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Abstract: Distributed denial of service (DDoS) attacks aim to deplete the network bandwidth and
computing resources of targeted victims. Low-rate DDoS attacks exploit protocol features such as the
transmission control protocol (TCP) three-way handshake mechanism for connection establishment
and the TCP congestion-control induced backoffs to attack at a much lower rate and still effectively
bring down the targeted network and computer systems. Most of the statistical and machine/deep
learning-based detection methods proposed in the literature require keeping track of packets by flows
and have high processing overheads for feature extraction. This paper presents a novel two-stage
model that uses Long Short-Term Memory (LSTM) and Random Forest (RF) to detect the presence
of attack flows in a group of flows. This model has a very low data processing overhead; it uses
only two features and does not require keeping track of packets by flows, making it suitable for
continuous monitoring of network traffic and on-the-fly detection. The paper also presents an LSTM
Autoencoder to detect individual attack flows with high detection accuracy using only two features.
Additionally, the paper presents an analysis of a support vector machine (SVM) model that detects
attack flows in slices of network traffic collected for short durations. The low-rate attack dataset used
in this study is made available to the research community through GitHub.

Keywords: deep learning models; distributed denial of service attacks; HTTP slow-read attacks;
machine learning models; network security; TCP SYN floods

1. Introduction

Denial of service (DoS) attacks attempt to exhaust the network bandwidth or comput-
ing resources of a target by overwhelming it with network traffic. If the attack traffic is
generated from multiple sources, then it is a distributed denial of service (DDoS) attack,
which is harder to mitigate since simple Internet Protocol (IP) address filters do not work.
DDoS attacks, in addition to making target networks and servers unavailable for legitimate
users, can hide the network traffic of malware propagating laterally within an organization
or communicating with their command and control centers [1]. DDoS attacks exploit
the protocols at the network, transport, or application layers of the transmission control
protocol (TCP)/IP protocol stack [2].

DDoS attacks can range from high-rate TCP SYN flooding attacks—the attacker sends
TCP SYN requests but does not complete the three-way handshake—to low-rate HTTP
slow-read attacks—the attacker initiates an HTTP GET request but throttles the Web server
by indicating small or zero advertised receive window values [1]. The availability of attack
tools such as Mirai [3], slowHTTPtest [4], Booter [5], and IPStresser [6], made these attacks
bigger, easier to launch, and more frequent. Cisco report predicts that DDoS attacks will
grow to 15 million by 2023 [7].

Recently, many researchers have applied Machine Learning (ML) and Deep Learning
(DL) techniques for DDoS detection and have claimed them to be highly accurate [8–10].
Most of these detection techniques are for high-rate DDoS attacks.
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1.1. Challenges to Low-Rate Attack Detection

The recent attacks such as the one on AWS (Amazon Web Services) [11] show that
the nature of the DDoS attacks is changing from the typical high-volume flooding attacks
to more stealthy low-rate attacks. Kuzmanovic and Knightly [12] investigated the per-
formance impact of one such low-rate DoS attack, which they called the Shrew attack.
Since then, many variants of the low-rate attacks, such as the pulsing attacks [13] and the
reduction of quality (RoQ) attacks [14] have been proposed and analyzed [15]. A low-rate
DDoS (LDDoS) attack is more difficult to detect since its average traffic volume is not
significantly different from that of normal traffic. However, it cannot be ignored as it
impacts legitimate traffic over time. Figure 1 shows the impact of a low-rate pulse-shaped
SYN flooding attack on normal traffic; the attacker sends SYN requests at a peak rate of
50 requests per second (rps) for short durations of time, but the average rate is only 2.5 rps.
However, the number of benign traffic flows is reduced to 0 after some time owing to
the attack.

Figure 1. The impact of a pulse-shaped SYN flooding attack with an average rate of 2.5 rps (and peak
rate of 50 rps) on benign traffic. The x-axis is marked by 10-s intervals, and the y-axis represents
number of new benign and attack flows in each interval.

