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Abstract: In recent years, convolutional neural networks have been studied in the Fourier domain
for a limited environment, where competitive results can be expected for conventional image clas-
sification tasks in the spatial domain. We present a novel efficient Fourier convolutional neural
network, where a new activation function is used, the additional shift Fourier transformation pro-
cess is eliminated, and the number of learnable parameters is reduced. First, the Phase Rectified
Linear Unit (PhaseReLU) is proposed, which is equivalent to the Rectified Linear Unit (ReLU) in the
spatial domain. Second, in the proposed Fourier network, the shift Fourier transform is removed
since the process is inessential for training. Lastly, we introduce two ways of reducing the number
of weight parameters in the Fourier network. The basic method is to use a three-by-three sized
kernel instead of five-by-five in our proposed Fourier convolutional neural network. We use the
random kernel in our efficient Fourier convolutional neural network, whose standard deviation of
the Gaussian distribution is used as a weight parameter. In other words, since only two scalars for
each imaginary and real component per channel are required, a very small number of parameters is
applied compressively. Therefore, as a result of experimenting in shallow networks, such as LeNet-3
and LeNet-5, our method achieves competitive accuracy with conventional convolutional neural
networks while dramatically reducing the number of parameters. Furthermore, our proposed Fourier
network, using a basic three-by-three kernel, mostly performs with higher accuracy than traditional
convolutional neural networks in shallow and deep neural networks. Our experiments represent that
presented kernel methods have the potential to be applied in all architecture based on convolutional
neural networks.

Keywords: random kernel; Fourier convolutional neural network; image classification

1. Introduction

The convolutional neural network (CNN) is the most basic neural network based on
solving problems of various machine learning tasks, such as classification [1], segmentation,
and denoising in computer vision. One of the problems with CNN training is that the
convolution operation of all convolutional layers requires considerable cost. In particular,
as the size of the image or kernel increases, the amount of computation inevitably increases,
resulting in a latency of learning. One method proposed to solve this problem is to
change the domain through Fourier transform, and construct a CNN in the frequency
domain because the convolution operation in the spatial domain is the same as the point-
wise multiplication in the Fourier domain. In general, point-by-point multiplication is
more uncomplicated and computationally cheaper to compute than convolution. Prior
approaches have focused on improving computational speed to handle the time cost
problem [2–4].

There are two factors in determining computational complexity. One is the time
complexity that was implemented in existing studies, and the other is the memory com-
plexity that was studied for model weight reduction in the spatial domain [5–10]. However,
previous studies on the Fourier domain were not conducted on a method of reducing the
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number of parameters that directly affect the complexity of memory. The efficient use of
memory is a critical issue since unlimited resources are not provided in the real world. A
recent example is an application used in a mobile device that requires a high speed and a
lightweight model. In addition, since the number of GPUs or memory is limited, building
a neural network that can learn sufficiently with a small or few GPU is important. In
addition, CNNs are used in a variety of engineering areas for practical applications, such as
conditions monitoring of marine vehicles [11] and fault diagnosis of the cerebral cortex [12].
Therefore, in order to propose a method to perform deep learning in a limited environment
in further work, we propose the method of reducing the number of parameters of the
convolutional neural network, which is the base of the neural network. Furthermore, pre-
vious studies on CNNs in the Fourier domain have focused on the study of efficient neural
networks for high-speed training, and the problem of reducing the number of parameters
was actively investigated in the spatial domain rather than the Fourier domain; therefore,
the goal is to design an efficient CNN by applying kernel methods with a few parameters.

In previous studies, the implementation and pooling method of the convolutional
layer corresponding to the spatial domain was actively investigated in the Fourier do-
main [13]. While the ReLU-based activation function is known to be effective in the spatial
domain, an appropriate activation function in the Fourier domain has not been established.
The previous approach mainly relies on the approximation of ReLU. However, it is limited
in that it has a huge computational cost, cannot function as a nonlinear operation, and can-
not expect a higher, or the same, accuracy as ReLU in the spatial domain [14–16]. On the
contrary, we present the activation function used in the Fourier domain, which performs
the same operation as ReLU in the spatial domain, and introduces a new Fourier convolu-
tional network that applies a new activation function for the Fourier domain. The novel
activation function in the Fourier domain is built upon the characteristics of the Fourier
transformed image consisting of phase and magnitude, which will be covered in detail in
Section 3.

There are two major studies on weight reduction in the Fourier CNN. The first is
to adjust the kernel size in our proposed Fourier CNN, and the second is to learn the
standard deviation (std.) for the Gaussian distribution by creating a random kernel based
on compression sensing. First, unlike the spatial domain with local information, Fourier
transformed images have global information. In the spatial domain, a large-sized kernel
can be used by finding the location and information of the pixel locally to extract the
characteristics of the image. On the contrary, in the Fourier domain, it is expected that
even a small-sized kernel will be able to sufficiently identify the characteristics of an image
and perform classification tasks by using global information consisting of low- and high-
frequency components. Second, in compression sensing, a random vector is generated by
multiplying the sparse signal by a random matrix of Gaussian distribution to compressively
restore the original signal. According to this theory, it is assumed that using a random filter
can learn scalar values for a random matrix of a fixed Gaussian distribution, and therefore,
by learning a standard for a Gaussian distribution, image classification can be performed
with a few parameters.

In conclusion, the contributions of the paper are listed as follows: we present a new
activation function in the Fourier domain, discard the unnecessary shift in the Fourier
transform process, introduce the novel convolutional neural network, using a small-sized
kernel in the Fourier domain based on our proposed activation function, and investigate an
efficient convolutional neural network based on the random kernel in the Fourier domain
to reduce the number of weight parameters.

2. Related Work

Convolutional neural networks (CNNs) have been used to extract and learn image
features from the deep neural networks in computer vision such as classification, segmen-
tation, etc. [1]. In addition, deep neural networks, such as AlexNet, VGG, DeseNet and
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ResNet [17–20], have been widely developed and have been effectively applied to various
tasks using large datasets, such as ImageNet [20].

However, deep neural network models have a problem that the number of learning
parameters increases as the layer becomes deeper. Therefore, significant memory costs for
learning a model and high computational costs are required.

