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Abstract: Deep neural networks (DNNs) have achieved great success in the last decades. DNN is
optimized using the stochastic gradient descent (SGD) with learning rate annealing that overtakes
the adaptive methods in many tasks. However, there is no common choice regarding the scheduled-
annealing for SGD. This paper aims to present empirical analysis of learning rate annealing based
on the experimental results using the major data-sets on the image classification that is one of the
key applications of the DNNs. Our experiment involves recent deep neural network models in
combination with a variety of learning rate annealing methods. We also propose an annealing
combining the sigmoid function with warmup that is shown to overtake both the adaptive methods
and the other existing schedules in accuracy in most cases with DNNs.

Keywords: learning rate annealing; stochastic gradient descent; image classification

1. Introduction

Deep learning is a machine learning paradigm based on deep neural networks (DNNs)
that have achieved great success in various fields including segmentation, recognition,
and many others. However, the training of DNN is a difficult problem, since it is a
global optimization problem to find the parameters updated by the stochastic gradient
descent [1–5] (SGD) and its variants.

The learning rate annealing significantly affects the accuracy of the trained model.
In the gradient descent methods, the loss gradient is computed using the current model
with the training set, and then each model parameter is updated by the loss gradient
multiplied by the learning rate. In order to escape the local minima and saddle points and
converge to the global optima, the learning rate will start a large value and then shrink to
zero. It is ideal that the learning rate for each model parameter is determined automatically
based on the convergence of the parameter. To this aim, gradient-based adaptive learning
rate methods, for example, RMSprop and Adam, were developed. The adaptive method
provides a quick convergence of algorithms in general. Unfortunately, the test accuracy
of networks trained using the adaptive method is usually inferior to SGD with scheduled
annealing. The scheduled annealing enables us to directly control the stochastic noise that
helps the algorithm to escape local minima and saddle points and to converge the global
optimal solution. Therefore, the hand-crafted schedule is an essential approach in practice.

However, there is no common choice regarding the scheduled-annealing for the
optimization of deep neural networks. On the one hand, the classical annealing, for
example, exponential function and staircase, that were designed for shallow networks,
may not be suitable for DNNs. On the other hand, the recent warmup strategy designed
for DNNs is heuristic and does not provide a smooth decay of step-size. Consequently,
researchers in application fields should take time to test a number of annealing methods.
More importantly, SGD has been performed using different annealing methods in different
papers related to the DNN optimization. These facts motivate us to rethink the annealing
strategy of SGD.
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This paper aims to present a comparative analysis of learning rate annealing methods
based on the experimental results using the major data-sets on the image classification that
is one of the key applications of the DNNs. Our experiment involves both shallow and
recent deep models in combination with a variety of learning rate annealing methods. We
also propose an annealing that combines the sigmoid function with warmup in order to
leverage the decay and warmup strategies with a smooth learning rate curve. The proposed
annealing is shown to outperform the adaptive methods and the other state-of-the-art
schedules, in most cases with DNNs, in our experiments.

We summarize the background in Section 2. We study the related works and propose
our method in Section 3. We then present and discuss our empirical results that compare
annealing methods in Section 4 and conclude in Section 5.

2. Backgrounds

We overview the general background of deep networks and its optimization before
we study related works on the learning rate annealing in the next section.

Progress and application of DNNs: Deep neural networks have made significant progress
in a variety of applications for understanding visual scenes [6–8], sound information [9–12],
physical motions [13–16], graph-based data representation [17] , and other decision pro-
cesses [18–21]. Their optimization algorithms related to our work are reviewed in
the following.

Variance reduction: The variance of stochastic gradients is detrimental to SGD, motivating
variance reduction techniques [22–28] that aim to reduce the variance incurred due to their
stochastic process of estimation, and improve the convergence rate mainly for convex
optimization, while some are extended to non-convex problems [29–31]. One of the
most practical algorithms for better convergence rates includes momentum [32], modified
momentum for accelerated gradient [33], and stochastic estimation of accelerated gradient
descent [34]. These algorithms are more focused on the efficiency in convergence than
the generalization of models for accuracy. We focus on the baseline SGD with learning
rate annealing.