There has been extensive research on identifying the pulse-shaped LDDoS attacks in
which new connections are initiated by the attacker at a high rate for very short periods
followed by long periods of no activity. A victim network under attack exhibits fluctuations
in the network traffic, which may be reflected in features (attributes) such as source and
destination IP addresses, the time between new connections, and traffic rate. Several
frequency-domain techniques [16–18] such as wavelet and spectral analyses and time-
domain techniques [19–21] using Shannon or generalized entropy, information distance,
and statistical thresholds have been explored. However, they often have low detection
accuracy, high data processing overhead, or both.

There are several recent results on LDDoS attack detection using ML/DL techniques.
Furthermore, these results use a large number of features, and extracting the data for
these features from the network traffic requires grouping packets by flows and significant
processing. Such high overhead approaches are suitable for offline analysis of network
traffic but are impractical for real-time detection of LDDoS attacks [22,23].
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1.2. Contributions of This Paper

In this paper, we are interested in designing and analyzing low-overhead ML/DL
techniques to detect low-rate DDoS attacks on the fly. We consider LDDoS attacks consisting
of bogus TCP SYN requests and HTTP slow-read tactics. We present machine and deep
learning models that detect attacks by examining the network traffic at various degrees of
granularity: individual flows, groups of flows, and slices of network traffic collected over
intervals of time. Our main contributions are as follows:

• We present a novel two-stage hybrid model that accurately detects low-rate DoS
attacks by examining windows (groups) of flows at a time with low overhead. This hy-
brid model combines the benefits of self-supervised and supervised learning through
a long short-term memory (LSTM) Autoencoder and RF random forest (RF) model,
respectively, and uses only two features to detect attacks with high accuracy.

• We present an LSTM Autoencoder model that can detect individual attack flows with
high accuracy while using only two data attributes from the network traffic, taken
from the first two seconds of each flow.

• We evaluate the suitability of a support vector machine (SVM) model, with prin-
cipal component analysis (PCA) for feature selection, to detect attacks in slices of
network traffic.

• We publicly release the UTSA 2021 Low-rate DoS Attack dataset [24], collected from
our experimental SDN testbed (It includes the SYN flooding attack shown in Figure 1).

The paper is organized as follows. Section 2 discusses the related work on ML/DL
techniques used in DDoS detection and various techniques used in LDDoS detection.
Section 3 presents three ML/DL models to detect attacks with various degrees of granularity.
Section 4 describes the UTSA-2021 dataset generation and its preprocessing to extract
various features. Section 5 presents the performances of the models, and Section 6 concludes
the paper.

2. Related Work

In this section, we review the relevant literature on machine learning and other
techniques used for high- and low-rate DDoS attack detection.

2.1. Machine Learning Techniques for DDoS Detection

The DDoS attack detection using machine learning (ML) techniques can be categorized
as supervised, unsupervised, or semi-supervised learning.

2.1.1. Supervised Learning

Supervised learning methods require the data to be labeled (marked as benign or
attack) for training and validation. Doshi et al. [8] proposed a DDoS detection method
in IoT (Internet of Things) networks. They set up a consumer IoT device network. The
benign and malicious traffic was collected using a Raspberry Pi v3 access point (middlebox);
data for the features are extracted from the collected traffic; stateless and stateful features
were engineered into a five-tuple feature vector. Various supervised algorithms were
used to distinguish benign and attack packets. Random forest (RF), K-nearest neighbors
(KNN), and neural network (NN) methods showed promising results with 99% accuracy.
Yuan et al. [25,26] proposed DeepDefense, a DL based technique, to identify DDoS attacks.
ISCX2012 dataset [27] was used for training and cross-validation. The features collected
were based on text, binary and numeric fields of the packets. The model includes recurrent
neural networks (RNNs), convolutional neural networks (CNNs), and long short-term
memory (LSTM) algorithms, particularly the 3LSTM providing the highest accuracy of
98.4%. Osanaiye et al. [28] and Zekri et al. [29] used decision trees, J48 and C4.5, respectively,
for DDoS detection in a cloud environment.
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2.1.2. Unsupervised Learning