In particular, it is difficult to apply in a limited environment of mobile devices with
limited hardware resources. As one of the methods to solve this problem, model com-
pression [6,8] has been explored. For example, ShuffleNets are designed to optimize for
the mobile device environment [7]; MobileNet-based models are described to reduce the
number of parameters through depth-wise separable convolution [5,9]; and SqueezeNet
shows similar performance to AlexNet with fewer parameters by reducing the number of
input channels in the 3 × 3 filter and replacing the 3 × 3 filter with the 1 × 1 filter [10].

Other techniques for model compression include pruning [21,22], distillation [23] and
quantization [24]. First, pruning is a method of removing neuron or weights with less
important information [21,22]. Second, distillation refers to a mechanism of transferring
the knowledge of a more extensive ensembled neural network to a relatively small single
neural network in order to solve the inefficient use of memory resources that generally
occurs when a model is ensembled [23]. Third, quantization is a technique of minimizing
the loss of accuracy versus full precision while using a low bit width [24].

However, these methods have a fundamental limitation in that they cannot solve the
time computational problem of convolution of the image and the kernel in the convolutional
layer, which is the stage of learning features of the image. In recent years, to solve the
time–cost problem in a convolutional layer, a CNN in the Fourier domain through Fourier
transform was actively studied, using the theory that convolution in the spatial domain is
equivalent to point-wise multiplication in the Fourier domain [14,16,25–27].

The convolutional layer of the Fourier domain for time complexity has been widely
explored because point-by-point multiplication in the Fourier domain is much faster than
convolution in the spatial domain. Furthermore, one of the leading fast Fourier transform
techniques is based on discrete Fourier transform (DFT). In general, the Cooley–Tukey
algorithm is used for the fast Fourier algorithm. However, training the convolutional
layer in the Fourier domain requires an additional operation—inverse Fourier transform.
Therefore, pooling and activation functions in the frequency domain for fully training the
CNNs in the frequency domain have been studied for many recent years [2–4].

First, truncating the low-frequency components of the Fourier transformed image into
a predetermined size, which are used as a spectral representation and for extracting only
important information, has been proposed as a method of implementing spectral pooling.
However, because the Fourier transform is performed before spectral pooling and the
inverse Fourier transform is used after each pooling, there is an additional computational
cost to implement the iteration. Moreover, the proposed method has not considered the
process of training the convolutional layer in the Fourier domain and has not examined the
problem of computational cost [13]. Another proposed method of pooling is discrete Fourier
transform (DFT) based magnitude pooling. The first component of the Fourier transformed
image is the DC component. DC stands for direct current in electrical engineering, but it
simply refers to the zero frequency or the mean value of the frequencies in the Fourier
domain. The whole process of training is implemented by calculating the magnitude of the
DFT and reducing the resolution to include the first component from the values obtained.
However, the phase information is not considered in the DFT-based pooling method, even
though preserving both the phase and magnitude of the Fourier transformed image is vital
for reconstructing the image after inverse Fourier transform. In addition, using a number
of parameters for creating ensemble networks is difficult to regard as an efficient network
in the frequency domain [28].

Second, suitable activation functions in the Fourier domain have been actively in-
vestigated. Research on the activation function in the Fourier domain is largely divided
into two main directions. One is to roughly estimate the activation function in the Fourier
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domain, which has a shape similar to the activation function in the spatial domain [15,16].
The other is to present a new formula for the Fourier-based activation function, taking
into account the properties of the frequency components [14]. One of the most popular
functions is spectral ReLU (SReLU) [15], which is designed to approximate the conven-
tional ReLU function in terms of a quadratic function. The basic idea of SReLU is to find a
quadratic function that is determined to be roughly similar to ReLU in the spatial domain.
However, calculating the quadratic function for each activation function has considerable
time complexity [29]. Especially when the input size is large or the layer depth is deep,
performing the activation function by SReLU causes a computational burden.

Another approach to implementing the approximation function in the Fourier domain
is to find a linear function similar to the tanh and sigmoid functions in the spatial domain,
using the linearity property of Fourier transform. However, the presented linear functions
cannot perform as nonlinear functions, making it tough to train the complex model.

One of the recent approaches of an activation function is using the property of low-
and high-frequency components in the Fourier domain. For instance, a second harmonics
superposition activation function (2SReLU) has been proposed to overlap the first and
second harmonics, including the DC component of the Fourier transformed image. Since
the first harmonic of the image contains low frequencies and the second harmonic of the
image has some high frequencies, the neural network can be trained at both low and high
frequencies. In addition, because the Fourier transformed image is composed of complex
numbers, it is expressed as a magnitude value of the real and imaginary parts of the image
plus periodic functions, such as cosine and sine functions, respectively. Considering the
composition of the Fourier transformed image function, adding several harmonics causes
the sin wave function to converge to zero, like the negative part of ReLU [14]. According
to Equation (1), F refers to the Fourier transform, each hi is the ith harmonic or interval,
and hyper-parameters alpha and beta are predetermined to 0.7 and 0.3. After multiplying
each alpha and beta for the first and second harmonic weight, respectively, two harmonics
are added as follows:

F(h1)← αF(h1) + βF(h2) (1)

Yet, in terms of measuring the accuracy of the classification task, 2SReLU [14] is poorly
fit to Fourier-based CNNs, compared to the previous activation function, SReLU [15].
Therefore, our novel activation function is focused on the activation function that fits the
Fourier domain, while considering the characteristics of the frequency domain image.

modReLU(z) = ReLU(|z|+ b)eiθ (2)

=

{
(|z|+ b) z

|z| i f |z|+ b ≥ 0,
0 otherwise,

(3)

Recently, several complex value-based activation functions, such as modReLU [30],
zReLU [31], and complex ReLU ( CReLU [32]) were introduced. First, modReLU is defined
as Equation (3), and it refers that the activation is applied when a learnable bias term b is
positive, where z is a complex number and the phase of z is denoted as θz. The equation is
designed to preserve the pre-activated phase information [30].

