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Abstract: This paper proposes an algorithm for the extraction of primary-side first harmonic voltage
and current components for inductive wireless power transfer (WPT) links by employing quadrature
demodulation. Such information allows for the accurate estimation of corresponding receiver-side
components and hence permits the monitoring of the output voltage and resistance necessary for
protection and/or control without using either sensors or feedback communication. It is shown
that precision estimation is held as long as the parameter values of the system are known and the
phasor-domain equivalent circuit is valid (i.e., in continuous conduction mode). On the other hand,
upon light load operation (i.e., in discontinuous conduction mode), the proposed technique may
still be employed if suitable nonlinear correction is employed. The methodology is applied to a
400 V, 1 kW inductive WPT link operating at a load-independent-voltage-output frequency and is
well-verified both by simulations and experiments.

Keywords: inductive wireless power transfer; primary-side control; quadrature demodulator

1. Introduction

The WPT system has the potential to become a practical solution for power delivery
in the future due to its flexibility, movability, and cordless nature. WPT links are most
commonly utilized in electric vehicles, implanted medical devices, portable electronics,
etc. [1–4]. Today, resonant inductive WPT, which utilizes magnetic field for energy transmis-
sion, is the most widely employed methodology. Series–series compensation is the simplest
yet most popular compensation topology for inductive WPT links [5] and is considered in
this paper.

In typical WPT systems, the component values are known, while the coupling coeffi-
cient and load may vary significantly [6,7]. Generally, upon load and coupling coefficient
variations, output voltage, current, or power must be regulated. Therefore, corresponding
sensors and feedback implemented by some kind of additional wireless communication
link are required [8–12], increasing system complexity and cost. It was recently proposed
in [13] to modulate the transmitted power signal using amplitude or frequency shift
keying modulation, thus eliminating the additional communication link. However, this
approach was also shown to lead to undesired voltage and current ripples at the WPT out-
put. A promising research direction for controlling the WPT link output without wireless
feedback is to identify one or more output variables utilizing primary-side only electrical
information [14–17]. The proposed methods are commonly divided into two main sub-
groups: time-domain [8,14,18] and phasor-domain [19–24] solutions. The former mostly
leans on measuring the decaying current envelope during the free resonant reaction to
the energy injection. The transfer of energy must be discrete during the energy injection
interval to allow for decaying reaction detection and therefore cannot be used for continu-
ous load regulation. Thus, this group of solutions seems to suit initial load identification,

Electronics 2021, 10, 1858. https://doi.org/10.3390/electronics10151858 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3156-1287
https://doi.org/10.3390/electronics10151858
https://doi.org/10.3390/electronics10151858
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10151858
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10151858?type=check_update&version=1


Electronics 2021, 10, 1858 2 of 16

mostly necessary for induction heating applications. Moreover, the estimation results of
this method demonstrate relatively low accuracy [14].

The phasor-domain solutions subgroup utilizes a first harmonic equivalent circuit of
the WPT link, suitable for a wide region of operating frequencies. The WPT link equivalent
circuit at the phasor-domain establishes a two-input (transmitter-side voltage and current)
two-output (receiver-side voltage and current) linear network. Thus, for known primary-
side phasors and system parameters, it is possible to calculate the secondary-side phasors
in case the coupling coefficient is known or may be estimated. However, it was pointed
out that actual AC-side WPT voltages and currents are not pure sinusoids, containing one
or more distorting components [25,26] even if operating in continuous conduction mode
(CCM). Therefore, the first harmonic components obtained from RMS-based reconstruc-
tion or peak value measurements are often inaccurate due to the non-sinusoidal shape
of the instantaneous primary side voltage and current. In order to overcome this issue,
the paper suggests utilizing the quadrature demodulation (QD) algorithm [27], typically
employed in communication systems engineering. This technique accurately reveals the
Cartesian components of first harmonic phasors while taking advantage of the fact that
non-sinusoidal periodic signal harmonics are orthogonal. By utilizing QDs, the accuracy of
the phasor-domain solutions subgroup is greatly improved. In order to demonstrate the
enhanced algorithm performance, it is applied to a series-series compensated inductive
WPT link operating at a load-independent-voltage-output frequency [28,29]. Such an
operation is suitable for systems operating with a constant and known coupling coeffi-
cient [30,31], yielding a DC voltage output that is nearly unaffected by the load. However,
it must be emphasized that fundamental harmonic-based approximations are insufficient
for a WPT link operating under light loads [32]. This is due to the fact that when the
receiving-side diode rectifier operates in discontinuous current mode (DCM), the harmonic
content of primary and secondary currents rises significantly [33], and the relation between
the secondary-side AC variables of the equivalent phasor-domain circuit and the output
WPT link DC variables become nonlinear [34–36]. In order to overcome this obstacle, it is
proposed to utilize a nonlinear correction function that allows for the adjustment of the
output of the QD-assisted phasor-domain solution to yield an accurate estimation of WPT
output voltage and load resistance under light loading.