Energy landscape: The understanding of energy surface geometry is significant in deep
optimization of highly complex non-convex problems. It is preferred to drive a solution
toward a plateau in order to yield better generalization [35–37]. Entropy-SGD [36] is an
optimization algorithm biased toward such a wide flat local minimum. In our approach,
we do not attempt to explicitly measure geometric properties of the loss landscape with
extra computational cost, but instead implicitly consider the variance determined by the
learning rate annealing.

Batch size selection: There is a trade-off between the computational efficiency and the
stability of gradient estimation leading to the selection of their compromise with, generally,
a constant, while the learning rate is scheduled to decrease for convergence. The generaliza-
tion effect of stochastic gradient methods has been analyzed with constant batch size [38,39].
On the other hand, increasing the batch size per iteration with a fixed learning rate has
been proposed in [40], where the equivalence of increasing the batch size to learning rate
decay is demonstrated. A variety of varying batch size algorithms have been proposed by
variance of gradients [41–44]. However, the batch size is usually fixed in practice, since
increasing the batch size results in a huge computational cost.

3. Learning-Rate Annealing Methods
3.1. Preliminary

Let us start with a review of the gradient descent method that considers a minimiza-
tion problem of an objective function F : Rm → R in a supervised learning framework:
w∗ = arg minw F(w), where F is associated with parameters w = (w1, w2, · · · , wm) in
the finite-sum form: F(w) = 1

n ∑n
i=1 `(hw(xi), yi) = 1

n ∑n
i=1 fi(w), where hw : X → Y is a

prediction function defined with the associated model parameters w from a data space X
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to a label space Y, and fi(w) := `(hw(xi), yi) is a differentiable loss function defined by the
discrepancy between the prediction hw(xi) and the true label yi. The objective is to find
optimal parameters w∗ by minimizing the empirical loss incurred on a given set of training
data {(x1, y1), (x2, y2), · · · , (xn, yn)}.

The optimization of supervised learning applications that often require a large number
of training data mainly uses the stochastic gradient descent (SGD) that updates solution wt

at each iteration t based on the gradient:

wt+1 = wt − ηt(∇F(wt) + ξt), (1)

where ηt ∈ R is a learning rate and ξt is an independent noise process with zero mean.
The computation of gradients for the entire training data is computationally expensive
and often intractable, so that the stochastic gradient is computed using batch βt at each
iteration t:

wt+1 = wt − ηt

 1
B ∑

i∈βt

∇ fi(wt)

, (2)

where βt is a subset of the index set [n] = {1, 2, · · · , n} for the training data and B := |βt| is
the batch size that is usually fixed during the training process. Thus, the annealing of learn-
ing rate (ηt) determines both the step-size and the stochastic noise in the model update.

3.2. Related Works
3.2.1. Adaptive Learning Rate

In the gradient-based optimization, it is desirable to determine the step-size auto-
matically based on the loss gradient that reflects the convergence of each of the unknown
parameters. To this aim, the parameter-wise adaptive learning rate scheduling has been
developed, such as AdaGrad [45], AdaDelta [46,47], RMSprop [48], and Adam [49], that
provide a quick convergence of the algorithm in practice. Recent works of the adaptive
method include the combination of Adam with SGD [50], automatic selection of learning
rate methods [51], and efficient loss-based method [52]. However, the adaptive method is
usually inferior to SGD in accuracy for unknown data in supervised learning, such as the
image classification with conventional shallow models [53].

In practice, SGD with scheduled annealing shows better results than the adaptive
methods due to the benefits of a generalization and training advantage. Therefore, the
hand-crafted schedule is still an essential approach for optimization problems.

3.2.2. Learning-Rate Decay

A schedule defines how things will change over time. In general, learning rate
scheduling specifies a certain learning rate for each epoch and batch. There are two types
of methods for scheduling global learning rates: the decay, and the cyclical one. The most
preferred method is the learning rate annealing that is scheduled to gradually decay the
learning rate during the training process. A relatively large step-size is preferred at the
initial stages of training in order to obtain a better generalization effect [54]. The shrinkage
of the learning rate reduces the stochastic noise. This avoids the oscillation near the optimal
point and helps the algorithm to converge.