Second, zReLU is described as Equation (4). The equation refers that zReLU maintains
the input number z when the phase exists in the first quadrant; otherwise, it replaces it
with 0 [31].

zReLU(z) =
{

z i f θz ∈ [0, π/2],
0 otherwise,

(4)

Third, CReLU is the latest complex number-based activation function that obtains
more information than modReLU and zReLU, which is explained as Equation (5).

CReLU(z) = ReLU(<(z)) + iReLU(=(z)). (5)
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Assuming that the positive and negative values of the complex-valued image are rep-
resented in the four quadrants, CReLU has the advantage that information can be obtained
from the remaining three quadrants, except when both real and imaginary components are
less than 0 since CReLU applies ReLU to the real and imaginary components, respectively.
On the other hand, in the case of modReLU, due to the learning bias term b, a circle with a
radius of length b is inactive, and the outside of the circle is active. zReLU is active only
when the input phase is in the first quadrant.

Furthermore, Fourier-based CNNs were researched to complete training entirely in
the frequency domain before entering through fully connected layers [25–27] to eliminate
additional computations when performing inverse Fourier transform after applying activa-
tion [16] or pooling layers [15,33]. However, the previous training method of CNNs within
the Fourier domain has several limitations. First, the activation function of the Fourier
domain corresponding to ReLU in the conventional CNN in the spatial domain has not yet
been explicitly described [25–27,33]. Second, the existing research on reducing memory
cost in the Fourier domain was not conducted in the entire Fourier domain. In addition,
the previously presented tanh-based activation function in the spectral domain performs
on a different principal from ReLU in conventional CNN [33]. Third, earlier studies on
memory cost only considered zero sparsity, using model compression. However, applying
a kernel with a small number of parameters can be another efficient training process and
has the advantage that it can be applied to various CNNs, regardless of the architecture,
without being limited to a compressed model. Therefore, we intend to design an efficient
CNN in the Fourier domain by reducing the number of parameters, using different kernel
methods that directly affect energy reduction in the memory aspect.

3. Method
3.1. Representation of Random Kernel
3.1.1. Compressed Sensing

Compressed sensing was used to reconstruct original signals and images with a small
number of samples, and was developed from traditional Shannon–Nyquist sampling to
convert an analog signal to a digital signal. The Shannon–Nyquist theorem is defined as
the original signal being taken at least twice as much as the highest frequency samples.
In other words, reconstruction is available only when sampling is acquired by satisfying the
Nyquist sampling rate. Otherwise, it is not easy to restore the original data since aliasing
occurs. In general, data obtained from nature are measured with a device, such as an
analog-to-digital converter (ADC), to convert the data from nature to digital. Only a few
data are extracted, as the data scan speed can be slow, or the machine can be expensive.

On the other hand, samples in limited environments can be reconstructed through
compression detection with samples that are less than the Nyquist sampling rate [34].
The most basic purpose of this theory is to compress and sample the model by converting
the under-determined system into an over-determined system, using sparsity. In general,
the scarcity of data is found by some raw data with a small amount of information, such as
sound, video, and image. In addition, sparse signals can be measured when the original
data are transferred to a specific domain. According to this principle, when the original
signal to be restored is x and the measured signal is Y, the signal processing of compression
sensing can be defined as shown in Equation (6) [34].

Y = φx (6)

As shown in Equation (6), x is a signal vector of size N × 1, and Y is a signal vector
of size M× 1. According to the theory of compression sensing, the condition of N ≤ M
must be satisfied. Additionally, M can be defined as a much smaller amount of data
than N. The main point of Equation (6) is to find the M-by-N matrix to transform the
under-determined system into an over-determined one. The measurement matrix φ, such
as an ADC device, is generally determined by a random distribution, such as Gaussian [35].
In addition, the original signal x can be expressed as a product of a sparse signal and a
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sensing matrix, as shown in Equation (7), where s is a sparse vector of size N × 1, and ψ is
a matrix of size N × N.

x = ψs (7)

In other words, Equation (7) refers that s is the coefficient on a ψ basis. Y is newly
summarized as shown in Equation (10) by Equations (8) and (9). In other words, Y can
be expressed as the product of Θ, which is a sensing matrix of size M× N, and a sparse
vector s.

Y = φx (8)

= φψs (9)

= Θs (10)

The property of Θ, a sensing matrix, which is also called a reconstruction matrix, is
determined by the definition of the restricted isometry property (RIP) of Θ, and RIP is
expressed by Equation (11).

(1− δI)‖s‖2
2 ≤ ‖Θs‖2

2 ≤ (1 + δI)‖s‖2
2 (11)

The isometry constant δI(I > 0) in Equation (11) is the smallest constant value, and a
suitable sensing matrix can be acquired because sparse signal s is almost preserved when
δI is near zero, and the left and right terms of the two inequalities approach each other.
By finding I that satisfies these conditions, we can obtain a suitable sensing matrix that
can be restored. In particular, Θ should be a random sensing matrix for satisfying the
RIP property; therefore, it is important to have a randomly distributed matrix for Θ [34].
The reconstruction process of compressed sensing is shown as Figure 1, which is inspired
by [34]. According to Figure 1, the measurement vector Y is a vector of size M× 1, which is
the result of the product of the M× N measurement matrix φ and N × 1 original signal x,
where M ≤ N. The original signal x can also be represented by the product of the N × N
random representation matrix and N × 1 sparse vector s. According to these two formulas,
the Y vector can be expressed as the multiplication of the M× N random matrix Θ (= φψ)
and the N × 1 sized sparse vector s.

= x = x

= x x = x

Measurement 

Vector (Y)
Measurement 

Matrix (𝜙)

Original Signal 

(𝑥)
Original Signal 

(𝑥)

Representation 

Matrix (𝜓)

Sparse 

Vector (𝑠)

Measurement 

Vector (Y)

Random Matrix 

(Θ)

Sparse 

Vector (𝑠)
Original Signal 

(𝑥)

Representation 

Matrix (𝜓)

Measurement 

Matrix (𝜙)

N

1

1

M

N

M

N

N N

1

Figure 1. The reconstruction process of the interest signal x in compressed sensing. The purpose of
reconstruction is to obtain a measurement vector Y using the measurement matrix and the original
signal. Calculating the top of the figure at once can be explained as shown in the figure below.