The rest of the paper is organized as follows. The series–series compensated WPT
link is analyzed in Section 2 and an equivalent dual-input dual-output linear phasor-
domain network is established. Quadrature demodulation essentials are revealed in
Section 3. An application of the proposed QD-assisted estimation algorithm to a series–
series compensated inductive WPT link operating at load-independent-voltage-output
frequency is described in detail in Section 4. The paper is summarized in Section 5.

2. Inductive WPT Link

Consider an inductive series-series compensated WPT link, shown in Figure 1 [34],
where VI and Vo symbolize input and output DC voltages, L1 and L2 are primary and
secondary inductances, C1 and C2 represent primary and secondary compensating capaci-
tance, r1 and r2 denote primary and secondary equivalent series resistances, k indicates
coupling coefficient, and Co and Ro signify load filter capacitance and resistance, respec-
tively. The inverter is operated with bipolar switching at a constant frequency of ω = 2π· f
with a 50% duty cycle, such that

v1(t) =
∞

∑
n=1,odd

V1n sin(nωt + αn) (1)

is a bipolar square-wave signal. The current of the primary-side is then described as

i1(t) =
∞

∑
n=1,odd

I1n sin(nωt + φn). (2)
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Figure 1. Series-series compensated inductive WPT link.

Similarly, voltage and current signals at the secondary side are given by

v2(t) =
∞

∑
n=1,odd

V2n sin(nωt + θn), i2(t) =
∞

∑
n=1,odd

I2n sin(nωt + δn), (3)

respectively.
In case ω is close to the resonant frequency given by

ωR =
1√

L1C1
=

1√
L2C2

, (4)

the WPT link may be described by its first harmonic equivalent phasor-domain circuit [8]
in Figure 2, where

→
v 1 = V11∠α1,

→
i 1 = I11∠φ1,

→
v 2 = V21∠θ1,

→
i 2 = I21∠δ1 (5)

with [14] V11 = 4
π VI and

LM = k
√

L1L2,
→
ZL = RL + jωLL . (6)
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Figure 2. Equivalent phasor-domain circuit.

Denoting

X1 = ωL1 − 1
ωC1

, X2 = ωL2 − 1
ωC2

, XM = ωLM , XL = ωLL,
→
Z1 = r1 + jX1,

→
Z2 = r2 + jX2,

(7)
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and letting α1 = 0 as the reference angle. Moreover, the secondary-side variables of
the phasor domain equivalent circuit in Figure 2 may be derived from the primary side
variables as ( →

v 2
→
i 2

)
=

 −j
→
Z2
XM

j
→
Z1
→
Z2+X2

M
XM

j 1
XM

−j
→
Z1
XM

( →
v 1
→
i 1

)
. (8)

Representing voltage and current phasors in (5) as

→
v 1 = V1R + jV1I ,

→
v 2 = V2R + jV2I (9)

and
→
i 1 = I1R + jI1I ,

→
i 2 =I2R + jI2I , (10)

respectively, and substituting in (8) yields


V2R
V2I
I2R
I2I

 =



X2
XM

r2
XM

−X1r2+r1X2
XM

− r1r2−X1X2−X2
M

XM

−r2
XM

X2
XM

r1r2−X1X2−X2
M

XM
−X1r2+r1X2

XM

0 −1
XM

X1
XM

r1
XM

1
XM

0 −r1
XM

X1
XM


·


V1R
V1I
I1R
I1I

. (11)

Moreover (cf. (6))
→
ZL = RL + jXL =

→
v 2
→
i 2

, (12)

hence (cf. (5), (9), and (10))

V21 =
√

V2
2R + V2

1I , θ1 = tg−1
(

V1I
V1R

)
,

RL = V2R I2R+V2I I2I
I2
2R+I2

2I
, XL = V2I I2R+V2R I2I

I2
2R+I2

2I
.

(13)

To summarize, the estimation of secondary-side first harmonic components may
be carried out using the corresponding primary-side variables in case all the WPT link
parameters are known.