The popular decay methods of the learning rate are the step (staircase) decay [40] and
the exponential decay [55]. The staircase method drops the learning rate in several step
intervals and achieves a pleasing result in practice. The exponential decay [55] attenuates
the learning rate sequentially for each step and provides a smooth curve. The top row of
Figure 1 shows the learning rate schedules, including these methods.



Electronics 2021, 10, 2029 4 of 12

The other one is the cyclical method [56], in which a learning rate period that consists
of an upper and a lower bound is repeated during epochs. The observation behind the
cyclic method is that increasing the learning rate in the optimization process may have
a negative effect, but can result in a better generalization of the trained model [56]. The
learning rate period can be a single decay, for example, the exponential decay and step
decay method [57], and a triangle function.

3.2.3. Learning-Rate Warmup

The learning rate warmup, for example [58], is a recent approach that uses a rel-
atively small step size at the beginning of the training. The learning rate is increased
linearly or non-linearly to a specific value in the first few epochs, and then shrinks to
zero. The observations behind the warmup are that: the model parameters are initialized
using a random distribution, and thus, the initial model is far from the ideal one; thus,
an overly large learning rate causes numerical instability; and training a initial model
carefully in the first few epochs may enable us to apply a larger learning rate in the middle
stage of the training, resulting in a better regularization [59]. The bottom row of Figure 1
provides the learning rate schedules by the conventional annealing methods with warmup.
Among them, the trapezoid [60] is a drastic approach that is designed to train the model
using the upper-bound step-size as much as possible.

constant exp str sig

rep trap str+ sig+

Figure 1. (y-axis) Learning rate over (x-axis) epochs by (top row) conventional annealing meth-
ods: constant learning rate η = 0.1, exponential function (exp) [55], staircase (str) [40] with
η = 0.1, 0.01, 0.001, and sigmoid function (sig), and (bottom row) warmup methods: twice-repeated
sigmoids (rep), trapezoid with 10%-epoch warmup (trap) [60], staircase with the warmup (str+),
and our sigmoid with the warmup (sig+).

3.3. Proposed Sigmoid Decay with Warmup

We consider a simple variant of exponential decay, that is, sigmoid decay. We decay
the learning rate using a sigmoid function during the training as follows:

ηt = ηlow + (ηup − ηlow)
1

1 + eκ(2t−1)
(3)

where ηt is the learning rate at step t (scaled in [0, 1] for numerical convenience), and ηup,
and ηlow, respectively define the upper and lower bounds of desired learning rates. Note
that these parameters are shared by the conventional schedules. κ is a coefficient that can
adjust the slope of the learning rate curve, and we use κ = 1/5.

Moreover, we propose a sigmoid decay with the warmup schedule, which is known
as a good heuristic for the training. The right-bottom section of Figure 1 draws the curve
by the proposed Sigmoid Decay with Warmup (sig+) that aims to leverage both the decay
and warmup while providing a smooth curve of the learning rate.



Electronics 2021, 10, 2029 5 of 12

The proposed annealing (sig+) is designed to leverage both a smooth learning rate
curve with a warmup strategy. Concretely, different from the conventional decay meth-
ods (exp, str, sig) shown in the top row of Figure 1, our method employs the warmup
strategy and that enables us to use a large learning rate with deep neural network models
that can be fragile at the initial stage. In contrast to the cyclic method and the existing
warm-up methods (rep, trap, st+) shown at the bottom of Figure 1, our sig+ provides a
smooth learning rate curve that yields a desirable shrinkage of the stochastic noise in the
optimization process.

4. Experimental Results and Discussion

We now experiment the learning rate schedules shown in Figure 1 and the adaptive
methods: RMSprop [48], and Adam [49] using both conventional shallow networks and
deep neural networks (DNNs) based on major benchmarks shown in Table 1 on the image
classification that is one of the important tasks of neural computing.

Table 1. Data-sets on the image classification used in our experiments.

