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Abstract: The paper elaborates on how text analysis influences classification—a key part of the
spam-filtering process. The authors propose a multistage meta-algorithm for checking classifier
performance. As a result, the algorithm allows for the fast selection of the best-performing classifiers
as well as for the analysis of higher-dimensionality data. The last aspect is especially important
when analyzing large datasets. The approach of cross-validation between different datasets for
supervised learning is applied in the meta-algorithm. Three machine-learning methods allowing a
user to classify e-mails as desirable (ham) or potentially harmful (spam) messages were compared in
the paper to illustrate the operation of the meta-algorithm. The used methods are simple, but as the
results showed, they are powerful enough. We use the following classifiers: k-nearest neighbours
(k-NNs), support vector machines (SVM), and the naïve Bayes classifier (NB). The conducted research
gave us the conclusion that multinomial naïve Bayes classifier can be an excellent weapon in the fight
against the constantly increasing amount of spam messages. It was also confirmed that the proposed
solution gives very accurate results.

Keywords: classifiers; e-mail; ham; machine learning; spam

1. Introduction

The spam problem is an ongoing issue: in 2018 14.5 billion spam e-mails were sent per
day [1]. According to the Internet Security Threat Report [2] released in 2019 by Symantec,
spam levels for their customers increased in 2018. What draws the attention is that small
enterprises were attacked more often than large companies, and e-mail malware reached
stable levels. Therefore, there is a need to tailor even simple tools for detection and filtering
of spam in all organizations.

For the sake of the presented study, we follow the definition by Emilio Ferrara, stating
that this is any “attempt to abuse, or manipulate, a techno-social system by producing and
injecting unsolicited and/or undesired content aimed at steering the behavior of humans
or the system itself, at the direct or indirect, immediate or long-term advantage of the
spammer(s)” [3]. Here, we focus on so-called junk e-mails. These are unwanted messages
sent at large scale by e-mail. The term spam refers to the undesired (or even harmful)
e-mails, while ham is used to indicate the valid and important messages desired by the
recipient. Additionally, we assume the scenario where junk e-mails are sent by botnets and
they are not aimed at specific users (contrary to, e.g., spear phishing).

This paper proposes a method for identification of the best-performing machine-
learning-based classifiers and selection of the one with the leading parameters. The
proposed solution solves the problem of fast recognition of the most interesting parameters.
This allows for quick analysis of data of higher dimensionality. This is especially important
if large datasets are to be analyzed and we want to assure the proper scalability of our
system. In our paper, we also show how to find a database to train a machine-learning
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model used for spam detection (defined here as a binary classifier), to process the text so that
the data can be fed to a machine-learning model and how to implement a selected machine-
learning model-based classifier. We also propose a method that allows for cross-validation
between different datasets in the training and test phases. The obtained results show that
our solution gives accurate results consistent with other literature studies and outperforms
the reported results in some cases. To the best of our knowledge, our paper is the first
which discusses the efficiency of SVM, MNB, k-NN algorithms for such comprehensive
datasets as almost the whole Enron (4 datasets) and Lingspam databases. Moreover, it uses
an unusual cross-validation concept by mixing and applying different datasets for training
and test purposes. Such an approach is extremely rare in the literature. Finally, it presents
a multistage algorithm for fast and precise selection of machine-learning classifiers for
spam filtering. It allows for quick selection of interesting parameters, which is essential
for working with large datasets. The quality of the results is proven by a big numerical
example given for the method validation.

The structure of the paper is as follows. The review of spam filters based on different
machine-learning tools with typical performance metrics and several publicly available
datasets is presented in Section 2. In Section 3, the materials and methods are discussed.
The assumptions, useful databases of spam messages, text-preprocessing aspects (includ-
ing tokenization, conversion, removal of punctuation marks, stemming/lemmatization,
and dictionary construction) as well as the considered supervised learning solutions are
described. The performance of the selected methods is evaluated on four large datasets
in Section 4. The dataset structures created with the unique approach of assuring cross-
validation between different datasets in training and test phases are analyzed first. Next,
the text preprocessing impact on the used dictionary is studied. An innovative multistage
meta-algorithm for checking the classifier performance is described in action and validated.
The final summary is given in Section 5.

2. Related Work

The increasing number of spam e-mails has created a strong need to develop more
reliable and efficient anti-spam filters, including ones based on machine-learning tools.
They are efficient, since they only require the preparation of a set of training samples,
i.e., pre-classified e-mails [4]. In recent years, various machine-learning methods have
been successfully used to effectively detect and filter unwanted messages. The following
classification methods are most commonly used for spam filtering: Support Vector Ma-
chine (SVM), Naïve Bayes classifier (NB), k-Nearest Neighbours (k-NN), Artificial Neutral
Network (ANN), Decision Tree (DT), Random Forest (RF), Logistic Regression (LR). Below,
we present some results reported in the literature. Note that some of the metrics results are
compared with our method during the validation of our approach. The values are given at
the end of the numerical study in separate table.

The applicability of using different machine-learning methods to recognize spam
e-mails was analyzed in [5]. The SpamAssassin dataset, which contains 6000 e-mails with
the spam rate 37.04% used in all experiments. Sharma and Arora in [6] analyzed Bayes Net
(BN), Logic Boost (LB), RT, JRip (JR), J48-based DTs, Multilayer Perceptron (MP), Kstar (KS),
RF, and Random Committee (RC) machine-learning algorithms. The dataset with 4601
instances and 55 spam base attributes downloaded from UCI Machine-Learning Repository
were used in the performed research. Harisinghaney et al. [7] applied the following three
different algorithms: k-NN, NB, and DBSCAN-based clustering. The performance for the
four metrics accuracy, precision, sensitivity, and specificity were calculated and compared.
Unfortunately, contrary to our approach, only a small set of the Enron Corpus dataset was
used in the analysis (2500 mails for training and another 2500 mails for testing from 200,399
messages of the cleaned Enron Corpus). In [8] a comprehensive study of machine-learning
mechanisms for spam mail detection such as NB, SVM, and k-NN combined with NB
is presented. The TREC 2007 public corpus with 12 attributes and 4899 messages as the
spam base dataset was used for performance evaluation. The accuracy and F-measure
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were calculated and compared for all algorithms. The authors in [9] prepared a special
dataset called SHED: Spam Ham E-mail Dataset. They collected 6002 e-mails (4490 spam
and 1512 ham e-mails) and extracted from them various features. The performance of
different classification approaches (NB, BN, AdaBoost, and RF) was evaluated using four
metrics: accuracy, precision, recall, and time taken to build the model. In [10] the NB,
SVM and hybrid solutions were studied using Lingspam dataset. The authors observed
that the SVM algorithm in most cases offers high precision and recall, while NB offers
faster classification speed. They also require fewer training samples. The authors in [11]
showed how to develop a high-performance and low-computation method for classifying
spam e-mails. The UCI SpamBase dataset was used with a total of 4601 data instances
for experimentation. The following classifiers were evaluated and compared: RF, ANN,
Logistic, SVM, Random Tree, k-NN, Decision Table, BN, NB, and neural networks applying
Radial Basis Functions (RBF). Seven metrics were used to evaluate the performance of
the classifiers. In [12], another comparison between different machine-learning classifiers
was presented. The classifiers analyzed in this paper include SVM, NB, and J48. The
dataset used in this research was enron1 from the Enron collection of e-mails. It contained
3762 spam messages and 5172 ham messages. The performance analysis of seven machine-
learning techniques for e-mail spam classification was analyzed in [13]. The following
techniques were compared: NB, SVM, k-NN, RF, Bagging, Boosting (AdaBoost), and
Ensemble Classifier. The evaluation was performed on the e-mail spam dataset from UCI
Machine-Learning Repository and Kaggle website. In [14], the problem of spam review
detection is addressed. The authors proposed in their system deep-learning methods:
Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), and a variant of
Recurrent Neural Network (RNN) based on Long Short-Term Memory (LSTM) cells. They
also applied traditional classifiers such as NB, k-NN and SVM. They worked on Ott and
Yelp Datasets in their study. The presented results showed that considering accuracy,
both SVM and NB classifiers performed almost same. The problem of spam and malware
elimination from e-mails was discussed in [15]. The authors analyzed and compared
ten classification techniques: k-NN, SVM, DT, RF, AdaBoost, Extra Tree (ET), Gaussian
Naïve Bayes (GNB), Multinomial Naïve Bayes (MNB), Bernoulli Naïve Bayes (BNB), and
Gradient Boosting (GB). These algorithms were trained on previously labeled data from
the shortened Enron and CMU datasets (26,000 spam and 19,000 ham e-mails) and the
accuracy of each classifier was computed. The SVM obtained the best results. We would
like to emphasise that—although we also compare some classifiers—our main aim is to
propose a general meta-algorithm to deal with various classifiers. This differs us from
works such as [15].