Furthermore, in case the diode rectifier operates in continuous conduction mode
(CCM), the following relations between the rectifier input and output sides hold [14,32]

VO = π
4 V21 − 2Vd, RO = π2

8 RL (14)

where Vd denotes a forward diode voltage drop.

3. Quadrature Demodulation Essentials

Consider a general periodic non-sinusoidal signal given by

x(t) =
∞

∑
n=1

Xn(t) sin(nωt + ψn(t)), (15)

fed into a phasor detection performed by QD, shown in Figure 3 [27].
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Figure 3. Quadrature demodulator.

The QD consists of two output channels, detecting the in-phase component of x(t)
in the first channel and the quadrature component in the second channel. The channel
outputs are denoted as y1(t) and y2(t), respectively. The signal generating x(t) must be
in the same phase as the sync signal to accurately detect ωt and the QD output channels
described by

→
y (t) =

{
y1(t)

y2(t)
=

{
LPFωC{2 sin(ωt)·x(t)}

LPFωC{2 cos(ωt)·x(t)}
(16)

with LPFωC{·} describing a high-cut filter with a low cut-off frequency such that ωc � ω.
Combining (15) with (16) yields

→
y (t) =

{
y1(t)

y2(t)
=

{
X1(t) cos ψ1(t)

X1(t) sin ψ1(t)
. (17)

Moreover, x1(t) denotes the first harmonic of x(t) by

x1(t) = X1(t) sin(ωt + ψ1(t)) (18)

or
→
x 1(t) = X1(t) cos ψ1(t)
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X1R(t)

+ j X1(t) sin ψ1(t)
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in the phasor domain. Therefore, the quadrature demodulator output yields 

1 1

2 1

( ) ( )
( ) .

( ) ( )
R

I

y t X t
y t

y t X t
=

=  =


 (20)

Moreover, there is 

X1I(t)

= X1R(t) + jX1I(t) (19)

in the phasor domain. Therefore, the quadrature demodulator output yields

→
y (t) =

{
y1(t) = X1R(t)

y2(t) = X1I(t)
. (20)

Moreover, there is

X1(t) =
√

X2
1R(t) + X2

1I(t) =
√

y2
1(t) + y2

2(t)

ψ1 = tg−1
(

X1I(t)
X1R(t)

)
= tg−1

(
y2(t)
y1(t)

) (21)

Consequently, feeding v1(t) and i1(t) (cf. (1) and (2)) into separate QDs with the sync
signal used to drive the inverter switches would detect the real-time values of the primary-
side complex phasor components (cf. (9)) required for the calculation of the corresponding
secondary-side variables (11) and (13) and then of the output WPT link quantities (14), as
shown in Figure 4.
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4. Application to WPT Link Operating at Load-Independent-Voltage-Output
Frequency
4.1. Attaining Load-Independent Voltage Output

The ratio between the inverter output voltage and rectifier input voltage phasors of
the WPT link is derived from Figure 2 (taking (7) into account) as [34]

→
v 2
→
v 1

=
jXM

→
Z1 +

→
Z1
→
Z2+X2

M
→
Z L

. (22)

The load-independent frequencies are derived by forcing the load-impedance-related
component in (22) to zero, i.e.,

→
Z1
→
Z2 + X2

M = 0. (23)

Neglecting the equivalent series resistances r1 and r2 brings (23) to

X1X2 = X2
M. (24)

The two load-independent frequencies ω1 and ω2 are identified by solving (24) using
(4) and (7) as

ω1 =
ωR√
1 + k

, ω2 =
ωR√
1− k

(25)

with ω1 residing below resonance (the capacitive region) and ω2 belonging to the inductive
region above resonance, i.e., ω2 > ωR > ω1. The higher frequency ω2 is typically employed
due to the lower harmonic distortion of the current and the natural zero voltage switching
(ZVS) of inverter switches. In case the coupling coefficient is known, setting the operation
frequency ω to ω1 or ω2 would ideally yield the load-independent output voltage [35]

→
v 2 = j

→
v 1

√
L2

L1
⇒ VO =

√
L2

L1
VI . (26)

However, r1 and r2 are nonzero in practice. Moreover, (14) is only valid in case
the diode rectifier operates in CCM, as mentioned above. In DCM, the linear relation
between the AC and DC side variables of the secondary no longer holds. As shown
in [27], the imaginary part of the diode rectifier input impedance (possessing inductive
characteristics [29] yet susceptible to neglect in CCM) rises significantly in DCM. Moreover,
the primary and secondary currents contain significant harmonic content and the first
harmonic approximation becomes inaccurate. Consequently, ω1 or ω2 are not entirely load-
independent in practice. It was shown in [35] that the output voltage is actually given by

