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Abstract: Including unlabeled data in the training process of neural networks using Semi-Supervised
Learning (SSL) has shown impressive results in the image domain, where state-of-the-art results were
obtained with only a fraction of the labeled data. The commonality between recent SSL methods
is that they strongly rely on the augmentation of unannotated data. This is vastly unexplored for
audio data. In this work, SSL using the state-of-the-art FixMatch approach is evaluated on three
audio classification tasks, including music, industrial sounds, and acoustic scenes. The performance
of FixMatch is compared to Convolutional Neural Networks (CNN) trained from scratch, Transfer
Learning, and SSL using the Mean Teacher approach. Additionally, a simple yet effective approach
for selecting suitable augmentation methods for FixMatch is introduced. FixMatch with the proposed
modifications always outperformed Mean Teacher and the CNNs trained from scratch. For the
industrial sounds and music datasets, the CNN baseline performance using the full dataset was
reached with less than 5% of the initial training data, demonstrating the potential of recent SSL
methods for audio data. Transfer Learning outperformed FixMatch only for the most challenging
dataset from acoustic scene classification, showing that there is still room for improvement.

Keywords: semi-supervised learning; deep learning; industrial sound analysis; music information

retrieval; acoustic scene classification

1. Introduction

Recent advances in deep learning have resulted in improved performance for many
classification tasks. However, such improvements often come at the expense of large
annotated datasets and increasingly larger models. While datasets with the required
amount of annotated data to train these models are not always available, unlabeled data
can often be easily obtained. In the field of Acoustic Scene Classification (ASC), for example,
edge devices can easily record large quantities of data at low additional cost. The same
holds true for Industrial Sound Analysis (ISA) applications, where acoustic quality control
systems can record the observed production process for long periods of time. In the field
of Music Information Retrieval (MIR), vast amounts of music recordings can easily be
collected for a given classification task from existing music collections.

The process of including labeled and unlabeled examples into the training process
is called Semi-Supervised Learning (SSL). In the field of image classification, many SSL
algorithms have recently pushed the state of the art and nearly closed the performance gap
to models trained fully supervised using all annotated data [1-5]. On image classification
datasets such as CIFAR-10 [6] with 4000 annotated labels (400 per class), the so-called
FixMatch (FM) approach [3] (95.7% accuracy) outperformed previous SSL methods such as
Mean Teacher (MT) [7] (90.8%) and Pseudo-Label (PL) [8] (83.0%). The performance gap
between FM and all other evaluated SSL methods was even larger when the amount of
labeled data was further reduced. In that scenario, FM also outperformed the supervised
model (79.7%) and other Transfer Learning (TL) baselines (87.9%) [9]. Cances et al. [10]
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evaluated the potential of SSL. methods such as FM and MT for audio data on Sound Event
Detection (SED) and Speech Command Recognition (SCR) datasets. In their experiments,
FM outperformed MT and the supervised baseline using 10% of the initial training data.
Furthermore, the fully supervised baseline results were reached on two of the three datasets.

Despite the performance gains reported by these SSL approaches in the computer
vision domain, and recently for audio data from the fields of SED and SCR, no research has
been conducted to date (to the best of our knowledge) on the application of FM to ISA, ASC,
and MIR. Additionally, results on image data show that performance is highly dependent
on the type of augmentation methods used. However, many image augmentation methods
cannot easily be applied to audio data for several reasons: (a) color channels frequently used
for image augmentation such as hue change are not available in audio data (even though
multi-channel audio recordings may be treated as multi-color channels in some cases),
(b) image translations in x and y direction result in a very different modification than audio
translations (location vs. time/frequency modification), (c) some augmentation methods
do not work on all types of audio representation due to their different dimensionality
(waveform, magnitude spectrogram, Mel-spectrogram, etc.).

The main contribution of this work is a systematic analysis of SSL approaches on audio
classification tasks from Industrial Sound Analysis (ISA), Acoustic Scene Classification
(ASC), and Music Information Retrieval (MIR). To this end, we implement the FM algorithm
with adjustments to fit audio data, and compare its performance with MT, TL, and the
corresponding supervised baselines. The amount of labeled data is gradually reduced to
show the effectiveness of FM when only few annotated examples are available (few/one-
shot learning). We propose a novel method to select the augmentation techniques used
during training, as this choice was shown to be critical in a previous study [3] as well as
in our experiments. All experiments are conducted with the same processing pipeline
to avoid possible pitfalls in SSL evaluation which might occur with differences in data
loading/splitting / pre-processing between the evaluated methods [9].