Guarav et al. [16] examined the efficiency of NB, DT, and RF algorithms used in the
classification process. The experiments were carried out on three different types of datasets:
Lingspam, Enron and PU. In the comparative study, the authors showed that the accuracy
level for all algorithms highly depended on a specific dataset. In [17] the four classifiers: NB,
DT, Ensemble Boosting and Ensemble Hybrid Boosting (EHB) were analyzed and compared.
The authors used UCI Machine-Learning Repository as a spam dataset. The mentioned
dataset has 4601 instances, 57 attributes, and a single output which allows classification
of e-mail as spam or ham. A large group of machine-learning techniques for e-mail spam
classification was also analyzed and presented in [18]. The authors studied the efficiency
of the following algorithms: SVM, k-NN, NB, DT, RF, AdaBoost and Bagging. They used
e-mail data sets from different websites, such as Kaggle, along with some datasets created
on their own. A spam e-mail dataset from Kaggle was used for training. The performed
research showed that the NB gave the best results, but expressed a limitation due to class-
conditional independence. Gibson et al. [19] analyzed machine-learning algorithms that
are optimized with bio-inspired methods. They implemented Multinominal Naïve Bayes
(MNB), SVM, RF, DT, and Multilayer Perceptron algorithms which were tested on seven
different e-mail datasets: Lingspam, PUA, PU1, PU2, PU3, Enron, and SpamAssassin. The
bio-inspired algorithms such as Particle Swarm Optimization (PSO) and Genetic Algorithm
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(GA) were added for performance optimization of classifiers. The GA worked well for
RF and DT, whereas PSO worked well for MNB. The authors proved that MNB with
GA performed the best overall. In [20], three techniques, namely NB, k-NN and SVM,
were studied on a prepared dataset. The corpus consists of 16,843 messages, 11,291 of
which are marked as spam (from the Babletext web site) and 5552 are labeled as ham
(from the SpamAssassin web site). The best accuracy was obtained for NB. The authors
in [21] compared: Logistic Regression (LR), DT, NB, k-NN, and SVM as the classifiers. The
assumed dataset was a spam database taken from UCI Machine-Learning Repository. The
RD and k-NN obtained the same performance; however, k-NN algorithm requires more
time to build the model. The accuracy of both algorithms exceeded 99%. Saidini et al. [22]
explored the use of a semantic-based classification approach to improve the accuracy of
spam detection. The NB, k-NN, DT, AdaBoost, and RF machine-learning classifiers were
compared in terms of accuracy, recall, precision, and F-measure. The test dataset was
collected from several public sources: Enron, Lingspam and some specialized forums.
To extend the evaluation part, the authors also used another dataset, called CSDMC2010.
They noted that NB and SVM performed better than the other tested classifiers. The
categorization by domain significantly improved the spam detection process. The best
results were obtained using AdaBoost, NB, and RF classifiers, where the accuracy achieved
more than 98% in most of domains. In [23], the authors implemented MNB, RF, k-NN, GB, as
well as RNN and MLP for deep-learning implementation. The dataset with 4601 instances
(1813 spam and 2788 non-spam messages) from the UCI Machine-Learning Repository
was applied for analysis. Rastenis et al. [24] proposed an automated spam and phishing
e-mail classification solution, which is based on e-mail message body text automated
classification. It also solves the problem of correct classification of e-mails written in
different languages. They compared NB, General Linearized Model (GLM), Fast Large
Margin (FLM), DT, RF, GB, and SVM on Nazario, SpamAssassin, and Vilnius Technical
University datasets. Records from different datasets were mixed into one reduced dataset
(700 spam and 700 phishing e-mails).

Although we focus here on the usage of many classifications simultaneously, it can
be mentioned that a large part of the literature is devoted to the analysis of one type of
model to classify e-mails (e.g., [25]) or the potential attacks on classification tasks (such as
for instance in [26]). Additionally, it is necessary to remember that some works report that
although it is evident that algorithms that perform well in the spam classification (e.g., NB),
in other contexts they offer poor performance (e.g., [27,28]). Therefore, the model should
always be aligned with a specific problem and data type.

3. Materials and Methods
3.1. Assumptions

E-mail spam filtering is a compound task, and in general we follow the methods
elaborated before, where [29] is the main source of inspiration for us. The main goal of this
paper is to explore one of its key areas, i.e., machine-learning-based classification, to help
with the initial decision if a given e-mail message is indeed spam or ham. The element that
enables this research is a dataset selected as a pool for training. The dataset is a collection
of real e-mail examples. Access to a useful dataset is not a trivial issue, since typically in
the academical world it is not possible to obtain e-mails for scientific research. Additionally,
it is necessary to gain access to the database where the messages are already labeled as
spam or ham.

Here, we propose a multistage meta-algorithm that allows us to select the best hyper-
parameters for various classification algorithms and then compare their performance to
decide on which one to use. The meta-algorithm is presented in Figure 1. Please note that
the classification algorithms shown are only used as illustration. The following stages of
the meta-algorithm are as follows:

1. Selection of a database.
2. Text analysis.
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3. Spam detection: cross-validation on different datasets.
4. Final selection.
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These elements are presented in the subsequent part of the paper. As for now, we can
emphasise that our approach deals mainly with the impact the text preprocessing has on
the classification process and then analyzes illustratively some of the machine-learning
methods performance in this difficult task. Our solution consists of two parts. The first
one focuses on the text documents (e-mails) analysis and preprocessing (points 1 and
2 above), so that the documents can be represented as an input for the methods used
afterwards. The second one (points 3 and 4 above) implements the classifiers and provides
the tools to evaluate them. First, we present the selection of the database (assumptions in
Section 3.2 and their concretization in Section 4.1) to obtain the samples to train, adjust,
validate, and test any model. Second, we elaborate on how to process the dataset to make
it usable for various models and valuable enough to provide meaningful data. As in many
cases, data processing (along with feature selection) is important since the quality strongly
depends on it. The assumptions behind the text analysis are discussed in Section 3.3,
while the details related to concrete data are shown in Section 4.2. Third, the main part of
the method is performed in a few substages (five in our example case), and assures the
proper scalability of the system. It consists mainly in the preselection of the classifiers
and adjustment of their hyperparameters. The concept lays in the fact that the largest
number of tests is conducted on the smallest dataset. This approach allows us to obtain the
most interesting parameters relatively quickly, and then proceed to check them on data
of higher dimensionality. The exemplary classifiers are shortly refreshed in Section 3.4.
We emphasise that these models are used only to illustrate our method. All substages are
thoroughly shown in the numerical example (Section 4.3). Fourth, as concerns the final
selection, we just present the comparison of the output in Section 4.4. The selection should
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algorithms.