3.1.2. Random Kernel

The traditional method of learning an image classification task is to train a neural
network through convolutional neural networks (CNNs) in the spatial domain. Within a
large category, CNNs are divided into convolutional layers for learning the features of
an image, and a classifier determines the classes of images called fully connected layers.
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The convolutional layer is formed by the convolutional operation of an input image and a
kernel composed of learnable parameters. The convolutional layer based on the existing
LeNet-5 model [1] proposes a kernel of 5× 5 size; for the AlexNet model [20], kernels of
various sizes, such as 11× 11, 5× 5, and 3× 3, are presented. In other words, the LeNet-
5 model requires 25 trainable parameters per channel, and the AlexNet model needs
121, 25, or 9 parameters, depending on the kernel size. Since the number of learnable
parameters increases in proportion to the size of the kernel, and many weight parameters
affect the expensive memory cost, various methods of reducing the number of parameters
in CNN-based models are actively investigated [5,9,10,21–24].

Many architectures have been proposed to reduce the number of parameters of CNNs
in the spatial domain, but there is a limitation, as the number of parameters used in the con-
volutional layer is different depending on the architecture of each proposed model [5,9,10].
For example, if the k is the size of the kernel, considering that the number of parameters is
determined by (batch size) × (the number of kernel) × (the number of input channel) ×
(Kh × Kw), the number of weight parameters is primarily affected by the size, and the num-
ber of parameters can increase rapidly as the kernel grows. Therefore, we propose a random
kernel similar to a random vector that reconstructs the original signal by multiplying a
random matrix and a sparse vector in compressed sensing. Our random kernel sets the
kernel size, one of the main factors determining the number of parameters, to be the same
for all architectures so that the same performance as the conventional CNN kernel can be
achieved with fewer parameters. As shown at the top of Figure 2, conventional kernels
have (kernel height x kernel width) number of parameters, for example, the sizes of 3× 3,
5× 5 and 7× 7 kernels, in turn, have 9, 25 and 49 learnable parameters, respectively. On the
contrary, our proposed random kernel only has one learnable parameter denoted as α,
regardless of the size of the kernel; therefore, all 3× 3, 5× 5 and 7× 7 sized kernels have
the same number of parameters in a single channel, according to the bottom of Figure 2.
In addition, the random kernel consists of the product of a single trainable scalar and
a untrainable fixed random matrix initialized with a Gaussian distribution. Therefore,
the number of parameters of the random kernel can be expressed as (batch size) × (the
number of kernels) × (the number of input channel) × (α). In other words, the learning
parameter for each convolutional layer is determined by the number of kernels and the
number of input channels. In conclusion, we can expect the advantage of the random
kernel to be as follows: first, a random kernel reduces the number of parameters expo-
nentially regardless of the size of the kernel or the depth of the neural network’s layers;
second, the random kernel can be applied to any types of CNN based models; third, we
can potentially expect this to be a method for a light-weight model, performing with cheap
memory costs.

3.2. Fourier Convolutional Neural Network

The convolutional layer of convolution-based neural network in the spatial domain is
configured to learn the features of an image through a convolution operation between an
image and a kernel. However, the convolution operation has a disadvantage in that the
calculation is complicated because the input image is multiplied and added by rolling a
window as large as the kernel size.

When the image in the spatial domain is transformed into the frequency domain
through the Fourier transform, the computational cost is reduced because a simple operator
called point-wise multiplication is used instead of the convolution operation. Assuming
that functions f and g of x are given in the spatial domain, and Fourier transformed F and
G are the functions of X in the frequency domain, Equation (12) is described as follows:

f (x) ∗ g(x) F→ F(X)× G(X) (12)

For example, given input x ∈ <h×w and kernel k ∈ <k×l in the spatial domain, the time
complexity is expected as O(hwkl). On the other hand, F(x) ∈ CM×N with fast Fourier
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transform incurs a computation cost of O(mnlog(mn)). Recently, in order to train image
classification tasks in the Fourier domain, finding an adequate activation function [14,15,36]
and sub-sampling operation [13] in the Fourier domain equivalent to ReLU or max-pooling
in the spatial domain was widely explored. However, one of the limitations of the existing
studies on Fourier-based activation functions is that the activation functions do not exactly
match ReLU.

(a) Conventional kernels

x 𝛼

x 𝛼

x 𝛼

(b) Random kernels

3 x 3 Kernel size5 x 5 7 x 7

alpha

(scalar)

Figure 2. Comparison of the number of parameters between the conventional and our proposed ran-
dom kernel in the spatial domain. Blue: trainable weight parameters. Gray: non-trainable weight pa-
rameters. (a) Conventional kernels. (b) Random kernels.

Therefore, this section introduces a Fourier-based activation function that performs the
same behavior as ReLU in the spatial domain, and presents a convolutional neural network
for fully training in the Fourier domain. Moreover, we remove unnecessary computations
during the process of reducing additional computational costs and Fourier transform.
First, low- and high-frequency components of all Fourier-transformed images are used
without shift Fourier transform operation. Second, the process to Fourier transform the
kernel, which is used in the traditional convolutional neural network, is omitted by using
the property that the Fourier-transformed Gaussian is also Gaussian. Lastly, by applying
the random kernel discussed in Section 3.1.2 to a Fourier-based convolutional neural
network, we aim to build an effective convolutional neural network with similar accuracy
to conventional spatial convolutional neural networks with few parameters.

3.2.1. Fourier Convolutional Layer

Given any number x ∈ <, Fourier transform f : < F→ C is defined as in Equation (13).

F (ξ) =
∫ ∞

−∞
f (x)e−2πixξ dx (13)

If the input image in a limited range of (channel) × (height) × (width) is 2D-Fourier
transformed, where ∀H ∈ {0, ..., M− 1}, ∀W ∈ {0, ..., N − 1}, F(x) ∈ CM×N can be ex-
pressed as in Equation (14).