Unsupervised algorithms are used when available data are not labeled, and anoma-
lous patterns are to be detected. Therefore, it is easy to find datasets for unsupervised
algorithms. Braga et al. [9] proposed a lightweight DDoS attack detection method and
implemented it on a NOX-based software-defined network (SDN). The controller collects a
six-tuple traffic flow feature information from OpenFlow switches. Further, self- organizing
maps (SOMs) are used to perform DDoS attack detection. Niyaz et al. [30] proposed a
deep learning-based DDoS detection system in SDNs with a POX controller. They collected
the flows and extracted various features from TCP, UDP, and ICMP traffic, and computed
the Shannon entropy of the data for these features. They used these features in a Stacked
Autoencoder (SAE), which consists of stacked sparse autoencoders and a soft-max clas-
sifier, for unsupervised learning and classification. Most of the unsupervised algorithms
proposed in literature achieve 99% or higher detection accuracy.

2.1.3. Combining Supervised, Unsupervised, and Semi-Supervised Learning

He et al. [10] proposed an ML-based source-side DDoS detection in a cloud environ-
ment. They evaluated nine supervised and unsupervised ML algorithms against different
attacks, namely SSH Brute Force, DNS reflection attack, ICMP floods, and TCP SYN floods.
The OpenStack cloud infrastructure was used to generate traffic, and different statistical fea-
tures for each attack were collected. Idhammad et al. [31], unlike most of the existing work,
proposed an online sequential semi-supervised learning approach for DDoS detection. The
unsupervised part includes entropy estimation to detect the abrupt changes in the network
and co-clustering algorithms combined with information gain ratio for dimensionality
reduction. A supervised algorithm, namely extra trees, was used for classification. They
used three public datasets, namely NSK-KDD, UNB ISCX 2012, and UNSW-NB15. Suresh
and Anita [32], and Kokila et al. [33] evaluated the performances of the supervised and
unsupervised machine learning algorithms on CAIDA and DARPA datasets, respectively.

Most of the existing works investigated high-rate flooding attacks at the transport or
network layer, while some investigated the application layer attacks such as HTTP GET,
SSH Brute force, and DNS Reflection. Most of the results focus on the detection of attack
flows, often with high data processing overhead.

2.2. Machine Learning and Other Techniques for LDDoS Detection

Based on the current literature, the detection mechanisms of LDDoS can be classified
as frequency-domain and time-domain-based detection, traffic-feature-based detection
(specifically, when current traffic is under certain conditions, such as an attack or conges-
tion), and machine learning based detection. These mechanisms use the high pulse rate
and periodic characteristics of LDDoS to detect and filter the attack packets. We review
these detection methods below.

2.2.1. Frequency-Domain Based Detection

The frequency domain uses signal processing to detect and filter LDDoS attacks. To
process the signals, first, the traffic data are collected in the time domain and transformed
into the frequency domain using the discrete Fourier transform (DFT). The transformed
signals are distributed in all the frequency bands when there is no attack. On the other
hand, the signals are concentrated in low-frequency bands during an attack owing to its
periodic nature. This feature is used with wavelet or spectral analysis to diagnose and
detect attack flows.

He et al. [17] proposed a detection mechanism based on wavelet analysis which
transforms the network traffic into fifth-order wavelet coefficients. These coefficients are
used to train a backpropagation (BP) neural network to diagnose the network traffic and
detect attacks by locating the malicious pulses.

Agrawal and Tapaswi [34] use the power spectral density (PSD) method to identify
low-rate DoS attacks in a cloud environment. The data are collected in the time domain,
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transformed into the frequency domain using DFT, and the PSD values are calculated. The
traffic is classified as an attack if the PSD values are more concentrated in low-frequency
bands. Similarly, Bryneilsson and Sharma [35] used spectral analysis for detecting low-rate
DoS attacks against application servers. This attack, called LoRDAS by the authors, exploits
the HTTP protocol and targets the persistent connection or the keep-alive feature in HTTP
1.1. Chen and Hwang [16] proposed collaborative detection and filtering scheme using
spectral analysis of specific traffic characteristics to detect shrew attacks. The use of spectral
analysis for attack detection has been studied over the past decade [18]. Although the
frequency domain is useful to classify low-rate attacks, it has a high overhead, caused by
signal conversion, and high false-positive rates.