These elements are presented in the subsequent part of the paper. As for now, we can
emphasise that our approach deals mainly with the impact the text preprocessing has on
the classification process and then analyzes illustratively some of the machine-learning
methods performance in this difficult task. Our solution consists of two parts. The first
one focuses on the text documents (e-mails) analysis and preprocessing (points 1 and
2 above), so that the documents can be represented as an input for the methods used
afterwards. The second one (points 3 and 4 above) implements the classifiers and provides
the tools to evaluate them. First, we present the selection of the database (assumptions in
Section 3.2 and their concretization in Section 4.1) to obtain the samples to train, adjust,
validate, and test any model. Second, we elaborate on how to process the dataset to make
it usable for various models and valuable enough to provide meaningful data. As in many
cases, data processing (along with feature selection) is important since the quality strongly
depends on it. The assumptions behind the text analysis are discussed in Section 3.3,
while the details related to concrete data are shown in Section 4.2. Third, the main part of
the method is performed in a few substages (five in our example case), and assures the
proper scalability of the system. It consists mainly in the preselection of the classifiers
and adjustment of their hyperparameters. The concept lays in the fact that the largest
number of tests is conducted on the smallest dataset. This approach allows us to obtain the
most interesting parameters relatively quickly, and then proceed to check them on data
of higher dimensionality. The exemplary classifiers are shortly refreshed in Section 3.4.
We emphasise that these models are used only to illustrate our method. All substages are
thoroughly shown in the numerical example (Section 4.3). Fourth, as concerns the final
selection, we just present the comparison of the output in Section 4.4. The selection should
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be performed based on a specific application or user’s needs, and we do not settle these
concerns here.

As can be seen, the proposed meta-algorithm does not solve any specific machine-
learning problem, but is a kind of super-algorithm able to select the best algorithms to
solve classification problems. As concerns the complexity of the meta-algorithm, we can
see that it does not involve any loops or recurrences, so it is purely linear and, therefore,
its scalability is very good. In fact, the only elements that can increase the complexity are
related to its elements. Potentially problematic stages are related to text analysis, but is
it necessary to mention that tokenization, lemmatization, stemming, etc. operate linearly
from the viewpoint of the dataset size and its efficiency is mainly related to the search
mechanisms involved. As we are using the mechanisms built in the popular machine-
learning package, we do not consider their internal complexity. Clearly, a problematic part
of the calculations can be also related to the models themselves. Although it is known
that the pessimistic complexity of the used classification algorithms (k-NNs, NBs, SVMs) is
in general polynomial (no larger than cubic—even in the case of naive implementations),
we additionally purposely limit the calculation time by cutting the hyperparameter and
training processing times by fast skipping of the models with poor performance based on
the training sets with increasing size and complexity. In practice, our experiments were
done on a standard desktop PC and the processing time has not exceeded standard times
reported in the literature.

3.2. Databases

The first issue to solve while dealing with e-mail spam filtering is to find a dataset
needed to train and test the models. It is extremely difficult to find a useful dataset of this
kind. Although the total number of e-mails sent/received worldwide in 2019 was expected
to reach 293.6 billion [30] per day, the access to the data is hindered due to privacy issues.
We had to use publicly accessible data that are free and open to the whole world, which
diminishes the set of potential candidates. Additionally, we were interested in databases
conforming the following properties: (a) accessible: public and free to download for
academic purposes; (b) relatively new: the old databases are not useful since the spamming
environment is extremely dynamic; (c) virus-free. During the research, a few sources were
selected. Their short descriptions are given below.

• Enron Corpus: chosen to be a foundation for this paper. The corpus is described in
detail in the following.

• Lingspam: a part of the database (962 e-mails) was preprocessed and used by Gre-
gory Piatetsky-Shapiro and Matthew Mayo in their implementation of e-mail spam
filtering [29]. The dataset was also downloaded and used in our experiments.

• SpamAssassin (SA): a public corpus which was last updated in 2006 [31]. SA is an
open-source anti-spam platform [32], filtering e-mail and blocking spam. The tests are
carried out on e-mail headers and bodies.

• Honeypot: the last event entered in the website is up to date. Honeypot gathers
statistics about harvesters, spam servers, dictionary attackers, and comment spammers.
The owners claim that they “periodically collate the e-mail messages they receive
and share the resulting corpus with anti-spam developers and researchers” [33].
Unfortunately, they do not provide any ham e-mails.

• MailBait: fills the inbox with e-mails by signing up the provided address for mailing
lists and newsletters [34]. It is not anonymised (browser data and IP pass through)
and it does not provide ham.

The Enron Corpus [35] was collected at Enron Corporation in 2002, during the investi-
gation after the bankruptcy of the company. The original set was generated by 158 employ-
ees and consists of more than 600,000 e-mails. This database has already been used in the
studies on machine-learning-based spam detection [36]. The corpus consists of two subdi-
rectories: the ‘raw’ one (original messages with no modifications) and the ‘preprocessed’



Electronics 2021, 10, 2083 7 of 23

one (where the messages in non-Latin encoding, virus-infected e-mails and ham sent by
the owners to themselves were removed).

3.3. Processing of the Data

Text preprocessing plays a crucial role in spam filtering [24,37]. For any spam detection
model to be effective, the content of the e-mails should be normalized and represented as
feature vectors. The starting point is the tokenization of the raw text data. Then there are
several steps shown in Figure 2 to obtain the data in the form that is ready to be analyzed
by the model.
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converting them to lowercase, we make sure that the program will count them as one
(“example”). Punctuation marks, digits, and stop words are all common in both spam and
ham e-mails and do not add any value to text analysis. Since we implement our solution in
Python, we refer to tools related to this programming language. There are several libraries
and functions that may be applied to eliminate the mentioned language elements not
essential from the spam detection viewpoint. Below is the list of functionalities chosen
by us.

• Python method string .isalpha() checks whether the characters in the string are alpha-
betic or not. If the character is a digit, the method returns False.

• The method string .punctuation() allows removal of common punctuation marks,
such as commas, periods, semicolons, etc.

• Natural Language Toolkit (NLTK) offers a module containing a list of stop words that
are the most common words in a language. The examples of stop words are short
words, for example: “the”, “is”, “at”, “which”, or “on” [38]. The universal list of stop
words does not exist, any set can be adopted depending on the purpose.

Next, stemming reduces the morphological variants of the word to its base (stem).
The algorithms enabling that operation are often called stemmers. In Python, that may be
implemented with the use of NLTK [39]. For English language, there exist two stemmers:
PorterStemmer and LancasterStemmer. For the purpose of this paper, the PorterStemmer
(PS) was chosen and tested with the designed models because of its simplicity and the
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Tokenization technique allows us to split the content of the e-mails into basic process-
ing units that are called tokens or features. Given that the paper deals with text data, the
tokens are simply separate words. For instance, the tokenized sentence “Subject: christmas
tree farm pictures” is a collection of strings: “Subject”, “:”, “christmas”, “tree”, “farm” and
“pictures”. The next step involves converting all tokens to lowercase. As a result of this
simple operation, the number of words taken into account is significantly reduced. Instead
of treating “Example”, “example” and “EXAMPLE” as three different words, after convert-
ing them to lowercase, we make sure that the program will count them as one (“example”).
Punctuation marks, digits, and stop words are all common in both spam and ham e-mails
and do not add any value to text analysis. Since we implement our solution in Python,
we refer to tools related to this programming language. There are several libraries and
functions that may be applied to eliminate the mentioned language elements not essential
from the spam detection viewpoint. Below is the list of functionalities chosen by us.

• Python method string.isalpha() checks whether the characters in the string are alpha-
betic or not. If the character is a digit, the method returns False.

• The method string.punctuation() allows removal of common punctuation marks, such
as commas, periods, semicolons, etc.