F (x)H×W =
1√
MN

M−1

∑
m=0

N−1

∑
n=0

xmne−2πi(mH
M + nW

N ) (14)

The standard practice has rearranged the frequency components in previous work
by shifting the low-frequency portion to the image center as shown on the right side
of Figure 3. The first component of the Fourier transformed image represents the zero
frequency or the DC component representing the mean in the frequency domain, which is
also relocated to the center of the image. Unlike the traditional method, we eliminate the
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additional operation by removing the shift operation. Without the Fourier shift operation,
the input image is first channel-wise Fourier transformed, and each low-frequency and
high-frequency component is at the edge and center of the image, as described in the center
image of Figure 3. In addition, the DC component is located at the top left corner.

(a) Image (b) FT non-shift (c) FT shift

Figure 3. (a) Original gray-scale image. (b) Our proposed Fourier transformed image without shift
operation. (c) Traditional Fourier transformed image with shift operation.

The converted input F(x) performs an element-wise multiplication for each chan-
nel with the kernel F(k) ∈ CM×N of the same size as the input x. Given input image
x ∈ Cheight×width and kernel k ∈ <k×l , the most basic technique of the kernel’s Fourier
transform is to apply the Fourier transform after zero-padding at the right and bottom of
the kernel with size (width—l) and (height—k), respectively.

Our proposed Gaussian random kernel fulfills two purposes. The first is to use
a random kernel that learns only one alpha parameter per channel, as in the method
introduced in Section 3.1.2. The second is to reduce the computation cost by removing the
two steps of zero-padding and Fourier transform, using the property that the Gaussian
function is also a Gaussian function even after the Fourier transform. Our proposed random
kernel is the same as multiplying the Gaussian distributed random matrix by the alpha
representing the distribution scale, so it learns the standard deviation (std.) of the Gaussian
distribution in the Fourier domain.

Since the Fourier transformed image F (x) is complex-valued, the random kernel
K should also be initialized to a complex number of the same size. In the case of a
convolutional layer based on a random kernel as shown in Figure 4, each real and imaginary
component of the random matrix is initialized to the Gaussian distribution, respectively.
In practice, however, point-wise multiplication in complex-valued domain is performed as
Equation (16). According to the multiplication of the rectangular form of complex number,
given F (x) = A + Bi and K = C + Di (F (x) ∈ C,K∈ C) is defined as follows:

In addition, standard deviation α is initialized to α = α< + α=i for complex-valued
scalar multiplication for the result of the product of F (x) and K. As illustrated in Figure 4,
our presenting convolutional layer based on the random kernel is expressed as the follow-
ing Equation (15).

(F (I)× K)× α = α<(AC− BD) + α=(AD + BC)i (15)

Practically, our proposed method of implementing the convolutional layer in the
Fourier domain is divided in two ways, as shown in Figure 4. One is the random kernel-
based convolutional layer, and the other is the convolutional layer with the 3× 3 sized
kernel regardless of the size of the conventional kernel used for the convolutional layer in
the spatial domain.

F (x)× K = (AC− BD) + (AD + BC)i (16)

3.2.2. Fourier Activation Function: PhaseReLU

The standard convolutional neural networks (CNNs) convert the affine function to
nonlinear after the activation function, and thus help to construct more complex and vari-
ous types of models by increasing the learning capacity. The most stable and widely used
activation function in the spatial domain is the ReLU function [37]. However, the corre-
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sponding activation function in the Fourier domain is not officially established. In particu-
lar, as a result of comparing the officially proposed complex-valued activation function,
CReLU, zReLU with ReLU for the baseline and the state-of-the-art Fourier activation func-
tion 2SReLU, they all perform poorly. Therefore, we propose a new Fourier-transformed
activation function, PhaseReLU—suitable to substitute for ReLU.
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Figure 4. Reconstruction images of our proposed Fourier convolutional layer with a 3× 3 sized
kernel and efficient Fourier convolutional layer based on random kernel. (a) Fourier convolutional
layer. (b) Efficient Fourier convolutional layer. The input gray-scale image denoted as I and K
indicates kernel.

The Fourier transformed image z can be expressed in rectangular form and polar form,
described in Equations (17) and (18), respectively.

z = a + bi (17)

z = |z|(cos φ + i sin φ) = |z|eiφ (18)

In addition, the Fourier transformed image x is composed of phase ∠x or φ, and mag-
nitude |x|. Let us assume that φ is a phase of the image; then, each a ∈ < and b ∈ = is
also expressed as cos φ and sin φ, respectively. According to Equations (19) and (20), each
component of the magnitude and phase in the polar form is described as follows:

|z| =
√

a2 + b2 (19)

φ = tan−1
(

b
a

)
(20)

Since the magnitude is equal to the square root of multiplying real and imaginary com-
ponents, it is always positive. In the case of the phase, which is denoted as φz ∈ (−π, π], it
can be negative or positive, depending on the given complex value. Using these properties,
we first take the feature map received from the convolutional layer, and decompose it into
the phase and magnitude. We only consider when the phase is φz ∈ (−π

2 , π
2 ], so we can

expect z > 0. Therefore, same as the ReLU, the original values are preserved when the
given complex value is positive and the values are replaced with zeros for the negative.
In order to pass the activation map to the pooling process, the phase and magnitude should
be recomposed after the previous step. Our newly proposed activation function in the
frequency domain, PhaseReLU, is proposed in Equation (21). Our implementation of
comparing the accuracy for the PhaseReLU to the existing activation functions, such as
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CReLU, zReLU, 2SReLU and baseline ReLU with Fashion-MNIST datasets on LeNet-3, is
shown in Table 1. As a result, PhaseReLu can replace ReLU, as it can perform classification
tasks better than baseline ReLU and other previous activation functions.

PhaseReLU(z) = |z|(cos(ReLU(φz)) + i sin(ReLU(φz))) (21)

Table 1. The accuracy (%) of PhaseReLU and other existing complex-valued activation functions on
Fashion-MNIST from LeNet-3.