Data-Set Content #Class Pixel Size Channel #Training Data #Test Data

MNIST [61] handwritten digits 10 28× 28 gray 60,000 10,000

Fashion-MNIST [62] fashion items 10 28× 28 gray 60,000 10,000

SVHN [63] digits in street 10 32× 32 color 73,257 26,032

CIFAR-10 [64] natural photo 10 32× 32 color 60,000 10,000

CIFAR-100 [64] natural photo 100 32× 32 color 60,000 10,000

4.1. Experimental Set-Up

We employ fully connected (fc) networks with two hidden layers (NN-2) and with
three hidden layers (NN-3), two convolution layers with two fc layers (LeNet-4), and
VGG-9 [65] as the conventional shallow networks. For these shallow networks, we use
MNIST [61] and Fashion-MNIST [62] data-sets shown in Table 1. We also conduct experi-
ments using deep neural networks: VGG-19 [65], ResNet-18, ResNet-50 [66,67], DenseC-
onv [68], and GoogLeNet [69]. We employ these models since the convolution kernel in
VGG and the skip-connection in ResNet are the two fundamental architectures of recent
deep networks; DenseConv is one of the successive deep networks; and GoogLeNet shows
a superior performance in many practical tasks as we demonstrate. For these deep net-
works, we use SVHN [63] and CIFAR [64] benchmarks summarized in Table 1. We employ
the batch size of B = 128, the momentum of 0.9, the weight-decay of 0.0005, and the epoch
size of 100 as practical conditions.

Regarding the hyper-parameters of annealing, we have experimented SGD with three
constant learning rates η = 0.1, η = 0.01, and η = 0.001, and observed that η = 0.1 is
too large; η = 0.001 is too small; and η = 0.01 tends to be good for the tested networks.
Therefore, we set the upper and lower bounds of learning rate curves as ηup = 0.1 and
ηlow = 0.001. The learning rate scale of RMSprop and Adam is set to 0.001 for the shallow
models and 0.0001 for the deep models. We assign the warmup step to 10% of a total epoch,
and the initial learning rate of the warmup is set to 0.01.

We performed each condition 10 times individually. We drew the average curve of
test accuracy over epochs for qualitative evaluation, and also present the average and the
maximum of test accuracy for quantitative evaluation within the individual trials.

4.2. Effect of Annealing Methods for Shallow Networks

Figures 2 and 3 show accuracy curves for MNIST and Fashion-MNIST by SGD using
learning rate decay and warmup, respectively. The constant η = 0.1 oscillates over the
entire epochs, indicating that the learning rate was too large. Adaptive methods (rms
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and adam) have converged faster than the others, but fell into a local minima with lower
accuracy compared to the decay annealing methods. In contrast to the exponential decay,
the sigmoid decay (sig) keeps the learning rate high during the early stages of training,
and its accuracy curve rose slowly. However, the sigmoid decay drew a better curve than
the exponential decay in the latter half of the training phase due the generalization effect
of the larger step-size in the early phase. The accuracy curve of the sigmoid decay (sig)
is further compared with the cyclic method (rep) and the warmup variants (trap, str+,
and sig+) in Figure 3. The accuracy curves varied along with the designed learning rate
curves. The proposed annealing (sig+) follows the original sigmoid but converges to a
slightly better solution in most cases using the shallow models.

The accuracy of the shallow networks with MNIST and Fashion-MNIST data-sets are
summarized in Table 2. The step decay with warmup and the exponential decay have
achieved superior performance in the majority of networks for, respectively, MNIST and
Fashion-MNIST. It is difficult to observe the effects of the warmup strategy except for
LeNet-4. The adaptive methods, that is, RMSprop and Adam, are fast, but their accuracy
is lower than SGD with the constant η = 0.01. The decaying methods generally showed
better accuracy than the constant learning rate η = 0.01.