• Natural Language Toolkit (NLTK) offers a module containing a list of stop words that
are the most common words in a language. The examples of stop words are short
words, for example: “the”, “is”, “at”, “which”, or “on” [38]. The universal list of stop
words does not exist, any set can be adopted depending on the purpose.

Next, stemming reduces the morphological variants of the word to its base (stem).
The algorithms enabling that operation are often called stemmers. In Python, that may be
implemented with the use of NLTK [39]. For English language, there exist two stemmers:
PorterStemmer and LancasterStemmer. For the purpose of this paper, the PorterStemmer
(PS) was chosen and tested with the designed models because of its simplicity and the
speed of its operation. PS is dated to 1979 and often generates stems that are not authentic
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English words. It results from the fact that it is based on suffix stripping (examples shown
in Table 1). Instead of considering linguistics to build the stem, it applies a set of algorithmic
rules that decide if it is reasonable to remove the suffix or not.

Table 1. Examples of stemming with PS.

Word Before Word After

Cats Cat
Trouble Troubl

Troubling Troubl
Troubled Troubl

Other option, known as lemmatization, is a more complex approach to searching a
word’s stem. In this case, the root word is referred to as a lemma. First, the algorithm
identifies the part of the speech of a word; and then, based on this information, it applies
appropriate normalization. As in the stemming case, lemmatization mechanisms are also
provided by NLTK [39]. WordNet Lemmatizer (WNL) generates lemmas by searching for
them in the WordNet Database. Examples are shown in Table 2. In the research reported
here, text preprocessing was supported by the most basic lemmatization version in specific
test cases. However, the method works most efficiently when one defines the context by
assigning the value to pos parameter (for instance by giving it the value v—verb). Testing
with the pos value defined is outside of the scope of this paper, but its usefulness may be
noticed after the analysis of the impact the pos = v has on the verbs shown in Table 2.

Table 2. Examples of lemmatization with WNL.

Value pos Undefined

Word Before Word After

He He
Was Wa
Has Ha

Playing Playing

pos = v

Word Before Word After

He He
Was Be
Has Have

Playing Play

One may ask which one is better: stemming or lemmatization? The answer is that
it depends on the program and the requirements that one is working with. If speed is
a priority, then it is more beneficial to use stemming. When language is crucial for the
application’s purpose, lemmatizing should be a choice as it is more precise.

In e-mail spam filtering, the goal of building the dictionary structure (key-value with
unique keys) consists of assessing the word’s weight and importance given all available
text documents. First, word occurrences are calculated. In the case of the application
presented here, words are limited to strings of the length between 3 and 20 characters.
Single letters and extremely short/long strings do not add value to the paper (they are
common for both ham and spam).

First, we create two separate dictionaries (spamWords and hamWords). The function
responsible for the dictionary generation returns the number n n (defined during the tests)
of the most common words for each of them. Next, another function builds dictionaries
which include common words (subtractFromSpam, subtractFromHam). Based on these
structures, three others are defined:
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1. spamDictionary = spamWords − subtractFromSpam;
2. hamDictionary = hamWords − subtractFromHam;
3. finalDictionary = spamDictionary + hamDictionary.

According to the informal research carried out by Dave C. Trudgian [40], the unbal-
anced distribution of spam and ham most common words significantly affects the models’
accuracy. The results were improved when the final dictionary included more spam’s most
common words than ham’s most common words. Table 3 presents the ratios implemented
in the application described in this paper.

Table 3. Implemented most common words ratios (spam:ham).

No. Spam Ham Total

1 150 50 200
2 900 600 1500
3 2000 1000 3000

Employing machine-learning methods to classify an e-mail as spam or ham requires
representation of the text in a specific form. Given the chosen classifiers (described in
Section 3.4 below), the structures they need are feature vectors. Signal-to-noise ratio (SNR)
may be used to facilitate the understanding of the feature engineering concept. Although
the exact definition varies depending on the function in spam detection, its basic idea is
straightforward. SNR is the ratio of the input considered relevant to insignificant data.
In spam classification, a signal might be a typical word occurring in spam messages, and is
a noise word that is common for the given language and occurs in both spam and ham e-
mails (for example, one of the stop words) [41]. If the separation of the signal from the noise
is done badly, the noise can blur the true meaning of the signal. There are many feature
elimination techniques that might help us to identify the critical features, as well as decide
which ones should be removed. The methods used in this paper have already been shown
once (Figure 2). The objective of every single stage in the process of building the dictionary
is to reduce the number of irrelevant words. That is why the function responsible for the
dictionary creation and the one that converts e-mails into feature vectors, start with the
same lines of code, from the process of content tokenization to stemming/lemmatization.

The function that extracts features generates a feature matrix as an output. For each
e-mail, it creates a vector (the array data type in Python) of the dictionary’s length, filled
with 0 s. After going through all preprocessing stages, it compares the e-mail’s content
with the dictionary (word by word). If a word from the e-mail occurs in the dictionary,
1 is added to the vector’s elements. As a result, we obtain a feature matrix in which the
number of e-mails is the number of rows and the dictionary’s length describes the number
of columns.

3.4. Methods

The solutions discussed in this paper are based on supervised learning, since they
apply training sets with the target labels annotated. The generated dictionary is a mixture
of labeled words that are assigned to one of the two target categories: spam or ham. The
models make their predictions based on the dictionary’s content. One can imagine that a
question is posed to a program: if this e-mail consists of these words, is it spam or ham?
The model responds to this unknown question by comparing it to the similar questions
and answers (labels) it was given at the starting point.

The process of labeling (generating a dictionary in the case of the described application)
is carried out with the use of a training set. A test set is used to measure the program’s
performance during the last step of the experiment.

Classification, interesting in the context of this paper, is one of the prevailing super-
vised machine-learning tasks. Its goal is to predict discrete values (might be categories,
classes, or labels) for new examples (that had not been seen by the program before) from
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one or more features. The set of classes is finite and there are several types of learning.
Spam filtering is a two-class learning (also referred to as binary classification) [41]. The
program (or its part) performing a classification task is called a classifier. In this paper, the
classifiers were implemented with scikit-learn (sklearn), which is a free machine-learning
library for the Python programming language.

The training phase is aimed at minimizing the errors, but it is important to remember
that no model is perfect. Here, we use a set of typical measures defined in the context
of a confusion matrix: true negatives (TN), false positives (FP), false negatives (FN), and
true positives (TP). Out of the four, the most undesirable outcome in the case of spam
filtering is a false positive as it may result in losing a portion of critical information. Several
parameters which allow evaluation of the classifiers are built based on the values that make
up the confusion matrix: accuracy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV). Accuracy was the main indicator of the classifier
performance in the tests carried out in this research. In the most interesting cases, all five
parameters were calculated for each tested classifier.

Below, we present three machine-learning algorithms we are comparing on the task of
spam detection.

Despite its simplicity, k-nearest neighbours (k-NN) proved to be successful in a great
number of supervised machine-learning tasks [42]. k-NN perform the classification of
the new point (in the multidimensional space, where each point is a vector representing
a sample being a single e-mail), based on k elements in its nearest distance. k-NN is
sometimes called a “lazy learner”, which means that it does not need to learn, but waits for
classification until the very last moment. Gathering and labeling data could be referred
to as a training phase. Once it is ready, the training stage is also completed. However,
this fact leads to a time-consuming testing phase, during which the pairwise distances are
calculated and compared.

Supervised neighbour-based learning methods are provided by the sklearn.neigbours
library. k-NN may be implemented with the use of KNeighboursClassifier and the specific
line of code responsible for the model definition is (when k = 5):

model = KNeighboursClassifier (nneighbours = 5)
When a new query point is given, KNeighboursClassifier carries out learning based

on its k nearest points (n_neighbours). The distance function applied by us is simply the
standard Euclidean distance.