2.2.2. Time-Domain Based Detection

The process of detecting LDDoS attacks using the time domain is similar to frequency
domain detection with the advantage that it eliminates the complexity of converting the
traffic data into signals, which reduces the detection time. Information measurements, such
as the entropy and the information distance, are frequently used in time domain-based
detection mechanisms.

Xiang et al. [20] proposed a combination of generalized entropy and information
distance to measure the difference between legitimate and malicious traffic. The technique
uses the differences in the averages of the entropies for normal and attack traffic for attack
detection. The spacing is directly proportional to the order of α; therefore, an increase in α
increases the spacing. The traffic for which spacing is greater than a certain threshold is the
attack traffic. Similar research has been done by Sahoo et al. [21] in an SDN-based data
center. Likewise, Zhang et al. [19] proposed an advanced entropy-based (AEB) scheme to
distinguish LDDoS attacks from the flash crowd and legal traffic. The scheme divides the
attack field into subfields of attack and treats each field with a different method. Unlike
the earlier techniques, this is a self-adaptable technique. The self-adaptability feature of
the detection technique is prone to adapt to undetected attack traffic. On the other hand,
Tang et al. [36] combined Hilbert Spectrum and Pearson Correlation coefficient to detect
LDDoS attack packets in a detection window of 20 s. Despite the benefits of simplicity and
quick detection time, time-domain-based detection methods have lower detection rates
than the other approaches.

2.2.3. Traffic-Feature Based Detection

The abnormal fluctuations in the victim’s network under attack can be used as features
to detect LDDoS attacks. Wu et al. [37] studied the multi-fractal characteristics [38] of
small-scale network traffic caused by LDDoS attacks. Through the wavelet analysis, the
HÖlder index estimates the singularity and the burstiness of the traffic under LDDoS
attack. The difference between the HÖlder exponent of attack and normal network traffic
is calculated and used for attack detection. HÖlder exponent drastically falls during an
attack and suddenly rises during the end of it. This exponent value is used to compare
against a fixed threshold that is set based on statistical analysis for attack detection.

Zhang et al. [39] proposed LDDoS detection based on the congestion participation rate
(CPR), which is the ratio of incoming packets in congestion to the total number of packets in
a flow. Normal TCP flows tend to send fewer packets during network congestion, whereas
the attack flows send more packets.

2.2.4. Machine Learning Based Detection

Recently, several researchers combined the time-, frequency-, or feature-based data
collection and sampling to train various ML models for LDDoS detection. He et al. [17]
combined wavelet analysis with backpropagation neural networks for attack detection.
Yan et al. [40] extracted the characteristics such as average, variance, and entropy of TCP
traffic and used them as features to train an improved logistic regression model to detect
low-rate DoS attacks. Similarly, Zhang et al. [41] combined the principal component analysis
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(PCA) with the support vector machine (SVM) model to detect attacks. The characteristics
of TCP flows are extracted as principal components by filtering the noise interference.
The extracted principal components of the training set are used to train the SVM model.
Liu et al. [42] proposed a detection approach based on multi-feature fusion. The data for
the features such as the average queue length, packet size, and ACK sequence number
difference are extracted from the network traffic. These features are further digitized and
processed to fit the KNN classifiers separately. The outputs of the three classifiers are fitted
to a posteriori probability to obtain a decision contour matrix and classify LDDoS attack
traffic with 99.22% accuracy.

Wu et al. [43] studied the low-rate DDoS attack mechanism against the SDN data
layer. The attack is adopted from the slow ternary content-addressable memory (TCAM)
exhaustion attack [44]. Further, features such as time duration, packet number, relative
dispersions of matched bytes, and relative dispersions of packet intervals are extracted and
applied to a Factorization Machine model to detect an attack. Similarly, Perez et al. [45]
proposed a framework to detect low-rate DDoS attacks in an SDN environment. The
framework is a module in the ONOS controller, which facilitates the implementation of
various ML models such as the J48 decision tree, REP tree, random tree, random forest,
multi-layer perceptron (MLP), and SVM for the attack detection. Every ML model is trained
with the AppDDoS dataset [46] and tested with the traffic generated on the simulation.
MLP outperformed all other models with an accuracy of 95.01%.