In the following sections, we first describe related work on SSL, data augmentations
techniques for audio, and TL using pre-trained models for learning from few labels. We
then explain the datasets used, our proposed SSL system, and the experimental design of
our study. Finally, we report the results of our experiments and summarize our findings.

2. Related Work

This section summarizes related work on SSL for image and audio data, data augmenta-
tion for audio, and finally work on Transfer Learning using pre-trained audio embeddings.

2.1. Semi-Supervised Learning

The main idea behind SSL is to include unlabeled data into the training process and
take advantage of large unlabeled datasets that can add variety to the training to build more
robust classifiers, similar to using larger labeled datasets. The biggest challenge of SSL is
that there is no guarantee that introducing unlabeled data into the training process will
improve performance, and in some cases, it might even turn out to be detrimental [3,10,11].
One possible reason for this performance drop is the so-called confirmation bias, where
incorrect predictions on the unlabeled data are amplified as the model overfits on these
mistakes [7,12]. To provide some context on SSL, we briefly describe the SSL techniques
that are most relevant for this work. For a detailed overview of previous SSL techniques,
we refer the reader to [11].

Current SSL methods for classification tasks can be clustered into two main approaches:
consistency regularization and entropy minimization. Consistency regularization is built
upon the idea that realistic perturbations of the input data should not change predictions of
the model [13]. An example for this approach is the Mean Teacher (MT) technique [7], where
two separate models with the same architecture are trained: a teacher and a student model.
The weights of the teacher model are an exponential moving average of the weights of the
student model in previous iterations. The weights of the student model are updated using a
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combined loss term. The first term of the loss is obtained with the categorical cross-entropy
(CCE) loss from classifying the augmented labeled data. The second term of the loss is a
consistency term for the unlabeled data. The teacher model outputs predictions on weakly
augmented data. The student is then forced to predict the same label distribution on the
non-augmented version of the data. Mean squared error showed the best performance for
this consistency loss. The final loss is a weighted sum of the CCE and the consistency loss.

In contrast, models using entropy minimization are pushed to output more confident
predictions for unlabeled data. A commonly used entropy minimization method is the
Pseudo-Label (PL) approach, where a given model predicts labels for the unlabeled data [8].
The class with the highest probability is taken as the true label and treated like ground
truth. The CCE loss of the labeled data is combined with the weighted CCE loss of the
unlabeled data. The selection and scheduling of the weighting factor (e.g., slowly increasing
it over time) for the unlabeled loss is critical to avoid noisy pseudo labels from disturbing
the training.

MixMatch (MM) combines entropy minimization with consistency regularization and
resulted in improved performance in image classification tasks [1]. In MM, unlabeled
examples are augmented several times and the output distributions are averaged and
used as the target. To encourage high confidence predictions, the entropy of the output
distribution is minimized by emphasizing the highest confidence prediction and lowering the
others accordingly in a process called “sharpening”. For further details on the “sharpening”
process, we refer the reader to the original publication [1]. The labeled images are also
augmented and used in the combined loss. The input images and labels for both labeled
and artificially labeled data are additionally augmented using Mixup. Mixup creates
new data points by linearly interpolating the inputs features and labels of existing data
points. Results have shown that by applying Mixup, decision boundaries between classes
can be improved [14]. MM obtained these results with versions of the “Wide ResNet-
28” Convolutional Neural Network (CNN) [15]. Images were normalized to zero mean
and standard deviation of 1 for each color channel before being input to the network.
On the CIFAR-10 image dataset [6], MM improved accuracy from 62% to 89% using only
25 examples for each of the 10 classes and from 90.8% to 93.7% for 400 images per class.
As reference, training a model with the complete training dataset in a fully supervised
manner achieves 95.8% when all annotations are used.