When the corpus we are working with is large, there may be hundreds of thousands
features in the dictionary. If we convert the text documents (for instance e-mails) into
feature vectors, each of them will then have hundreds of thousands of components and
most of them will be zero. Such vectors are referred to as sparse. High-dimensional data
are problematic for all machine-learning tasks due to the well-known curse of dimension-
ality [43].This is due to the higher demand for memory and computation compared to
low-dimensional vectors. This difficulty may be overcome with scipy Python library using
data types that can pull nonzero elements out of the sparse vectors. The second aspect
is related to the fact that with the high dimensionality comes a threat of the insufficient
number of documents in the training set. It is necessary to make sure that there are enough
training instances to cover all features. Otherwise, the algorithm operation may result in
overfitting, where the quality results are satisfactory for the training set of samples, but not
for the testing set (and the following usage cases).

Support vector machines (SVM) [44] are most typically used in classification applica-
tions, although their usefulness is broader (e.g., outlier detection). If given a labeled dataset,
SVM finds a classification (separation) hyperplane by searching for the maximum distance
between data points (vectors representing samples) belonging to different classes. There
exist two types of SVM models: hard-margin (each point needs to be classified accurately)
and soft-margin (incorrect classification is also acceptable). Contrary to k-NN classifier, it
is beneficial for the SVM to operate in high dimensions [45]. By increasing the number of
features, data points tend to be more efficiently separated. The points that are closest to
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the classification hyperplane are called support vectors. A hyperplane is also referred to
as a decision boundary and separates elements belonging to different categories. The gap
between the two hyperplanes drawn on support vectors is called a margin. The bigger the
margin, the better.

In the application built for the purposes of this paper, two support vector classification
(SVC()) based models, NuSVC() and LinearSVC(), were implemented with sklearn; with
all parameters taking default values.

The family of naïve Bayes (NB) classifiers is based on the Bayes theorem that bounds
absolute and conditional probabilities. In the case of machine learning and spam recogni-
tion, the probabilities can be associated with the relative frequencies of word appearance in
messages (i.e., relative frequency counting of words). The second concept is the so-called
naïve assumption that all features are independent of each other given the output (a class
to which they belong). Although this assumption of independence rarely holds true, naïve
Bayes classifier can perform a very successful classification, even if the training data does
not provide many examples. Moreover, the classifiers that belong to NB family are known
to be fast and simple.

The variant tested for the purpose of this paper is provided by sklearn. Multinomial
naïve Bayes classifier MultinomialNB() applies the NB algorithm to multinomially dis-
tributed data [46]. It is also the most common option used in text classification. The data
are represented in the form of word vector counts.

4. Numerical Results with Validation

The results were obtained based on our proprietary-software solution developed in
Python 3.7.3.

4.1. Datasets Structure

The classifiers were tested on four datasets of various sizes. Three of them (composed
of four datasets: enron1, enron2, enron4, enron5) are the extracts of the Enron Corpus [35].
In this phase, we propose to introduce cross-validation between different datasets (enron 1
and 4 as well as enron 2 and 5) in the training and test phases. These datasets’ structure
is described in detail in Tables 4–6. The fourth dataset (Table 7) is the exact copy of the
part of the Lingspam corpus, used by Gregory Piatetsky-Shapiro and Matthew Mayo as
a foundation for the paper described in [29]. The variety of the datasets provides the
opportunity to carry out broad research.

Table 4. Dataset 1 structure.

Training (≈73%) Test (≈27%)

enron1 enron2

Ham Spam Ham Spam

351 351 130 130

702 260

962

Table 5. Dataset 2 structure.

Training (≈63%) Test (≈37%)

enron1 enron2

Ham Spam Ham Spam

3672 1500 1493 1493

5172 2986

8158



Electronics 2021, 10, 2083 12 of 23

Table 6. Dataset 3 structure.

Training (≈67%) Test (≈33%)

enron1 enron4 enron1 enron4 enron2 enron5 enron2 enron5

Ham Spam Ham Spam

3672 1500 1500 4492 1464 1293 1464 1290

5172 5992 2757 2754

11,164 5511

16,675

Table 7. Dataset 4 structure.

Training (≈73%) Test (≈27%)

Lingspam

Ham Spam Ham Spam

351 351 130 130

702 260

962

4.2. Text-Preprocessing Impact on the Dictionary

Although the purpose of using the basic tex preprocessing methods (tokenization,
etc. see Section 3.3) is straightforward and easy to explain, things become complicated
regarding stemming and lemmatization. This chapter shows the differences in the ten
most common words in the dictionary when none of the two methods is applied and when
stemming or lemmatization is implemented. The test was repeated for each dataset and
the results are shown in Tables 8–11.

Table 8. Ten most common features for dataset 1.

Basic Methods Stemming Lemmatization

Word Occurrences Word Occurrences Word Occurrences

enron 462 enron 462 enron 462

nbsp 310 meter 329 meter 329

meter 298 nbsp 310 nbsp 310

pills 267 pill 279 pill 279

http 264 deal 269 deal 270

subject 229 http 264 http 264

deal 201 subject 229 subject 230

thanks 195 need 203 thanks 195

height 179 thank 202 volume 188

width 171 volum 188 need 183

For dataset 1, both stemming and lemmatization caused the number of occurrences of
the word deal increased by almost 70. Moreover, the words need and volum(e) appeared
in the table, pushing the words height and width out (Table 8). For dataset 2, implementing
either stemming or lemmatization resulted in the increase of the number of occurrences of
the word deal by almost 700. Furthermore, the word volum(e) appeared in top 10, pushing
the word forwarded out (Table 9). Table 10 presents the results for dataset 3, which is the
biggest one (includes 16,675 e-mails). Adding the function responsible for stemming or
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lemmatization contributed to the change in the number of occurrences of the deal word.
The number increased by approximately 800. When none of the method was present
in the program, word statements was the last one in the top 10 list. Once the method
(either stemming or lemmatization) was defined, the word schedul(e) emerged with the
significant number of occurrences (3852 for stemming and 2591 for lemmatization). Taking
dataset 4 into account, the differences were less visible (Table 11). What stands out is the
increased number of occurrences of the word order, which changed by almost 100 after
implementing each of the two methods. With stemming, linguist appears in the top 10,
pushing out the word free.

Table 9. Ten most common features for dataset 2.

Basic Methods Stemming Lemmatization

Word Occurrences Word Occurrences Word Occurrences

enron 6555 enron 6555 enron 6555

subject 4745 subject 4745 subject 4747

deal 2751 deal 3443 deal 3433

meter 2459 meter 2715 meter 2710

please 2230 pleas 2229 please 2230

daren 1901 thank 1945 daren 1901

thanks 1728 daren 1901 thanks 1728

corp 1644 volum 1645 corp 1644

mmbtu 1349 corp 1644 volume 1644

forwarded 1295 mmbtu 1408 mmbtu 1349

Table 10. Ten most common features for dataset 3.

Basic Methods Stemming Lemmatization

Word Occurrences Word Occurrences Word Occurrences

enron 7166 enron 7166 enron 7166

http 3119 deal 3879 deal 3872

deal 3073 schedul 3852 http 3108

meter 2443 http 3108 company 2839

company 2198 compani 2839 meter 2691

dbcaps 2010 meter 2697 schedule 2591

data 1996 dbcap 2010 dbcaps 2010

database 1921 data 1996 data 1996

daren 1901 databas 1908 database 1908

statements 1770 daren 1901 daren 1901

Above, significant differences were shown for only the ten most common words.
Therefore, if we refer to all 200, 1500 and 3000 words, there will be even more dissimilarity
in the number of word occurrences which sometimes leads to either including the word
in the dictionary or not. All designed models (k-NN, SVM, and NB) take e-mails as input.
The e-mails are represented as vectors, with the elements being the word counts, based on
the content of the dictionary. Let us assume that schedul(e) is a word strongly indicating
that the e-mail is not spam. For dataset 3, when the function responsible for building the
dictionary does not apply stemming or lemmatization, schedul(e) is not included in the
small dictionary of ten features (Table 10) and because of that it would not be taken as a
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valid portion of the information by the model. This could arise from the fact that the word
takes many forms, such as “schedule”, “schedules”, “scheduling”, “scheduled”—which
are all counted as separate words. Using stemming or lemmatization may prevent such
situations.