We note that various research is carried out about using DL/ML techniques for LDDoS
detection. However, most of the proposed techniques use network traffic in which the
attack congests the core links in the target network; additionally, the techniques make use
of continuous TCP flows as benign traffic. Our work focuses on attacks that do not aim to
congest target networks but reduce TCP throughput and develop detection techniques for
such attacks.

In summary, the DDoS and LDDoS attacks have been addressed by the research
community using very different approaches: supervised or unsupervised learning; public
or private datasets; real or own generated traffic; different contexts such as the IoT, cloud
computing, and SDN; a vast number of preprocessing techniques and derived features
such as the information distance and time- or frequency-domain features. The reported
performance ranged from 91.0% to 99.9% based on diverse metrics such as area under
the curve (AUC) of the receiver operating characteristics (ROC) curve, F1-score, accuracy,
precision, and recall. Almost all of these methods have high data processing overheads
and are mostly suitable for offline analyses of traffic.

3. DDoS Attack Detection Models

We are interested in LDDoS attacks that exploit the TCP protocol design and features.
Specifically, we are interested in detecting pulse-shaped SYN floods and HTTP slow-reads.
The attack detection can be done by flows, in which each flow is evaluated and determined
whether it is benign or malicious, by windows of flows, in which a collection of flows is
evaluated to determine whether the collection has all benign flows or not, or by data-slices,
in which the traffic collected for a given duration of time is evaluated to determine if it
contains any malicious traffic.

3.1. Motivation for New LDDoS Attack Detection Models

The detection of LDDoS attacks requires continuous network traffic analysis since
these attacks can be present in seemingly normal traffic. However, most of the detection
techniques for LDDoS attacks are at the flow level and require the extraction of features
from multiple packets of each flow; keeping track of packets by flow is a resource-intensive
task. Many of these models use a large number of features, which requires more training
data and longer training times. Therefore, these techniques are suitable for offline analyses
of network traffic but are impractical for real-time detection of LDDoS attacks. We address
this limitation by designing new ML/DL models that have low data-processing overheads
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and are suitable for continuous monitoring of network traffic for on-the-fly detection of
LDDoS attacks.

We have investigated various ML/DL techniques and developed our detection models
at various degrees of granularity: flow, window, and data slice. Specifically, we use the
support vector machine (SVM) with principal component analysis (PCA) to preprocess the
data, random forest (RF), and long short-term memory (LSTM) Autoencoder techniques
to develop our detection models [47]. The SVM and RF models are commonly used
supervised learning techniques that give generally good results with minimal tuning. The
LSTM Autoencoders excel in learning complex dynamics within the temporal ordering of
time-series data and detect anomalous patterns even by observing only a small number of
features from the traffic data.

Figure 2 shows the models and attacks considered in this research. In the remainder
of the section, we describe various models grouped by detection granularity.

Figure 2. Attacks and models explored.

3.2. Flow Detection Model

The flow detection methods focus on the detection of DDoS attack flows by extracting
suitable features of individual traffic flows [45]. However, they often have high network
data processing overhead and require tracking packets by flows. We present an LSTM
Autoencoder model for DDoS flow detection. It uses only two features, extracted with low
processing overhead, to model the dynamic behavior of benign TCP flows and distinguish
them from DDoS flows. An LSTM Autoencoder [48] is a type of self-supervised deep
learning model that can learn a compressed representation (encoding) of a sequence
data and reconstruct (decoding) from the reduced encoding a representation as close as
possible to its original input. It uses an encoder–decoder architecture consisting of multiple
LSTM layers.

The model requires time series data of two features as its inputs: the interarrival
times and sizes of packets within the first two seconds of a flow; each flow gives two
sequences. These features are considered to be important for DDoS attack detection in
existing literature [42,49,50]. Furthermore, they are easily obtainable from the captured
packet traces in a time series format which is required by the LSTM Autoencoder.

The model is trained and validated using benign flows only with a 2:1 ratio of flows
used for training and validation. The trained model is used to encode and decode previ-
ously unseen traffic flows consisting of benign and attack flows. Given an anomalous data
sequence (possibly, from an attack flow), the Autoencoder may show higher reconstruction
errors than those for normal sequences. Thus, any flow that deviates from the expected be-
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havior of a normal TCP flow can be identified as a potential DDoS attack. A reconstruction
error threshold, determined during the training and validation phase, is used to classify a
given flow as benign or attack.

