injected current waveforms. The
analysis of the effects of square wave phase current injection and sinusoidal phase
current injection on the torque of the PMBLDC motor was performed. The superiority of
sinusoidal current injection over square wave current injection in terms of torque ripples
was proved mathematically.

Further, for validation of the mathematical claims, a simulation model was developed.
The simulation results also show that the maximum torque per ampere is higher in the
proposed TPRBI-fed PMBLDC motor than the conventional VSI-fed PMBLDC motor drive.
A lower value of total blocking voltage for the proposed system in comparison to the
conventional system proves that the loss component of the TPRBI is lower than the VSI-fed
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PMBLDC drive. Thus the proposed system is beneficial and finds a practical application
in electric vehicles for traction drives. As a next work, the experimental tests will be
performed, and the experimental results will be compared with those obtained in the
simulation to validate the proposed method.
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