MM was later extended in ReMixMatch (RMM) [2] by including distribution alignment
and augmentation anchoring. For augmentation anchoring, augmentation methods are
categorized as either weak (e.g., horizontal flip) or strong (e.g., changing the color balance),
and the label distribution from weakly augmented images is used as target for several
strongly augmented versions of the same images. Distribution alignment encourages the
model to bring the distribution of the artificial labels closer to that of the labeled dataset.
This is achieved by scaling the prediction of the model on an unlabeled example by the
ratio between the class distribution of the labeled dataset and the running average of the
model’s prediction on unlabeled data. These additions improved the accuracy from 89% to
94.5% on CIFAR-10 with 25 examples per class using the same model architecture as MM.

Recently, FixMatch [3] was proposed as a simplified version of MM and RMM. Only
predictions from weakly augmented data with high confidence are kept as targets. Instead
of sharpening the predicted distributions, the class with the highest confidence is used
as the target label, comparable to the PL method. The pseudo labels are filtered with a
confidence threshold (95% suggested by the authors), and only high confidence predictions
are used for training. This excludes uncertain predictions in the early training phases.
It also iteratively increases the amount of unlabeled data being included in the training
process as the model becomes more confident in its predictions. The filtered instances
are then transformed by randomly picking two strong augmentation methods from a
predefined set, using a magnitude (strength of the transformation) randomly sampled
for each training step. One goal for this approach is to systematically produce the same
predictions for the weakly and strongly augmented unlabeled data using the CCE loss as
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displayed in Figure 1. The second part of the loss function, similar to PL, is the supervised
performance on the weakly augmented version of the labeled dataset using CCE loss as
well. In contrast to the PL approach, an additional weighting factor in the loss function
is not critical to achieve good performance since the number of unlabeled examples used
for training increases over time as more of them pass the threshold. FM achieved 95.7%
accuracy on CIFAR-10 using 400 examples per class with the same model architecture as
MM. Reducing the amount of labels per class to 25 only slightly reduced performance to
94.9%, while the performance of MT dropped to 67.7%. Using only four examples per class
FM still obtained 88.6% while the performance of RMM (80.9%) and MM (52.5%) decreased
considerably more, demonstrating the potential of this method in the few label domain.
FM also simplified the training process by using only one strong augmentation compared
to RMM. Furthermore, it was shown that randomly picking the magnitude for strong
augmentations in each training step performed comparable to CTAugment (introduced for
RMM) in which the best magnitude for each augmentation is learned over the course of
the training.

Weakly augmented

Prediction Pseudo-label

Unlaibeled | EEEN #—— | W
example

Strongly augmented

Prediction

Unlabeled
loss

Figure 1. Schematic representation of FM training process for the unlabeled part of the dataset.
The model generates a hard label on weakly augmented versions of an unlabeled example. The model
is then trained to output the same label for a strongly augmented version of the example. Figure
modified from [3].

The Meta Pseudo Labels approach by Pham et al. [4] slightly improved the upper
baseline set by FM to 96.1% using 400 examples per class for CIFAR-10, but no results were
reported for fewer labels. Instead of a single model, separate student and teacher models
are used. First, the student learns from the pseudo labels generated by the teacher. Next, the
teacher is modified depending on how well the updated student performs on the labeled
part of the dataset. This should lead to an improved teacher model that generates more
accurate pseudo labels for the student in every iteration. To achieve the best performance,
the teacher is additionally trained with auxiliary supervised and semi-supervised objectives.
Although Meta Pseudo Labels achieves a slightly higher accuracy than FM, we do not
include it in this work since it requires a more complicated training procedure and no
performance was reported in the low-label domain.

The SSL techniques mentioned so far were mainly developed using image classifica-
tion tasks and datasets. In the following, we present a brief description of SSL methods
applied to audio tasks. Consistency regularization in the form of MT was applied to SED
and SCR improving the supervised model trained from scratch with few data. However,
this approach did not reach the fully supervised baseline which included all annotated
data [16]. Recently, Cances et al. [10] applied several SSL methods on one additional SED
and the same SCR datasets as [16]. The study included the SSL methods MT, MM, and FM.
When the amount of labeled examples was reduced to 10%, FM and MM outperformed
MT and the supervised CNN trained from scratch. This is inline with the findings from the
image domain. In contrast to [16], MT did not perform as well as the supervised baseline
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on all datasets. On 10% of the dataset size, FM and MM reached the fully supervised
baseline which includes the complete labeled dataset (100%) on two of the three datasets
confirming the potential of SSL. Further data reduction steps were not conducted. Cances et
al. additionally integrated Mixup into FM in a similar way as it was used in MM. This
improved results slightly on two datasets. It must be noted that the results of Lu et al. [16]
and Cances et al. [10] are difficult to compare since different amounts of training data were
used, and the similarity of the test set could not be confirmed. For UrbanSound8k [17]
Cances et al. tested on the provided 10-fold split with only 10% reduction of training data,
while Lu et al. “split the labeled data into training and test sets” with varying reduction
sizes without covering the 10% reduction step.