Figure 3 gives the block diagram of the LSTM Autoencoder model we developed. The
input data is a 2D array with 16 timesteps (each packet arrival is a timestep) and the two
features–interarrival times of packets within a flow and packet sizes. In our experiments,
16 timesteps were sufficient to include the first two seconds of a traffic flow. However,
due to unequal packet arrival rates of different flows, the input data samples may have
unequal sequence lengths. We address this issue by padding the end of a sequence with
dummy values (−1) so that each data sample consists of 16 timesteps. Each layer of the
LSTM Autoencoder is described below:

• Layer 0, masking layer, informs the downstream layers that some part of the data is
actually padding and should be ignored based on the mask value of −1.

• Layer 1, LSTM(32), reads the input data and outputs 32 features with 16 timesteps
for each.

• Layer 2, LSTM(8), takes the 16 × 32 input from Layer 1 and reduces the feature size
to 8. It outputs a feature vector of size 1 × 8. The output of this layer is the encoded
feature vector of the input data.

• Layer 3, RepeatVector(16), replicates the feature vector 16 times. The RepeatVector
layer acts as a bridge between the encoder and decoder modules. It prepares the 2D
array input for the first Decoder layer. The Decoder layers are stacked in the reverse
order of the Encoder since they are designed to unfold the encoding.

• Layer 4, LSTM (8), and Layer 5, LSTM (32), are the mirror images of Layer 2 and Layer
1, respectively.

• Layer 6, TimeDistributed(Dense(2)), is the last layer of the network where “2” is the
number of features in the input data. It performs a matrix multiplication between the
output from Layer 5 and its internal vector to produce a 16 × 2 output vector. The
objective of fitting the LSTM Autoencoder is to make this output as close to the input
as possible.

Figure 3. LSTM Autoencoder for DDoS flow detection.

The model was trained and validated for a total of 150 epochs with a batch size of 16.
Batch size is the number of samples processed before the model is updated. The number
of epochs is the number of complete passes through the training and validation dataset.
During this process, the reconstruction errors associated with training and validation data
decreased with each epoch, and eventually, the model converged to a state where additional
training does not reduce the reconstruction errors. We use this steady-state reconstruction
error for the validation data as a threshold to classify flows as attack or benign flows.
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3.3. Window Detection Model

The window-based detection methods offer low-overhead detection of DDoS attacks
by evaluating a group (window) of flows at a time. A window of flows is a group of
consecutive new flows based on their start times. These methods are traffic rate-adaptive
since the rate at which the windows are formed is based on the traffic rate.

We have developed a two-stage LSTM-RF hybrid model that consists of an LSTM
Autoencoder and an RF classifier. Our model combines the benefits of self-supervised
learning (LSTM Autoencoder) in the first stage and supervised learning (RF) in the second
stage. Figure 4 shows the architecture of our model. To reduce the overhead of feature
extraction and for faster training, our model is designed to work with just two features,
each of which can be obtained with low overhead. In the first stage, we train an LSTM
Autoencoder with data from just one feature: the sequences of interarrival times of new
flows from traffic that consists of only benign flows. Each sequence is created using a
window of new flows. The RF model in the second stage is trained with data from two
features: (a) the reconstruction errors from the first stage and (b) the Shannon entropies of
destination IP addresses in the new flows of windows. For the second stage, we use traffic
with benign and attack flows. Our two-stage hybrid model captures both the dynamic
behavior and the aggregate characteristics of a window of flows by integrating the inter-
arrival times of new flows (time-series data) and the entropy of the destination addresses
of new flows (aggregate data). We describe below each stage of the model.

Figure 4. LSTM-RF hybrid model.