NN-2 NN-3 LeNet-4 VGG-9

Figure 2. Shallow model with learning rate decay. Accuracy curve over epochs for MNIST (top row),
and Fashion-MNIST (bottom row) by SGD with different learning rate annealings: constant learning
rate η = 0.1, exponential (exp), staircase (str), RMSprop (rms), Adam (adam), and sigmoid (sig): The
per-epoch average of validation accuracy over 10 trials is shown in the y-axis where the range of
accuracy is fixed for each data-set. Epoch (0, 1, 2, . . . , 100) is shown in the x-axis.
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larger step-size in early phase. The accuracy curve of the sigmoid decay (sig) is further
compared with the cyclic method (rep) and the warmup variants (trap, str+, and sig+) in
Figure 3. The accuracy curves have varied along with the designed learning-rate curves.
The proposed annealing (sig+) follows the original sigmoid but converges to a slightly
better solution in most cases using the shallow models.

The accuracy of the shallow networks with MNIST and Fashion-MNIST data-sets are
summarized in Table 1. The step decay with warmup and the exponential decay have
achieved superior performance in the majority of networks for, respectively, MNIST and
Fashion-MNIST. It is difficult to observe the effects of the warmup strategy except for
LeNet-4. The adaptive methods, i.e., RMSprop and Adam, are fast but their accuracy is
lower than SGD with the constant η = 0.01. The decaying methods generally showed
better accuracy than the constant learning-rate η = 0.01.

NN-2 NN-3 LeNet-4 VGG-9

Figure 2. [shallow model with learning-rate decay] Accuracy curve over epochs for MNIST (1st row),
and Fashion-MNIST (2nd row) by SGD with different learning-rate annealings: constant learning-
rate η = 0.1, exponential (exp), staircase (str), RMSprop (rms), Adam (adam), and sigmoid (sig):
Per-epoch average of validation accuracy over 10 trials is shown in y-axis where the range of accuracy
is fixed for each data-set. Epoch (0, 1, 2, ..., 100) is shown in x-axis.

NN-2 NN-3 LeNet-4 VGG-9

Figure 3. [shallow model with learning-rate warmup] Accuracy curve over epochs for MNIST
(1st row), and Fashion-MNIST (2nd row) by SGD with different learning-rate annealings: sigmoid
function without warmup (sig), two-times repeated sigmoids (rep), trapezoid with 10%-epoch
warmup (trap), staircase with the warmup (str+), and our sigmoid with the warmup (sig+): Per-
epoch average of validation accuracy over 10 trials is shown in y-axis where the range of accuracy is
fixed for each data-set. Epoch (0, 1, 2, ..., 100) is shown in x-axis.

Figure 3. Shallow model with learning rate warmup. Accuracy curve over epochs for MNIST
(top row), and Fashion-MNIST (bottom row) by SGD with different learning rate annealings: sigmoid
function without warmup (sig), twice-repeated sigmoids (rep), trapezoid with 10%-epoch warmup
(trap), staircase with the warmup (str+), and our sigmoid with the warmup (sig+): The per-epoch
average of validation accuracy over 10 trials is shown in the y-axis where the range of accuracy is
fixed for each data-set. Epoch (0, 1, 2, . . . , 100) is shown in the x-axis.
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Table 2. Validation accuracy by SGD with different learning rate annealings: constant learning rate η = 0.1, 0.01, 0.001,
exponential function (exp), staircase (str), sigmoid function (sig), RMSprop (rms), Adam (adam), twice-repeated sigmoids
(rep), trapezoid with 10%-epoch warmup (trap), staircase with the warmup (str+), and our sigmoid with the warmup (sig+).
The average of the last 10%-epoch accuracy and the maximum accuracy over 10 trials are calculated.

(1) Average (Upper Part) and Maximum (Lower Part) of Validation Accuracy for MNIST

ave 0.1 0.01 0.001 exp str sig rms adam rep trap str+ sig+

NN-2 97.87 98.26 97.90 98.44 98.55 98.52 98.20 98.19 98.53 98.57 98.58 98.55
NN-3 97.97 98.27 97.97 98.51 98.69 98.65 98.28 98.25 98.69 98.70 98.72 98.67
LeNet-4 98.97 99.23 99.05 99.22 99.30 99.31 99.30 99.27 99.33 99.40 99.42 99.40
VGG-9 99.32 99.62 99.33 99.64 99.62 99.62 99.38 99.37 99.63 99.56 99.60 99.62