2.2. Augmentation Methods Applied to Audio Data

Augmentation methods for audio data can be clustered into two main classes: the ones
applied directly on the raw audio signal (e.g., time stretching) and methods applied after
the data has been transformed to a time-frequency representation. Since FM was originally
proposed to work with 2D input images, we focus on methods that can be applied during
run-time to the 2D time-frequency representation of the audio signal. Augmentations
applied to the raw audio signal are left for future work.

For urban sound tagging, Adapa [18] applied image augmentation techniques such as
random erasing, random rotate, and grid distortion to input audio spectrograms. Color
jitter and stretching of the time and frequency axes were applied, amongst others, to bird
audio detection using CNNs [19]. Another successfully used augmentation technique for
spectral images is SpecAugment [20], where one or more contiguous time frames and fre-
quency bins are set to a fixed value. This is comparable to the Cutout technique [21] used in
FM, as well as random erasing where one rectangular region is masked. Johnson et al. [22]
applied image augmentation methods (grid distortion, random brightness, random erasing,
random rotating, and SpecAugment) to ISA datasets and increased robustness of CNNs
to domain shift between train and test sets. Such augmentation methods have also been
successfully used for MIR tasks such as classifying the size of musical ensembles [23].
These examples demonstrate the general applicability of the proposed image augmentation
methods for spectral audio data from various domains.

2.3. Transfer Learning Using Pre-Trained Embeddings

Another approach to tackle the problem of small training datasets is to pre-train
models on tasks where enough data is available, and then transfer the learned knowledge to
new tasks. Here, the models can be fine-tuned or intermediate feature representations, i.e.,
embeddings, can be extracted to train new classifiers. This alternative training paradigm
should therefore be considered when evaluating the performance of SSL methods [9].
In [24], we compared several pre-trained embeddings for six audio classification tasks
from the fields of MIR and ISA, including tasks such as instrument family recognition
and metal ball surface classification. The OpenL3 embeddings [25] outperformed the
other evaluated embeddings as well as networks trained from scratch, especially when the
amount of labeled data was reduced. Furthermore, it was shown that the linear Support
Vector Machine (SVM) classifier performed best on average using these embeddings as
input features. OpenL3 embeddings also demonstrated their potential on SED datasets [25].
Since OpenlL3 embeddings performed well over several tasks from different audio domains,
we include them as an additional baseline in this work.

3. Experiments

The following section describes the selected datasets and corresponding tasks includ-
ing the general processing pipeline and dataset specific supervised baselines. Then we
outline the methods that are evaluated for SSL and TL. Finally, we describe the experiments
on data augmentation and the full evaluation that compares the supervised baselines, SSL,
and TL.
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3.1. Datasets and Tasks

For a thorough evaluation of the potential of FM for audio classification, we selected
three classification tasks from the fields for ISA, ASC, and MIR. Picking audio data from
different domains should show the influence of varying difficulties and audio charac-
teristics for the evaluated methods. Only publicly available datasets with a separate
pre-defined test set were used. This choice was made to allow for reproducibility and to
avoid time-consuming cross-validations in the experiments. Table 1 provides details of the
selected datasets, which we explain with the corresponding state-of-the-art results in the
following section.

Table 1. Dataset details including the number of classes, total amount of files for training and testing,
the file duration (File dur.) of each audio recording, the sample rate, and the number of channels of
the audio data.