Table 11. Ten most common features for dataset 4.

Basic Methods Stemming Lemmatization

Word Occurrences Word Occurrences Word Occurrences

order 1190 order 1287 order 1269

report 1135 report 1213 report 1208

language 1089 mail 1107 language 1097

mail 987 languag 1097 address 996

address 959 address 1002 mail 987

e-mail 944 e-mail 960 e-mail 944

program 771 linguist 828 program 803

money 763 program 803 money 763

send 758 send 763 send 758

free 745 money 763 free 745

4.3. Spam Detection

Here, we discuss the results related to the five substages of our meta-algorithm. The
substages are introduced in Table 12.

Table 12. Five substages of checking the classifiers performance.

Substage No. of Tests Dataset Purpose

1 27 1 Checking the performance of the NuSVC, LinearSVC and MNB classifiers.
Finding the best-performing ones for the Stage 3 testing.

2 72 1 Checking the performance of the k-NN classifier for various k values. Finding the
best-performing ones for the Stage 3 testing.

3 10 2 Checking the performance of the classifiers with the specific parameters chosen in
Stage 1 and 2. Finding the best-performing ones for the Stage 4 and 5 testing.

4 4 3 Checking the performance of the classifiers with specific parameters chosen in
Stage 3. Recognition of the leading one.

5 4 4
Checking the performance of the classifiers with specific parameters chosen in
Stage 3. Recognition of the leading one and comparison with the results obtained
by Gregory Piatetsky-Shapiro and Matthew Mayo [29].

The exact results related to various substages are summarized in Appendix A given at
the end of the paper. Here, we give only the main findings. Based on the Substage 1 results,
the following facts may be observed:

• For all tests, the maximum accuracies were achieved by the MNB classifier.
• For each classifier, its maximum accuracy was obtained when stemming was imple-

mented.
• The highest test average accuracy was achieved when dict = 200, with stemming.

After Substage 1, three classifiers were chosen for testing in Substage 2:

• MNB—dict = 1500, lemmatization;
• LinearSVC—dict = 200, stemming;
• NuSVC—dict = 3000, stemming.
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The results based on confusion matrices are presented in Table 13. MNB classifier
provides the highest probability that the e-mail classified as ham is actually a desired
message (PPV = 0.887), while NuSVC performs best when predicting if the spam e-mail is
in fact a spam (NPV = 0.986).

Table 13. Evaluation of the chosen classifier performance in Substage 1.

Model Accuracy Sensitivity Specificity PPV NPV

MNB 0.923 0.969 0.877 0.887 0.966

LinearSVC 0.842 0.977 0.708 0.770 0.968

NuSVC 0.762 0.992 0.531 0.679 0.986

Substage 2 aimed to find the parameters (k and number of features in the dictionary)
for which k-NN classifies the e-mails most efficiently. Because of the k-NN’s computational
complexity, dataset 1 (the smallest one) was chosen to conduct the experiment. The three
highest accuracy values were obtained for the following parameters:

• accuracy = 0.915, k = 11, dict = 200, lemmatization;
• accuracy = 0.912, k = 9, dict = 200, no stemming or lemmatization;
• accuracy = 0.908, k = 11, dict = 200, no stemming or lemmatization.

The results of Substage 2 are interpreted with the help of graphs. Figure 3 shows the
maximum accuracy obtained for k across all Substage 2 results. The maximum is obtained
for k = 11. For values of k that are bigger than 11, the accuracy rapidly declines. This is
because the greater k, the simpler the classifier. Finally, if k is too big, most of the test points
will belong to the same (prevailing) class.

Figure 3. k-NN accuracy vs. k.

Figure 4 presents the accuracy of the average tests for each dictionary size. The higher
the data dimensionality, the worse the k-NN’s accuracy. The difference between k-NN
when dict = 200 and dict = 1500 or dict = 3000 is significant (≈0.2). To show the tendency,
the power trend line was added to the graph. As we can see, the accuracy tends to change
in a similar way. What is interesting, the power trend line and the exponential curve are
alike. The only difference is that the arc of the first one is more symmetrical [47]. Hence, it
may be concluded that in this case the accuracy experiences an exponential change.
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Figure 4. Accuracy of the average tests vs. dictionary length.

The three k-NN models with the highest accuracy were chosen to be tested in Sub-
stage 3. Table 14 presents the five indicator values. This allows performance of a more
thorough evaluation.

Table 14. Evaluation of the chosen classifiers performance in Substage 2.

k Accuracy Sensitivity Specificity PPV NPV

11 (1) 0.915 0.938 0.892 0.897 0.935

9 0.912 0.923 0.900 0.902 0.921

11 (2) 0.908 0.915 0.900 0.902 0.914

Substage 3 consisted of ten tests. The first six of them were chosen as the top results
of Substage 1 and Substage 2. The other four were conducted because of their promising
performance in the previous experiments. The top accuracy values were obtained for the
following parameters (these four models were designated for testing in Substages 4 and 5):

• MNB (1)—accuracy = 0.914, dict = 3000, lemmatization;
• MNB (2)—accuracy = 0.909, dict = 1500, lemmatization;
• NuSVC—accuracy = 0.885, dict = 1500, stemming;
• k-NN k = 11—accuracy = 0.828, dict = 200, lemmatization.

Table 15 includes the quality metrics related to the four models that will be tested
in Substages 4 and 5. When compared to MNB, NuSVC and k-NN have lower accuracy,
sensitivity, and NPV. However, both obtained better specificity and PPV parameters. On the
other hand, MNB was better at predicting the negative class.

Table 15. Evaluation of the chosen classifiers performance in Substage 3.

Model Accuracy Sensitivity Specificity PPV NPV

MNB (1) 0.914 0.952 0.876 0.885 0.948

MNB (2) 0.909 0.950 0.868 0.878 0.945

NuSVC 0.885 0.805 0.965 0.959 0.832

k-NN k = 11 0.828 0.719 0.938 0.920 0.769
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In Substage 4, once again, MNB models achieved the highest values of accuracy: 0.919
and 0.909. Surprisingly, k-NN with k = 11 performed slightly better than NuSVC. Except
for NuSVC, all models obtained higher accuracy than in Substage 3.

A collection of values that facilitate assessing the performance of the classifiers in
Substage 4 is presented in Table 16. A very low specificity was noted for NuSVC. The
model made a considerable mistake by classifying 933 ham e-mails as spam. The number
was approximately two times higher than in the case of the other classifiers.

Table 16. Evaluation of the classifiers performance in Substage 4.

Model Accuracy Sensitivity Specificity PPV NPV

MNB (1) 0.919 0.976 0.863 0.877 0.973

MNB (2) 0.909 0.972 0.846 0.863 0.968

NuSVC 0.829 0.996 0.662 0.746 0.995

k-NN k = 11 0.860 0.865 0.855 0.856 0.863

Substage 5 aimed at testing the classifiers that had performed best in Substage 3, but
on the dataset that was not related to Enron. The sizes of dataset 1 and the one used in this
substage (dataset 4, extracted from Lingspam corpus) were the same and that is why the
accuracies will be compared to those obtained in Substage 1. The training set consisted of
702 e-mails. In the test set, there were 260 messages. In both cases, when MNB classified
the messages, it achieved the highest accuracy. For MNB (1), there were 3000 features in the
dictionary, for MNB (2)—1500. In each case, the lemmatization was added to the program.
k-NN fared the worst—much less than it achieved in Substage 1, when its accuracy was
0.915 for the same parameters. This may be a result of the source dataset content (Enron vs.
Lingspam). NuSVC improved its accuracy by 0.157.