max 0.1 0.01 0.001 exp str sig rms adam rep trap str+ sig+

NN-2 98.06 98.38 98.01 98.59 98.65 98.65 98.33 98.33 98.63 98.67 98.68 98.65
NN-3 98.18 98.39 98.09 98.65 98.81 98.79 98.39 98.41 98.80 98.84 98.83 98.73
LeNet-4 99.20 99.39 99.18 99.40 99.45 99.48 99.41 99.37 99.48 99.52 99.53 99.51
VGG-9 99.43 99.66 99.42 99.71 99.66 99.69 99.50 99.43 99.69 99.62 99.65 99.68

(2) Average and Maximum of Validation Accuracy for Fashion-MNIST

ave 0.1 0.01 0.001 exp str sig rms adam rep trap str+ sig+

NN-2 86.93 89.19 86.89 89.54 88.97 89.23 88.87 89.00 89.03 88.54 89.07 89.23
NN-3 87.28 89.42 87.67 89.80 89.58 89.71 89.16 89.22 89.49 89.20 89.66 89.72
LeNet-4 89.16 90.68 89.33 90.45 90.77 90.65 90.79 90.76 90.68 91.34 91.39 91.22
VGG-9 91.83 93.14 91.79 93.56 93.33 93.38 91.97 92.07 93.42 93.06 93.27 93.36

max 0.1 0.01 0.001 exp str sig rms adam rep trap str+ sig+

NN-2 87.25 89.55 87.08 89.72 89.28 89.48 89.21 89.40 89.43 88.84 89.36 89.47
NN-3 87.52 89.83 87.90 90.02 89.88 90.11 89.49 89.52 89.78 89.42 89.93 90.05
LeNet-4 89.78 91.08 89.86 91.16 91.40 91.36 91.30 91.08 91.46 91.69 91.72 91.56
VGG-9 92.10 93.65 92.33 93.82 93.55 93.67 92.36 92.46 93.80 93.37 93.64 93.61

4.3. Effect of Annealing Methods for Deep Neural Networks

We provide comparative analysis of the annealing methods with deep neural networks
based on SVHN, CIFAR-10, and CIFAR-100 data-sets. Regarding the hyper-parameters
of annealing methods, we use the same learning rate values as the shallow networks
except for that the initial learning rate of the adaptive methods was tuned to 1/10 of the
previous experiment. Figure 4 demonstrates that, just as the shallow networks, the adaptive
methods (rms and adam) have converged faster than the others, but to a local minima with
low accuracy. Figure 5 shows that the accuracy curve of DNNs also follows the learning
rate curve as the shallow models. Among the tested annealing methods, the proposed
annealing (sig+) successfully drew the best curves in the last half-epochs.

Table 3 summarizes the test accuracy using DNNs and provides the following obser-
vations and intuitions: the employment of a large learning rate in the first and middle
stages of training process (e.g., str and sig) results in better accuracy than the exponential
one (exp); the smoothing curve (sig) that avoids drastic change of the step-size has led to
better accuracy than the non-smooth step function (str); the warmup strategy has further
improved DNNs than the original one (i.e., str and str+); and the proposed annealing using
sigmoid and warmup together provides the best performance in most cases with the deep
networks. Therefore, we conclude that the slope and smoothness of the learning rate curve
have a significant influence on the training process, and the proposed method has success-
fully improved the accuracy of DNNs with the employment of warmups independent of
the DNN architecture and data-sets.
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VGG-19 ResNet-18 ResNet-50 DenseConv GoogLeNet

Figure 4. DNNs with learning rate decay. Accuracy curve over epochs for SVHN (top row), CIFAR-10
(middle row), and CIFAR-100 (bottom row) by SGD with different learning rate annealings: constant
learning rate η = 0.1, exponential (exp), staircase (str), RMSprop (rms), Adam (adam), and sigmoid
(sig): Per-epoch average of validation accuracy over 10 trials is shown in the y-axis where the range
of accuracy is fixed for each data-set. Epoch (0, 1, 2, . . . , 100) is shown in the x-axis.
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VGG-19 ResNet-18 ResNet-50 DenseConv GoogLeNet