Task Classes  Train Test File Dur. (s) Sample Rate (kHz) Channels

MB 3 1350 171 1 441 1
TUT2017 15 4680 1620 10 441 2
NSynth 10 300k 4096 4 16 1

3.1.1. Metal Surface Classification (MB)

From the field of ISA we selected the IDMT_ISA_METAL_BALL (MB) dataset [26].
Due to abrasion, the surface of metal balls can get damaged over time. This dataset was
compiled to build classifiers that detect the surface of metal balls by their rolling sound. It
contains three surface conditions: “eloxed”, “coated”, and “broken”. For further details
on the dataset and recording procedure we refer to [26]. It contains pre-defined balanced
train and test sets which were recorded under the exact same conditions. This shared
data distribution makes this dataset the least complex one in this study. The supervised
state-of-the-art baseline was reported by Johnson et al. [22], where a CNN achieved 99.6%
accuracy using the full training set with 450 examples per class. With OpenL3 embeddings,
a SVM classifier obtained 97.1% on the full dataset and 96.8% using only 10% of the training
data [24].

3.1.2. Acoustic Scene Classification (TUT2017)

From the field of ASC, we use the TUT Urban Acoustic Scenes 2017 (TUT2017) dataset
with its corresponding development (train) [27] and evaluation (test) [28] splits. It contains
10 s long stereo audio files from 15 different acoustic scenes such as grocery store or library,
each recorded in several locations. The locations of training and test set do not overlap,
making the classification task more challenging.

Heittola et al. [29] proposed a CNN baseline that achieved 74.8% file-wise accuracy
on the development set, and 61.0% on the final test set, highlighting the difference between
train and test sets, as well as the general difficulty of the task. TUT2017 was used in the
2017 IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events
(DCASE) in Task 1 “Acoustic scene classification” (http://dcase.community/challenge?2
017 /task-acoustic-scene-classification, accessed on 27 August 2020). The best performing
system obtained 83.3% on the test set using generative adversarial networks [30]. The best
placed system using only CNNs trained in a supervised manner, comparable to our
supervised baseline, achieved 77.7% [31] and was placed third in the challenge. This dataset
was also used by Pons et al. [32] to compare several few-shot learning approaches such
as prototypical networks [33] and TL. To evaluate the effectiveness of the approaches,
the training set size was reduced step-wise down to one example per class. Prototypical
networks performed best with more than 20 examples per class; TL was beneficial for
smaller training set sizes. These results allow a comparison to our supervised, TL, and
most importantly, SSL performance on this task.
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3.1.3. Instrument Recognition (NSynth)

As a MIR task, we selected musical instrument family recognition using the NSynth
dataset [34]. NSynth contains 300k musical notes sampled from over 1k instruments. These
instruments belong to 11 instrument families such as bass, string, and vocals. It comes with a
separate test set that contains only unseen instruments for each family. This makes it a more
challenging dataset than MB. Since the test dataset contains no recordings for “synth_lead”
we excluded this instrument family from our experiments leading to a total of 10 instrument
families. The files were recorded with a sample rate of 16 kHz and a length of 4 s. For more
details refer to [34]. Current supervised state-of-the-art reported a classification accuracy of
73.8% using a CNN [35]. Augmenting the raw audio data with effects such as chorus or
flanger increased the accuracy to 74.7%. With pre-trained Contrastive Learning for Audio
(COLA) embeddings, Saeed et al. [36] reported 73.0% with and 63.4% without fine-tuning.

3.2. Processing Pipeline

The main focus of this work is to evaluate the potential of FM for audio classification
tasks. Therefore, we first implement a processing pipeline which allows us to train and
test fully supervised baselines, classifiers using TL, and the SSL methods FM and MT
on the same data. To avoid differences due to variations in the processing pipeline we
run all experiments with the same code base and input data. For more details on on SSL
evaluation practices we refer the reader to [9]. Due to randomness in training and data
selection for smaller dataset sizes, results may slightly differ from those previously reported
in the literature.