VO ≈


√

L2
L1

VI − π2

8VI

(√
L1
L2

r2 +
√

L2
L1

r1

)
PO, PO ≥ PO,B

C1 + C2·P−0.5
O , PO,MIN < PO ≤ PO,B

(27)
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with PO denoting the power absorbed by RO, PO,B signifying the power level corresponding
to the diode rectifier operation on the bound between CCM and DCM, PO,MIN indicating
the minimum allowed loading of the inductive WPT link [36] and

C1 = VO,B − P−0.5
O,B C2, C2 =

VO,MAX−VO,B

P−0.5
O,MIN−P−0.5

O,B
, (28)

where VO,B and VO,MAX are output voltage levels corresponding to PO,B and PO,MIN, re-
spectively. Obviously, neglecting the equivalent series resistances r1 and r2 reduces the
first row of (27) (corresponding to CCM) to (26). In case the diode rectifier operates in
DCM (second row of (27)), the relation between the output voltage and the load power
becomes highly nonlinear. Nevertheless, the relation between the first and the second rows
of (27) is injective (one-to-one) in this region and hence the DCM-related output voltage
may be estimated from its corresponding CCM counterpart. The relation between the load
resistance value and the load power may be obtained by substituting (27) into

RO[Ω] =
1

PO
V2

O. (29)

4.2. Example

Consider a 1 kW inductive WPT link shown in Figure 1 with parameter values summa-
rized in Table 1 operating at a load-independent-voltage-output frequency in the inductive
region. The resonant and operating frequencies of the WPT link are

ωR = 2π·67, 000
rad

s
, ω = 2π·124, 500

rad
s

, (30)

respectively. The system has been designed for power delivery into an enclosed compart-
ment through a 10 mm thick polyvinyl-chloride plate with near-unity voltage gain, as
shown in Figure 5. The transmitter-side inverter was utilized by a modified Transphorm
TDINV1000P100-KIT 1-kW Inverter GaN Evaluation Platform [37] utilizing 650 V, 150 mΩ
TPH3206PSB gallium-nitride field effect transistors (FET) and driven by silicon labs
SI8273AB1 isolated drivers. The switching signal was generated by a Taxes-Instrument
F28335 digital signal processor. The receiver-side rectifier was performed by Microsemi
APT40DQ120BG ultrafast diodes. The system was fed from an IT61517D ITECH high-
voltage DC power supply and loaded by a Maynuo M9715 DC electronic load operated in
the constant-power mode. A 20 kΩ resistor was constantly connected at the DC output of
the inductive WPT link to realize the minimum allowed loading of PO,MIN = 9 W [36]. An
interested reader may refer to [34–36] for further details. Measured static output voltage
versus load power curve was derived in [34] and is reproduced in Figure 6.

Table 1. System parameter values.

Parameter Value Units

VI 400 V
L1, L2 180 µH

k 0.71 –
r1, r2 1.9 Ω

C1, C2 31.3 nF
CO 660 µF
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The output voltage versus load power relation of the system is then given by

VO[V] ≈
{

394− 0.0165PO, PO ≥ 250W

380 + 145P−0.5
O , 9W < PO ≤ 250W

, (31)

corresponding well with the theoretical predictions in (27) with VO,B = 388 V, VO,MAX = 428 V,
PO,B = 250 W, and PO,MIN = 9 W. However, since the algorithm in Figure 4 assumes CCM at
all times, its output would be given by the first row of (31) for all of the load levels. In order
to include the estimation of VO in DCM, an additional action is applied on the output of
(14) in Figure 4 according to (31) to obtain the final estimate Vest

O as

Vest
O =

 VO, VO ≤ VO,B = 388

380 + 145
(

394−VO
0.016

)−0.5
, VO > VO,B = 388

. (32)

The measured static output voltage versus load power curve was derived in [27] and
is reproduced in Figure 7. According to (29) and (31), there is

RO[Ω] ≈


1

PO
(394− 0.0165PO)

2, PO ≥ 250W

1
PO

(
380 + 145P−0.5

O

)2
, 9W ≤ PO < 250W

. (33)
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Due to the CCM assumption, the output of the algorithm in Figure 4 would be given
by the first row of (32) for all of the load levels. Consequently, in order to estimate the value
of RO in DCM, an additional action is applied on the output of (14) in Figure 4 according to
(33) to obtain the final estimate Rest

O as

Rest
O =

 RO, RO ≤ RO,B = 602

(380+145(1237−1.64RO)−0.5)
2

1237−1.64RO
, RO > RO,B = 602

(34)

with RO,B = V2
O,B/PO,B signifying load resistance corresponding to the diode rectifier

operation on the bound between CCM and DCM.