Figure 4. [DNNs with learning-rate decay] Accuracy curve over epochs for SVHN (1st row), CIFAR-
10 (2nd row), and CIFAR-100 (3rd row) by SGD with different learning-rate annealings: constant
learning-rate η = 0.1, exponential (exp), staircase (str), RMSprop (rms), Adam (adam), and sigmoid
(sig): Per-epoch average of validation accuracy over 10 trials is shown in y-axis where the range of
accuracy is fixed for each data-set. Epoch (0, 1, 2, ..., 100) is shown in x-axis.

VGG-19 ResNet-18 ResNet-50 DenseConv GoogLeNet

Figure 5. [DNNs with learning-rate warmp] Accuracy curve over epochs for SVHN (1st row),
CIFAR-10 (2nd row), and CIFAR-100 (3rd row) by SGD with different learning-rate annealings:
sigmoid function without warmup (sig), two-times repeated sigmoids (rep), trapezoid with 10%-
epoch warmup (trap), staircase with the warmup (str+), and our sigmoid with the warmup (sig+):
Per-epoch average of validation accuracy over 10 trials is shown in y-axis where the range of accuracy
is fixed for each data-set. Epoch (0, 1, 2, ..., 100) is shown in x-axis.

Figure 5. DNNs with learning rate warmup. Accuracy curve over epochs for SVHN (top row),
CIFAR-10 (middle row), and CIFAR-100 (bottom row) by SGD with different learning rate annealings:
sigmoid function without warmup (sig), twice-repeated sigmoids (rep), trapezoid with 10%-epoch
warmup (trap), staircase with the warmup (str+), and our sigmoid with the warmup (sig+): Per-epoch
average of validation accuracy over 10 trials is shown in the y-axis where the range of accuracy is
fixed for each data-set. Epoch (0, 1, 2, . . . , 100) is shown in the x-axis.
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Table 3. Validation accuracy by SGD with different learning rate annealings: constant learning rate η = 0.1, 0.01, 0.001,
exponential function (exp), staircase (str), sigmoid function (sig), RMSprop (rms), Adam (adam), twice-repeated sigmoids
(rep), trapezoid with 10%-epoch warmup (trap), staircase with the warmup (str+), and our sigmoid with the warmup (sig+).
The average of the last 10%-epoch accuracy and the maximum accuracy over 10 trials are calculated.

(1) Average (Upper Part) and Maximum (Lower Part) of Validation Accuracy for SVHN

ave 0.1 0.01 0.001 exp str sig rms adam rep trap str+ sig+

VGG-19 87.01 94.98 94.65 95.94 96.33 96.06 94.68 94.61 96.02 96.11 96.31 96.08
ResNet-18 94.31 96.04 94.19 96.23 96.06 96.20 94.33 95.05 96.10 95.90 96.08 96.20
ResNet-50 94.14 94.98 93.77 96.10 96.34 96.51 94.91 94.84 96.43 96.41 96.56 96.57
DenseConv 95.29 95.36 90.80 96.68 96.97 96.76 92.82 93.22 96.84 96.89 97.01 96.82
GoogLeNet 95.43 95.88 95.91 97.17 97.22 97.25 95.80 95.93 97.18 97.14 97.22 97.27

max 0.1 0.01 0.001 exp str sig rms adam rep trap str+ sig+

VGG-19 94.67 95.14 94.83 96.07 96.49 96.25 94.78 94.74 96.12 96.17 96.38 96.23
ResNet-18 94.49 96.29 94.56 96.33 96.19 96.34 94.54 95.19 96.28 96.05 96.22 96.36
ResNet-50 94.68 95.24 94.03 96.38 96.59 96.65 95.04 95.08 96.68 96.56 96.72 96.65
DenseConv 95.61 95.80 91.06 96.78 97.08 96.90 93.03 93.48 96.92 97.00 97.12 96.91
GoogLeNet 95.72 96.30 96.10 97.29 97.36 97.39 95.97 96.14 97.26 97.27 97.36 97.40