We use the same CNN architecture for all tasks and datasets, called CINN420 in
the remainder of the paper. It is inspired by the ResNet model described in [37] us-
ing Independent-Component (IC) layers proposed by Chen et al. [38] in each ResNet
block. These IC layers add additional regularization to the network by including dropout.
We adapted the architecture slightly to achieve results comparable to the state of the art on
all datasets for the fully supervised baseline. The final configuration is shown in Table 2.
Tests on supervised training and FM using Wide ResNet28 [15] and MobileNetV2 [39]
were conducted but led to similar or worse results than the ones obtained with CNN420.
However, it must be noted that better architectures and hyperparameters for each indi-
vidual dataset and training data size might exist. An extensive hyperparameter search
was not performed. Rather than optimizing models, our aim was to have comparable
results for the different experiments while remaining close to the reported state-of-the-art
performance on each task. All CNN420 models are trained using Adam optimizer [40]
for 70 epochs with a learning rate of 1 x 10~3. Learning rate schedulers did not lead to
significant improvements in preliminary tests and were hence discarded in favor of model
and training simplicity.

Table 2. CNN420 Resnet Architecture with 420k parameters and average (avg.) pooling between
ResNet blocks. Details on the ResNet block are explained in [37].

Layer Output Kernel Size Dropout
Conv 2D 64 (5,5) -
Relu - - -
ResNet Block 64 3,1 0.10
Avg. Pooling - 2,2) -
ResNet Block 64 (3,3) 0.10
Avg. Pooling - 2,2) -
ResNet Block 64 (3,3) 0.10
ResNet Block 128 3,1 0.10
Avg. Pooling - 2,2) -
ResNet Block 256 (1,1) 0.10

~

Avg. Global Pooling -
Softmax Nr. of classes
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3.3. Supervised Baselines

The best results in a classification task are commonly achieved by using annotated
datasets in a fully supervised training setting. In this work, we provide our own fully
supervised baselines trained with the entire dataset as the upper boundary for our models
and feature extraction methods. In each training batch, two augmentation methods are
randomly picked with a random magnitude from all spectral augmentations that are later
considered in FM (see Section 4.1). This is in line with the procedure described in [22].
All feature extraction was done using the Librosa python library [41] (version 0.8.0:
https:/ /pypi.org/project/librosa/, accessed on 27 August 2020).

3.3.1. Metal Ball

As an input representation we use the Mel-spectrogram with 64 bands. Window and
hop sizes of 512 samples leads to a patch size of 34 x 64 representing one full recording.
Similar to [22], no overlap between STFT windows was used. These input features and our
default processing pipeline resulted in 99.4% accuracy on the test set with the CNN420.
These results are comparable to the 99.6% accuracy reported in the state of the art [22].

3.3.2. TUT2017

As input features we use Mel-spectrogram with 128 bands, a window size of 2048,
and a hop size of 1024 samples. The stereo channels are used similar to color channels for
images. Per-channel energy normalization (PCEN) [42] is applied to each channel since
it improved results on the fully supervised baseline (using implementation and default
parameters from Librosa python library version 0.8.0). A total of 128 spectral frames are
concatenated for one spectral image with an overlap of 64 frames. This creates five spectral
images for each recording. Using the CNN420, we achieved 77.2% file-wise accuracy with
majority voting over the five patches per file. These results are comparable to the ones
reported in [31] with 77.7% using a CNN model.

3.3.3. NSynth

As input features, we use dB-scaled Mel-spectrogram with 64 bands, a window size
of 2048, and a hop size of 1024 covering the whole audio snippet in one spectral image
with 61 time frames. With the CNN420, we achieved 77.1% accuracy on the test set which
is slightly higher than the previous state of the art of 74.7% [35].

3.4. Transfer Learning

TL is an alternative to SSL for training models with few annotated data and should
therefore be considered as an additional baseline [9]. For TL, OpenL3 embeddings have
been shown to be a good starting point for audio classification tasks, resulting in good
classification results especially when the amount of labeled data available is small [24,25].
As suggested in [24], we extract OpenL3 embeddings trained on music with an output size of
512 with Mel-spectrograms as input and use a linear SVM classifier (OpenL3 embeddings were
extracted with the OpenL3 python library version 0.3.1: https:/ /pypi.org/project/openl3/,
accessed on 3 March 2020).

3.5. Semi-Supervised Learning (SSL) Approaches
3.5.1. FixMatch (FM)

Our training procedure for FM is similar to the one described in [3]. As proposed
by the authors, we use seven times more unlabeled than labeled data in each batch and
a threshold of 0.95 for filtering the pseudo labels. The labeled batch size is set to 32, and
one epoch includes all unlabeled training examples. The output of the time-frequency
transform is first normalized to a range between 0 and 1