ReLU [37] CReLU [32] zReLU [31] 2SReLU [14] PhaseReLU

Acc 90.550 89.049 84.931 89.926 90.843

One of the crucial processes of convolutional neural networks is down-sampling,
which reduces the image resolution to prevent over-fitting and latency of the model.
For example, the max-pooling layer and average-pooling layer are widely used. The most
famous pooling method in the Fourier domain, presented as the substitute of max-pooling,
is spectral pooling [13]. Spectral pooling is explained as cropping the low-frequency
components, the center of the image, without losing any considerable image information
values. However, because we omit the shift operation, the image is truncated at four edges.
In order to implement our down-sampling the image, the cyclic shifting theorem introduced
in the FFTW library [38] is considered. Our proposed sub-sampling spectral pooling is
represented in two steps. First, the kernel is padded and expanded with the input size.
Second, the kernel is shifted and wraps around the image in two dimensions considering
the kernel cases. According to Figure 5, when the activation map is denoted as I and the
expected size of the kernel is k× k, the spectral non-shift pooling method is described in
two ways, depending on whether the kernel size is divisible by four. For example, given
k4×4, which can be divided by four (8 mod 4 = 0), and k6×6, which cannot divided by four
(6 mod 4 = 1), they are represented as following the top of Figure 5 and the bottom of
Figure 5, respectively. Our proposed low-frequency cropping method without using the
cyclic concept is shown on the right side of Figure 5.

(a) Cyclic Shift Pooling

(b) Proposed Non-shift Pooling

(c) Proposed Low Frequency 

Crop

𝐼8𝑋8 → 𝐼4𝑋4 𝐼6𝑋6 → 𝐼3𝑋3 𝐼224𝑋224 → 𝐼112𝑋112

Figure 5. Comparison between standard cyclic shift pooling and our proposed non-shift pooling.
(a) Cyclic pooling method. (b) Non-shift pooling method. The left and right sides of the figure for
(a,b) describe a kernel divisible by 4 (e.g., size 8× 8) and a kernel size not divisible by 4 (e.g., size
4× 4). (c) Our proposed non-shift pooling method. The image is one example of a free download
that is 224 × 224 in size and down-sampled into 112× 112.
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3.2.3. Architecture of Efficient Fourier CNN

As shown in Figure 6, let us assume that Xi, ki, Ri and α<ior=i represent the ith spatial
input, spatial kernel, random kernel and scalar, respectively. Each F(y)i and F(y′)i for ith
layer refers to the output of a Fourier CNN and an efficient Fourier CNN, respectively.
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Figure 6. Architectures of presented convolutional neural networks (CNNs) for reducing the number
of parameters. (a) Proposed Fourier CNN. (b) Proposed efficient Fourier CNN.

Both architectures of the Fourier CNN and efficient Fourier CNN are entirely trained
in the frequency domain but slightly differ in applying the kernel. First, the kernel of the
Fourier CNN is filled with zeros to fit the spatial domain to the same size as the input
image size. Compared to conventional CNNs in the spatial domain, Fourier CNNs are set
up with a 3× 3 size kernel for a given CNN-based model, requiring only nine parameters
per channel. Then, the Fourier transformed kernel is multiplied by the Fourier transformed
image. However, there are concerns that the number of parameters of a Fourier CNN can
increase dramatically as the number of layers deepens. Thus, we propose another method,
an efficient Fourier CNN, based on a compressed random kernel that exponentially reduces
the parameters. The bottom of Figure 6 shows that the efficient Fourier CNN starts from
the multiplication of the random kernel generated by Gaussian distribution and the Fourier
transformed image. For an output feature map of complex values, the scale of a Gaussian
distribution in the complex domain is expected to be learned by multiplying the scalar or
alpha values for real and imaginary numbers, respectively.

After the convolutional layer is performed, the Fourier-based activation function,
PhaseReLU (or PReLU) is implemented. Since no cyclic shift theorem is applied to the
pooling method in the frequency domain, the activation map is conducted with non-shift
spectral pooling (FPool). Calculating the magnitude (Mag) containing important image
information before reaching the fully connected layer (FC layer) converts the values to
real numbers rather than complex numbers. Finally, the FC layer is implemented after
vectorization to classify a given image.

To summarize, compared with prior studies on convolutional neural networks in the
frequency domain, the proposed methods have three main differences. First, we focus on
the light-weighting of the CNN-based model in the frequency domain. Second, we intro-
duce a method to entirely implement CNNs in the Fourier domain without inverse Fourier
transform. Third, we present a competitive activation function in the frequency domain.

4. Experimental Results

We evaluate our proposed methods, Fourier CNN (F-CNN) and efficient Fourier CNN
(EF-CNN), in the frequency domain on various gray-scale image datasets for shallow
neural networks and deep neural networks. We convert color image datasets, such as
CIFAR-10, CIFAR-100 and SVHN, to gray to set all datasets as gray-scale images. We also
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measure the accuracy versus the number of parameters for our two methods and a baseline
method. The baseline method is a traditional convolutional neural network (CNN) in the
spatial domain.

4.1. Analysis of Fourier CNN

We evaluate Fourier CNN for shallow networks, especially for LeNet-3 and LeNet-5.
In order to reduce the number of parameters, we conduct an experiment using a 3× 3 size
kernel in the Fourier domain instead of the traditional 5× 5 sized kernel in the spatial
domain. All results of the model accuracy are the average of the last ten epochs over ten
different files.

4.1.1. Shallow Fourier Neural Network

We first test the Fourier CNN method on a 28× 28 size MNIST dataset consisting of
10 classes with 60,000 training images and 10,000 test images. We examine our method on
the Fashion-MNIST dataset of size 28× 28, which has the same number of training and
validation sets as MNIST, consisting of 10 classes, but is more complex to learn.

To observe the results of training the presented method on larger gray-scale images,
we evaluate 32 × 32 gray-scale image datasets, such as CIFAR-10 (G), CIFAR-100 (G),
and SVHN(G). The CIFAR-based dataset and SVHN consist of 50,000 and 73,257 for
training images and 10,000 and 26,032 for test images, respectively. There are three primary
purposes for observing these datasets. First, since these are more complex than the original
gray-scale images, we make sure that our method is well trained on complex images.
Second, we check how our method is validated for more classes through the CIFAR-100
(G), which consists of 100 classes. Third, we examine the applicability of our proposed
method for real-world data with SVHN, a real-world numerical data set.