Table 17 summarizes metrics for the 4 models tested in Substage 5 and for the results
obtained by G. Piatetsky-Shapiro and M. Mayo in a similar experiment on the same
dataset [29]. The probability that k-NN classified a harmful message as spam is only
0.608—this is the bottom value among all results. This fact has a direct impact on the
accuracy of k-NNs, which was the lowest one in this substage. Both MNB models obtained
specificity and PPV equal to 1. It means there was not a single non-spam e-mail that would
be misclassified as spam. Moreover, the total number of misclassified e-mails was only 10
(spam classified as ham). In Substage 5, for dataset 4, MNB classifier turned out to be nearly
perfect. The results are a little better than those achieved by G. Piatetsky-Shapiro and
M. Mayo [29]. This is possibly because of the more complex text-preprocessing methods
that were implemented.

Table 17. Evaluation of the classifiers performance in Substage 5.

Model Accuracy Sensitivity Specificity PPV NPV

MNB (1) 0.962 0.923 1 1 0.929

MNB (2) 0.962 0.923 1 1 0.929

NuSVC 0.915 0.862 0.969 0.966 0.875

k-NN k = 11 0.796 0.608 0.985 0.975 0.715

Results obtained by G. Piatetsky-Shapiro and M. Mayo [29]

MNB 0.962 0.931 0.992 0.992 0.935

4.4. Method Validation and Discussion of Results

First, we note that text preprocessing has a significant impact on the behavior of the
classifiers. There is no doubt it is always beneficial to apply the basic methods, such as
conversion to lowercase (or uppercase as the effect is the same), removing stop words,
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digits or punctuation marks and other techniques, as described in Figure 2. Implementing
advanced text-preprocessing methods (stemming or lemmatization) allows the acquisition
of higher accuracy of the classification.

Second, the selected size of the dictionary (the number of features) matters. For
the support vector machines and naïve Bayes classification, the results were better if
the number of features was larger. On the contrary, k-NNs’ accuracy tends to decrease
rapidly for higher data dimensionality. k-NN obtained the highest accuracy for the smallest
dictionary size. k-NN performs well when that data dimensionality is low. Its efficiency
is also highly dependent on the k parameter. It might be assumed that if k-NN achieves
the maximum accuracy for the given kmax, the performance will experience a sharp drop
for k > kmax. Testing the support vector classification methods proved that LinearSVC is
relatively efficient when the dataset is small. For large datasets NuSVC classification is
more accurate.

Third, among all designed classifiers, MNB turned out to be a leader. In the relevant
stages, the maximum accuracy across all results was obtained by MNB. Naïve Bayes
classification is efficient in all cases but eventually returns the best outcomes when the
dictionary consists of many features and the lemmatization technique is included in the
application.

Fourth, the classifiers that achieved the best results when tested on the extract from
the Enron Corpus, classified the e-mails even more accurately for the dataset extracted
from the Lingspam corpus. This indicates that the content (words) and the structure of the
data impact the model performance directly.

Fifth, the most important aspect related to validation of our work is related to the
quality of the obtained results. Here, one of the most important aspect of our proposal is
summarized with Table 18. It shows a signification progress in comparison with the results
reported in the referenced literature (the highest values are marked in red). One can see
that especially the specificity provided by our approach is attractive. It is important in the
case of unbalanced datasets and applications related to anomaly detection (where spam
detection is also assigned).

Table 18. Comparison of the validation results with various performance metrics.

Method Measure Our Result Results Reported in the Literature

MNB Accuracy 0.962 0.477 [7], 0.598 [24], 0.832 [23], 0.898 [11], 0.917 [14],
0.957 [10], 0.962 [29], 0.994 [5]

MNB Sensitivity 0.923 0.496 [7], 0.897 [11], 0.931 [29]

MNB Specificity 1 .000 0.516 [7], 0.900 [11], 0.992 [29]

SVM Accuracy 0.915 0.840 [24], 0.917 [14], 0.919 [11], 0.940 [12], 0.962 [5],
0.966 [22], 0.971 [10]

SVM Sensitivity 0.867 0.901 [12], 0.918 [11], 0.976 [22]

SVM Specificity 0.969 0.920 [11]

k-NN Accuracy 0.796 0.453 [7], 0.846 [23], 0.908 [11], 0.920 [13], 0.990 [21]

k-NN Sensitivity 0.608 0.319 [7], 0.921 [11]

k-NN Specificity 0.985 0.478 [7], 0.887 [11]

5. Summary

The proposed multistage meta-algorithm for checking the classifiers performance,
including an experimental method that involves the use of cross-validation between differ-
ent datasets, allowed us to obtain reliable performance metrics in our illustrative example
limited to the three important and representative classifiers. According to our results,
which are consistent with other literature studies (but also typically outperform them
from the viewpoint of the used metrics, especially aligned with unbalanced datasets), the
multinomial naïve Bayes classifier is a method that once combined with well-thought text-
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preprocessing techniques as used in our meta-algorithm, may turn into the best weapon
against spammers, who are becoming wiser every day. The advantage of our solution
is that it can work with large datasets and give reliable results in a short time period by
introducing the concept of fast recognition of the most interesting parameters. Moreover,
the proposed method allows for cross-validation between different datasets in training and
test phases.

Finally, the whole validation study presented in the paper based on our multistage
meta-algorithm, including especially many (five) substages of cross-validation, shows
that the whole method is robust. It is run on a standard desktop PC and operates within
minutes to prove the results.
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Appendix A

Here, we present the detailed results related to our numerical study, especially the
ones related to the five substages.

The results obtained in Substage 1, with some additional parameters (such as test/model
average and test/model maximum) are shown in Table A1.

Table A1. Accuracies obtained in Substage 1 tests.

Accuracies

Stem/Lem No. Stemming Lemmatization Model-Avg Model-Max

200 1500 3000 200 1500 3000 200 1500 3000

NuSVC 0.750 0.757 0.758 0.758 0.758 0.762 0.754 0.735 0.738 0.752 0.762

LinearSVC 0.804 0.796 0.804 0.842 0.773 0.762 0.823 0.792 0.781 0.797 0.842

MNB 0.900 0.915 0.919 0.923 0.888 0.885 0.900 0.923 0.915 0.908 0.923

Test-avg 0.818 0.823 0.827 0.841 0.806 0.803 0.826 0.817 0.811

Test-max 0.900 0.915 0.919 0.923 0.888 0.885 0.900 0.923 0.915

All results of Substage 2 are presented in Table A2.

Table A2. Accuracies obtained in Substage 2 tests.

Accuracies

Stem/Lem No. Stemming Lemmatization Model-Avg Model-Max

k 200 1500 3000 200 1500 3000 200 1500 3000

1 0.870 0.815 0.758 0.838 0.750 0.720 0.808 0.812 0.758 0.792 0.870

3 0.897 0.819 0.658 0.892 0.765 0.758 0.850 0.823 0.665 0.792 0.897

5 0.900 0.692 0.616 0.892 0.669 0.685 0.873 0.685 0.642 0.739 0.900

7 0.900 0.654 0.600 0.896 0.646 0.642 0.904 0.658 0.635 0.726 0.904

9 0.912 0.635 0.588 0.900 0.627 0.638 0.904 0.631 0.592 0.714 0.912

11 0.908 0.608 0.581 0.900 0.611 0.619 0.915 0.600 0.588 0.703 0.915

15 0.827 0.578 0.577 0.842 0.600 0.615 0.823 0.588 0.588 0.671 0.842

21 0.773 0.578 0.570 0.788 0.600 0.588 0.754 0.585 0.585 0.647 0.788

Test-avg 0.873 0.672 0.619 0.869 0.659 0.658 0.854 0.673 0.632

Test-max 0.912 0.819 0.758 0.900 0.765 0.758 0.915 0.823 0.758
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The results of Substage 3 are presented in Table A3.