(2) Average and Maximum of Validation Accuracy for CIFAR-10

ave 0.1 0.01 0.001 exp str sig rms adam rep trap str+ sig+

VGG-19 84.37 90.56 89.72 92.80 93.04 93.26 89.67 89.89 92.98 93.15 93.46 93.72
ResNet-18 86.73 91.59 90.15 94.32 94.37 94.69 90.73 90.91 94.30 94.35 94.48 94.81
ResNet-50 85.29 91.81 90.05 94.13 94.17 94.61 91.24 91.28 94.10 94.64 94.87 95.20
DenseConv 86.79 88.91 75.85 94.24 94.46 94.72 82.97 83.64 94.22 94.35 94.41 94.65
GoogLeNet 86.30 91.64 89.61 94.54 94.57 94.93 90.46 90.59 94.57 94.85 94.83 95.23

max 0.1 0.01 0.001 exp str sig rms adam rep trap str+ sig+

VGG-19 85.80 91.07 90.02 92.99 93.46 93.43 89.92 90.07 93.13 93.35 93.68 93.87
ResNet-18 87.52 91.81 90.34 94.57 94.50 94.98 91.25 91.36 94.43 94.62 94.77 95.09
ResNet-50 87.01 92.09 90.36 94.77 94.40 95.16 91.82 91.73 94.44 94.80 95.04 95.33
DenseConv 87.57 89.43 76.54 94.57 94.74 94.93 83.60 84.25 94.40 94.64 94.81 94.92
GoogLeNet 87.31 91.95 89.80 94.91 95.04 95.43 90.94 90.97 94.94 95.19 94.96 95.41

(3) Average and Maximum of Validation Accuracy for CIFAR-100

ave 0.1 0.01 0.001 exp str sig rms adam rep trap str+ sig+

VGG-19 51.04 65.09 64.05 68.75 69.65 69.92 63.10 63.49 69.31 71.88 71.86 72.43
ResNet-18 60.00 68.02 65.35 74.67 75.65 75.99 66.36 66.90 75.55 76.14 75.66 76.17
ResNet-50 60.36 69.67 66.06 75.68 77.05 77.68 67.77 68.11 76.86 78.69 78.42 78.92
DenseConv 60.02 62.71 36.21 74.10 76.63 76.83 51.36 52.69 76.65 77.15 76.23 76.55
GoogLeNet 60.45 69.05 63.98 78.04 78.69 79.35 65.49 66.37 78.97 79.74 79.15 79.73

max 0.1 0.01 0.001 exp str sig rms adam rep trap str+ sig+

VGG-19 52.60 66.02 64.65 69.10 70.50 70.33 64.37 63.97 70.21 72.52 72.33 72.70
ResNet-18 60.79 68.62 65.86 74.83 76.11 76.69 67.10 67.59 75.79 76.66 75.82 76.55
ResNet-50 62.00 70.15 67.09 76.32 77.58 78.19 68.71 68.62 77.81 79.18 78.86 79.38
DenseConv 60.92 63.48 37.06 74.78 76.84 77.20 52.69 53.54 76.89 77.55 76.62 76.99
GoogLeNet 61.66 69.50 64.46 78.38 79.20 79.97 66.96 67.86 79.58 80.18 79.70 80.10

5. Conclusions

We have studied learning rate annealing strategies that impact the trained networks,
and applied the annealing methods to the shallow networks and the deep networks
using the major data-sets. We have performed a comparative analysis of learning rate
schedules and adaptive methods, and observed that applying the schedule to SGD has
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better results in test accuracy than the currently preferred schedules and adaptive methods.
Additionally, our results showed that the warmup improves the model accuracy of deep
models. Concretely, we have performed that our sigmoid decay with warmup as a learning
rate policy leads to superior performance for deep neural networks.

The contribution of the proposed annealing is not limited to image classification. It
will be directly applicable to other supervised learning tasks. Moreover, it will be useful
for studying the characteristics of generative adversarial networks, since the proposed
annealing enables us to control the learning rate while providing a pleasing result, leading
to a better understanding of the adversarial losses.
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