We train Fourier CNN on LeNet-3 and LeNet-5 with one GPU at 70 epochs with a
mini-batch size of 128. The model is optimized by stochastic gradient descent (SGD), using
a double sigmoid function with the learning rates 0.001, 0.01, and 1 × 10−5 for the initial,
top and final, respectively. We also adopt the weight decay of 0.0005 and the momentum of
0.9 for SGD. The weight parameters of kernels are initialized by a normal distribution with
a mean of 0 and a std. of 1.

We compare the accuracy and the parameter quantities of existing CNNs, fully con-
nected layer (FC) and our Fourier CNN (F-CNN), for LeNet-3 in Table 2 and LeNet-5 in
Table 3 on given various datasets. To verify the performance of the convolutional layer of
the CNN-based model, we also conduct an experiment on a simple fully connected layer to
which the convolutional layer is not applied. According to Tables 2 and 3, we confirm that
the existing CNN and F-CNN have higher accuracy than the FC-based method for both
LeNet-3 and LeNet-5 on all datasets; therefore, we argue that the convolutional layer that
extracts image features plays an important role in increasing the accuracy.

We further observe the accuracy per the number of parameters of CNN in the spatial
domain and our method, F-CNN. Table 2 shows that our F-CNN on LeNet-3 mostly
outperforms CNN and implements similar results in all datasets, despite using a kernel
of size 3× 3 to reduce 1654 parameters. In particular, we find that the accuracy of our
F-CNN is improved by 0.1%, 0.4% and 1.5% on Fashion-MNIST, CIFAR-100(G) and SVHN,
respectively. We have further experiments on LeNet-5, as shown in Table 3, where F-CNN
also leads to competitive accuracy with CNN in most of the datasets. For example, each
Fashion-MNIST, CIFAR-10(G), and CIFAR-100(G) improve accuracy by about 0.1%, 0.4%
and 1.4%, respectively, and SVHN shows the same results as the existing method.

To summarize, our presented Fourier CNN shows higher or competitive results on an
image classification task with a small number of weight parameters in the shallow network.

4.1.2. Deep Fourier Neural Networks: VGG09, VGG11 and VGG13

We conduct several experiments for deep neural networks, such as VGG-09, VGG-11
and VGG-13, on the same dataset conducted in the shallow networks. In order to prevent
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over-fitting in the deep neural network and check the performance of our method, we
resize the image resolution to double the size. For instance, MNIST and Fashion-MNIST
are expanded to 56× 56, and CIFAR-10, CIFAR-100, and SVHN are resized to 64× 64.
The hyperparameters and experimental environment settings are applied the same as for
the shallow network, except for 100 epochs.

Table 2. Accuracy (%) of LeNet-3 on gray-scale image datasets.

Dataset

Method

CNN FC F-CNN

Acc. Params Acc. Params Acc. Params

MNIST 98.8 107,786 96.8 66,790 98.6 106,132
FashionMNIST 90.7 107,786 87.4 66,790 90.8 106,132
CIFAR-10(G) 70.4 136,586 34.2 94,600 69.9 134,932

CIFAR-100(G) 66.9 144,236 34.1 94,600 67.3 142,582
SVHN(G) 82.8 136,586 72.3 86,950 84.3 134,932

Table 3. Accuracy (%) of LeNet-5 on gray-scale image datasets.

Dataset

Method

CNN FC F-CNN

Acc. Params Acc. Params Acc. Params

MNIST 98.8 545,546 97.6 105,214 98.6 513,052
FashionMNIST 90.6 545,546 88.0 105,214 90.7 513,052
CIFAR-10(G) 62.0 696,746 40.8 134,014 62.4 664,252

CIFAR-100(G) 63.6 704,396 40.3 141,664 65.0 671,902
SVHN(G) 88.4 696,746 80.3 134,014 88.4 664,252

Table 4 shows the accuracy results of CNN and Fourier CNN for VGG-09 and VGG-11.
Overall, in the VGG-09 model, F-CNN shows almost the same accuracy rate as traditional
CNN, and in VGG-11, it is improved by 0.1% and 0.2% in FashionMNIST and SVHN,
respectively. We further test on the VGG-13 model as shown in Table 5. As a result, our
F-CNN has almost the same accuracy as CNN in the spatial domain for all datasets and
shows an improvement of 0.9% on CIFAR-100. In conclusion, we argue that CNN in the
spatial domain can be replaced with our proposed method, F-CNN, in the Fourier domain.

Table 4. Accuracy (%) of VGG-09 and VGG-11 on gray-scale image datasets.

Model

VGG-09 VGG-11

Dataset Method CNN F-CNN CNN F-CNN

MNIST 99.3 99.3 99.1 99.1
FashionMNIST 91.3 91.0 91.2 91.3
CIFAR-10(G) 77.4 77.0 79.1 79.1

CIFAR-100(G) 77.4 77.4 79.1 79.1
SVHN 92.8 92.8 92.6 92.8

4.2. Analysis of Efficient Fourier CNN

According to the previous observation, we attempt to reduce weight by converting
the 5× 5 kernel size to a 3× 3 kernel size in the shallow network. For further work, we test
our efficient Fourier CNN (EF-CNN) in shallow networks with even fewer parameters in
order to check whether EF-CNN is competitive to conventional CNN. We train our method
on a model with epoch 70, and we use the same hyper-parameters as in Section 4.1.1. In the
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weight initialization, the imaginary part random filter and the real part random filter are
initialized to the normal distribution, respectively, and the scalars for real and imaginary
are initialized to 1.

Table 5. Accuracy (%) of VGG-13 on gray-scale image datasets.

Dataset
Method

CNN F-CNN

MNIST 99.2 99.2
FashionMNIST 91.3 91.3
CIFAR-10(G) 81.0 81.0

CIFAR-100(G) 81.2 82.1
SVHN 93.4 93.4

4.2.1. Accuracy

Tables 6 and 7 show the results of the experiments on the CNN, FCNN, and EF-CNN
models on gray-scale image datasets from LeNet-3 and LeNet-5, respectively. The advan-
tage of the efficient Fourier CNN is verified to achieve very similar performance to CNN
with fewer parameters in shallow networks.

Table 6. Efficient Fourier CNN accuracy (%) of LeNet-3 on gray-scale datasets.