4.3. Simulations

In order to validate the proposed QD-assisted estimation methodology, the system
was simulated with primary-side variables employed as real-time inputs, according to
Figure 4 with (32) and (34). The real AC-side variables were compared with the predicted
ones (recognized by superscript “est” from now on). The time-domain AC-side waveforms
for different load levels are shown in Figures 8–12, where V1, I1, V2, and I2 denote the
primary and secondary AC-side voltages and currents, respectively; V1h1, I1h1, V2h1,
and I2h1 symbolize the corresponding first harmonic components (obtained by band-
pass filtering); and V11, I11, V21, and I21 with α1, φ1, θ1, and δ1 signify the QD outputs
(estimated phasors) processed using (21). It is evident that QDs accurately estimate the first
harmonic components of primary-side variables and that the proposed algorithm correctly
determines their secondary-side counterparts for all of the load levels. Table 2 summarizes
the overall estimation algorithm performance. It may be concluded that the estimated
values of output voltage and resistance are satisfactory to indicate the correct operation of
the system, which is the major goal of the proposed process.
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Table 2. Simulation results summary.

Power VO Vest
o RO Rest

L

1000 388 387.79 150.5 151.5
500 394.3 394.07 310.9 299.6
200 398.7 399.8 794.8 815
100 402.3 401 1618.4 1620
50 405.2 405.6 3283.7 3272

It should be highlighted that DCM operation (for load levels below 250 W) is well-
reflected by the discontinuous nature of secondary current. Moreover, the diode rectifier
input voltage shape deviates from the pure-square wave due to conduction ceasing regions.
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4.4. Experiments

In order to experimentally validate the proposed methodology, the system in Figure 5
was operated under similar load levels as during simulations. All AC-side and output
DC-side variables were acquired during experiments.

Then, the recorded primary-AC-side waveforms were used in an offline manner to
perform corresponding estimations. The time-domain AC-side waveforms for the different
load levels are shown in Figures 13–17. It is evident that the results match well with the
simulation outcomes. Table 3 and Figures 18 and 19 summarize the overall estimation
algorithm performance.
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Table 3. Experimental results summary.

Power VO Vest
o RO Rest

L

1000 380 379.2 147.4 150
500 384 384.7 294 305
200 389 389.6 786 815
100 393.1 393.6 1546 1475
50 395.9 399 3215 3210
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It should be emphasized that DCM secondary current waveforms are somewhat
different from their simulation counterparts. This is due to the fact that the simulation
model does not include the parasitic capacitances of the coil and the diode bridge since
they do not affect the first harmonic behavior. When parasitics are brought into the model,
the results generally look much more similar—see [36]. Here, the first harmonics are of
interest, and it is shown that the first harmonic approximations are similar in simulations
and experiments. Moreover, switching instants spikes are present, imposed by parasitic
capacitances. Note that the spikes’ magnitudes remain relatively low, hence they do not
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present any visible hazard. As shown in Figure 5, the receiver components are discrete
rather than residing on a single PCB. If these components are brought together, the spikes
are reduced significantly.

5. Conclusions

The quadrature demodulation-based extraction of inductive WPT link transmitter-side
first harmonic phasor voltage and current components was proposed in this work, with the
aim of improving the accuracy of the output voltage and resistance estimation based on
only primary-side information. Such an approach allows for the potential elimination of
both sensors and the feedback communication link. In order to retain the accuracy under
light loading, additional nonlinear correction based on preliminary measurements was
employed, while future work may include the derivation of an analytical relation between
the load power and output voltage. The proposed methodology was successfully applied
to a 400 V, 1 kW inductive WPT link operating at a load-independent-voltage-output
frequency and validated by matching simulation and experimental results.
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validation, O.T.; formal analysis, O.T. and A.K.; investigation, O.T.; resources, A.K.; writing—original
draft preparation, O.T.; writing—review and editing, A.K.; supervision, A.K.; funding acquisition,
A.K. Both authors have read and agreed to the published version of the manuscript.
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