Table A3. Accuracies obtained in Substage 3 tests.

Test Model Accuracy
(Substage 1/2) Dictionary Length Stem/Lem Accuracy

(Substage 3)

1 MNB 0.923 1500 lem 0.909

2 k-NN k = 11 0.915 200 lem 0.828

3 k-NN k = 9 0.912 200 no 0.825

4 k-NN k = 11 0.908 200 no 0.821

5 LinearSVC 0.842 200 stem 0.880

6 NuSVC 0.762 3000 stem 0.884

Additional tests

7 NuSVC 0.762 1500 stem 0.885

8 MNB 0.923 3000 lem 0.914

9 k-NN k = 11 0.915 1500 lem 0.795

10 LinearSVC 0.842 1500 stem 0.859

The results of Substage 4 are shown in Table A4.

Table A4. Accuracies obtained in Substage 4 tests.

Test Model Accuracy
(Substage 3) Dictionary Length Stem/Lem Accuracy

(Substage 4)

1 MNB (1) 0.914 3000 lem 0.919

2 MNB (2) 0.909 1500 lem 0.909

3 NuSVC 0.885 1500 stem 0.829

4 k-NN k = 11 0.828 200 lem 0.860

The accuracies obtained by the classifiers in Substage 5 are presented in Table A5.

Table A5. Accuracies obtained in Substage 5 tests.

Test Model Accuracy
(Substage 1) Dictionary Length Stem/Lem Accuracy

(Substage 5)

1 MNB (1) 0.915 3000 lem 0.962

2 MNB (2) 0.923 1500 lem 0.962

3 NuSVC 0.758 1500 stem 0.915

4 k-NN k = 11 0.915 200 lem 0.796

The confusion matrices of MNB (1) and MNB (2) are identical and presented below
as Table A6.

Table A6. MNB (1) and MNB (2) confusion matrix in Substage 5.

Ham Spam

Ham 130 0

Spam 10 120



Electronics 2021, 10, 2083 22 of 23

References
1. Bauer, E. 15 Outrageous Email Spam Statistics that Still Ring True in 2018. Available online: https://www.propellercrm.com/

blog/email-spam-statistics (accessed on 6 August 2021).
2. Symantec. Internet Security Threat Report. 2019. Available online: https://www.symantec.com/content/dam/symantec/docs/

reports/istr-24-2019-en.pdf (accessed on 6 August 2021).
3. Ferrara, E. The History of Digital Spam. Commun. ACM 2019, 62, 82–91. [CrossRef]
4. Dada, E.G.; Bassi, J.S.; Chiroma, H.; Adetunmbi, A.O.; Ajibuwa, O.E. Machine Learning for Email Spam Filtering: Review,

Approaches and Open Research Problems. Heliyon 2019, 5, e01802. [CrossRef] [PubMed]
5. Awad, W.A.; ELseuofi, S.M. Machine Learning Methods for Spam E-Mail Classification. Int. J. Comput. Sci. Inf. Technol. 2011, 3,

173–184. [CrossRef]
6. Sharma, S.; Arora, A. Adaptive Approach for Spam Detection. Int. J. Comput. Sci. Issues 2013, 10, 23.
7. Harisinghaney, A.; Dixit, A.; Gupta, S.; Arora, A. Text and Image Based Spam Email Classification using KNN, Naïve Bayes

and Reverse DBSCAN Algorithm. In Proceedings of the International Conference on Reliability Optimization and Information
Technology (ICROIT), Faridabad, India, 6–8 February 2014; pp. 153–155. [CrossRef]

8. Sharma, D. Experimental Analysis of KNN with Naive Bayes, SVM and Naive Bayes Algorithms for Spam Mail Detection. Int. J.
Comput. Sci. Technol. 2016, 7, 225–228.

9. Sharma, U.; Khurana, S.S. SHED: Spam Ham Email Dataset. Int. J. Recent Innov. Trends Comput. Commun. 2017, 5, 1078–1082.
10. Jawale, D.S.; Mahajan, A.G. Hybrid Spam Detection using Machine Learning. Int. J. Adv. Res. Ideas Innov. Technol. 2018, 4,

2828–2832.
11. Bassiouni, M.; Ali, M.; El-Dahshan, E.A. Ham and Spam E-Mails Classification Using Machine Learning Techniques. J. Appl.

Secur. Res. 2018, 13, 315–331. [CrossRef]
12. Shajideen, N.M.; Bindu, V. Spam Filtering: A Comparison between Different Machine Learning Classifiers. In Proceedings of the

Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31
March 2018; pp. 1919–1922. [CrossRef]

13. Suryawanshi, S.; Goswami, A.; Patil, P. Email Spam Detection: An Empirical Comparative Study of Different ML and Ensemble
Classifiers. In Proceedings of the IEEE 9th International Conference on Advanced Computing (IACC), Tiruchirappalli, India,
13–14 December 2019; pp. 69–74. [CrossRef]

14. Shahariar, G.M.; Biswas, S.; Omar, F.; Shah, F.M.; Hassan, S.B. Spam Review Detection Using Deep Learning. In Proceedings of
the IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC,
Canada, 17–19 October 2019; pp. 0027–0033. [CrossRef]

15. Swetha, M.S.; Sarraf, G. Spam Email and Malware Elimination Employing Various Classification Techniques. In Proceedings
of the 4th International Conference on Recent Trends on Electronics, Information, Communication and Technology (RTEICT),
Bangalore, India, 17–18 May 2019; pp. 140–145. [CrossRef]

16. Gaurav, D.; Tiwari, S.M.; Goyal, A.; Gandhi, N.; Abraham, A. Machine Intelligence-based Algorithms for Spam Filtering on
Document Labeling. Soft Comput. 2020, 24, 9625–9638. [CrossRef]

17. Ablel-Rheem, D.M.; Ibrahim, A.O.; Kasim, S.; Almazroi, A.A.; Ismail, M.A. Hybrid Feature Selection and Ensemble Learning
Method for Spam Email Classification. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 217–223. [CrossRef]

18. Kumar, N.; Sonowal, S. Nishant, Email Spam Detection Using Machine Learning Algorithms. In Proceedings of the Second
International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 15–17 July 2020; pp.
108–113. [CrossRef]

19. Gibson, S.; Issac, B.; Zhang, L.; Jacob, S.M. Detecting Spam Email with Machine Learning Optimized with Bio-Inspired
Metaheuristic Algorithms. IEEE Access 2020, 8, 187914–187932. [CrossRef]

20. Karimovich, G.S.; Jaloldin ugli, K.S.; Salimbayevich, O.I. Analysis of Machine Learning Methods for Filtering Spam Messages
in Email Services. In Proceedings of the International Conference on Information Science and Communications Technologies
(ICISCT), Tashkent, Uzbekistan, 4–6 November 2020; pp. 1–4. [CrossRef]

21. Nandhini, S.; Marseline, K.S. Performance Evaluation of Machine Learning Algorithms for Email Spam Detection. In Proceedings
of the International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 24–25
February 2020; pp. 1–4. [CrossRef]

22. Saidani, N.; Adi, K.; Allili, M.S. A Semantic-Based Classification Approach for an Enhanced Spam Detection. Comput. Secur. 2020,
94, 101716. [CrossRef]

23. Hossain, F.; Uddin, M.N.; Halder, R.K. Analysis of Optimized Machine Learning and Deep Learning Techniques for Spam
Detection. In Proceedings of the IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON,
Canada, 21–24 April 2021; pp. 1–7. [CrossRef]
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