Dataset
Method

CNN F-CNN EF-CNN

MNIST 98.8 98.6 98.6
FashionMNIST 90.7 90.8 90.5
CIFAR-10(G) 70.4 69.9 69.9

CIFAR-100(G) 66.9 67.3 66.8
SVHN 83.8 84.3 83.8

Table 7. Efficient Fourier CNN accuracy (%) of LeNet-5 on gray-scale datasets.

Dataset
Method

CNN F-CNN EF-CNN

MNIST 98.8 98.6 98.6
FashionMNIST 90.6 90.7 90.6
CIFAR-10(G) 62.0 62.4 62.0

CIFAR-100(G) 63.6 65.0 63.2
SVHN 88.4 88.4 88.4

4.2.2. The Measurement on a Change in the Number of Parameters

To summarize, one of our proposed methods, F-CNN, uses a 3× 3 kernel size to
perform image classification with a high accuracy rate, applying a small number of pa-
rameters in shallow networks. The other method is EF-CNN, which uses a random filter
instead of the conventional Fourier kernel in order to learn real and imaginary scalars for
each channel.

As shown in Table 8, we compare the number of parameters when training a 28× 28
sized image dataset in LeNet-5. First, in the case of Fourier CNN, the number of trainable
parameters in the first convolutional layer (Conv1), Conv2, and Conv3 are reduced by
about ×0.34, ×0.35, and ×0.35, respectively. In addition, the total trainable parameter in
LeNet-5 is reduced to ×0.94.
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Table 8. The number of parameters of LeNet-5 on the Fashion-MNIST dataset for each CNN, Fourier
CNN and efficient FCNN. TP: trainable parameters. Non-TP: non-trainable parameters.

Architecture Layer Parameter Type

Method

CNN F-CNN EF-CNN

Params Ratio Params Ratio Params Ratio

Conv1 TP(#) 156 ×1 54 ×0.34 12 ×0.07
Non-TP(#) - - - - 9408 -

Conv2 TP(#) 2416 ×1 864 ×0.35 192 ×0.07
Non-TP(#) - - - - 37,632 -

Conv3 TP(#) 48,120 ×1 17,280 ×0.35 3840 ×0.07
Non-TP(#) - - - - 188,160 -

FC1 TP(#) 494,004 494,004 494,004

FC2 TP(#) 850 850 850

Total TP(#) 545,546 ×1 513,052 ×0.94 498,898 ×0.91

According to our experiment on EF-CNN, all three layers are reduced to ×0.07. There-
fore, we notice that a total of ×0.91 trainable parameters are trained for our method.
The result of Table 8 shows that our proposed methods can dramatically reduce the num-
ber of weight parameters in convolutional layers. Since the convolutional layer deepens
for state-of-the-art deep neural networks, which require a massive amount of trainable
parameters, our proposed methods have the potential to efficiently train with fewer pa-
rameters. We also observe the comparison of the total number of trainable parameters for
the shallow network, according to Table 9. Our final statement about the experiments of
F-CNN and EF-CNN is that instead of traditional CNNs in spatial domains where more
parameters are required, these two methods can become future replacements for training
image classification tasks.

Table 9. The total number of trainable parameters for CNN, Fourier CNN and efficient Fourier CNN
based on random kernel.

Dataset Method

Model

LeNet-3 LeNet-5

Params Ratio Params Ratio

MNIST
CNN 107,786 ×1 545,546 ×1

F-CNN 106,132 ×0.98 513,052 ×0.94
EF-CNN 105,418 ×0.97 498,898 ×0.91

Fashion-MNIST
CNN 107,786 ×1 545,546 ×1

F-CNN 106,132 ×0.98 513,052 ×0.94
EF-CNN 105,418 ×0.97 498,898 ×0.91

CIFAR-10
CNN 136,586 ×1 696,746 ×1

F-CNN 134,932 ×0.98 664,252 ×0.95
EF-CNN 134,218 ×0.98 650,098 ×0.93

CIFAR-100
CNN 144,236 ×1 704,396 ×1

F-CNN 142,582 ×0.98 671,902 ×0.95
EF-CNN 141,868 ×0.98 657,748 ×0.93

SVHN
CNN 136,586 ×1 696,746 ×1

F-CNN 134,932 ×0.98 664,252 ×0.95
EF-CNN 134,218 ×0.98 650,098 ×0.93
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5. Discussion

In this work, we demonstrated that CNNs in the Fourier domain, using our presented
activation function, PhaseReLU, and random kernel, have the potential for computational
efficiency, especially in reducing the number of parameters.

One possible further task is to extend the image to the video task and consider different
types of CNNs, such as LSTMs and RNNs. Other types of transforms, such as wavelets
and DCT, also can be candidates. In addition, computational costs and resources need to be
considered in future work, which can be addressed by importing custom libraries instead
of using our manually coded system.

6. Conclusions

We have transformed the convolutional neural network in the spatial domain to the
frequency domain by Fourier transformation to perform image classification in reducing
parameters efficiently. We also have introduced the newly proposed PhaseReLU, which is
equivalent to ReLU in the spatial domain. In addition, we have removed the unnecessary
step of the shift theorem operation used in the Fourier domain, thereby opening the
possibility of preventing latency in the future. In order to implement the CNN weight
parameters reduction technique in the Fourier domain, the Fourier CNN was always
trained with a kernel size of 3 × 3 in the Fourier domain, regardless of the kernel size
in the spatial domain. It was proved through the experiment of shallow networks and
deep layered networks, and it showed competitive performance. Furthermore, the efficient
Fourier CNN was newly proposed by applying a random kernel, using the principle of
compression sensing to Fourier CNN. In the previous experiment, we obtained an accuracy
very similar to that of the existing shallow network in the spatial domain, even if the
simple scalar was learned. In conclusion, we have proposed a method to train image
classification with a small number of parameters through the convolutional neural network
in the Fourier domain. Furthermore, the advantage of the proposed kernel method is that it
can be applied to any architectures based on CNNs, and exponentially reduces the number
of weighting parameters for the convolutional layer. Future research is expected to develop
a method for learning well, even in deep neural networks, and improving the speed aspect
by taking advantage of point-wise multiplication in the Fourier domain, which requires
much less computation than convolution in the spatial domain.
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