Stage 1: LSTM Autoencoder to Indicate Anomalous Traffic

The first stage of our hybrid model consists of an LSTM Autoencoder that detects
anomalies in the interarrival times of a group of traffic flows. We trained the LSTM
Autoencoder with sequences of interarrival times of new flows. Each sequence is measured
over a window of k consecutive benign traffic flows, based on their start times, and split
into five parts (subsequences), assuming that k is a multiple of 5. Then, the model is trained
to reconstruct each subsequence. The reason for splitting each sequence of data is that
shorter sequences can be reconstructed with higher accuracy than longer sequences in
general. The various layers of LSTM Autoencoder serve the same functions as those for
the LSTM Autoencoder flow-model described in Section 3.2. The LSTM Autoencoder
window-model differs from the flow model in the following ways: (1) It uses only one of
the feature–interarrival times of new flows. (2) It does not use a masking layer since each
sequence of data has the same length, k, which is the number of new flows per window.
(3) The number of nodes used in each layer is different from the ones used in the flow
detection model since these are tuned for a different purpose. The training and validation
dataset in stage 1 included roughly 70% of the network traffic with only benign flows.
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Stage 2: Random Forest to Classify Attacks

In the second stage, we trained a random forest model to classify whether a window
of k flows consists of one or more DDoS attack flows. The input features used by this model
include the reconstruction errors obtained from the LSTM Autoencoder in Stage 1 and the
Shannon entropy of destination IP addresses for a given window of flows.

Figure 5 shows the five reconstruction errors corresponding to five subsequences from
the LSTM Autoencoder in Stage 1 and the entropies of windows used for training the RF
model in Stage 2 for k = 100. We observe that using only a subset of these features will not
be sufficient to accurately detect a window with attacks since there are significant overlaps
between the input feature values for multiple attack and benign windows. Therefore, a
machine learning model that combines all of these features is used to make predictions.
The training dataset used in Stage 2 included roughly 70% of all benign and attack traffic.

Figure 5. The features used to train the random forest model in Stage 2. The lower right graph shows
the entropies of windows with all benign or with one or more attack flows. The other five are the
reconstruction errors produced by the LSTM model in Stage 1. The LSTM model was trained prior to
this with all benign traffic. The data are plotted on a log scale.

3.4. Data-Slice Detection Model

A data slice is a portion of the network traffic collected for a specified time duration.
Zhang et al. [41] present a PCA-SVM model for detection of attacks in data slices; this
model uses the Principal Component Analysis (PCA) for feature reduction and the Support
Vector Machine (SVM) as a classifier. For TCP traffic with continuous flows, which last
throughout the experiment, they show that high detection accuracy (about 95%) can be
achieved. We think this technique could be suitable for on-the-fly detection of attacks
since time-based aggregation of traffic is likely to be easier than processing it to obtain
more complicated features such as average packet length or specific TCP/IP header fields,
commonly used in many ML/DL models.

Therefore, to evaluate its effectiveness for the transaction type TCP traffic in which
the TCP connections involve downloading web objects by clients and are short-lived, we
adapted the PCA-SVM model for low-rate DDoS attack detection. A block diagram of the
adapted model is shown in Figure 6. The main steps in the model are described below.

1. The network traffic data under the attack is partitioned into samples, each containing
δ seconds of network traffic. A TCP flow value, which can be the number of new
flows, total flows, or data bytes, in each sample is extracted.
Owing to the short sampling time, say, δ = 0.1 s, the sample data may have disadvan-
tages such as lack of correlation and high computational complexity when trying to
analyze the relationship between the sample points separately. Therefore, we create
an array of TCP flow values and treat it as a data slice. These data will be arranged
as a two-dimensional matrix, called feature matrix, with t/(kδ) rows and k columns,
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where t is the duration of the experiment, k is the number of samples in a data slice,
and δ is the sample duration. Each row is a data slice. For network traffic collected for
t = 600 s and with k = 100 and δ = 0.1 s, there will be 60 such data slices, and each
slice is an array of 100 TCP flow values.

2. It is possible that the components of some sampling points change very little with or
without attack, which will affect classification results. In order to overcome this, PCA
is used to extract the most beneficial components for classification from both train and
test data. The contribution rate of each principal component is calculated, and the
principal components whose sum of contribution rate is over 96% are selected. The
number of components that contribute up to the 96% limit decreased with an increase
in the attack rate. For example, 87 principal components explained approximately
96% of data variability, in the case of SYN attacks at 2.5 rps, whereas for the same
96% explained variances, only nine principal components are included, for the same
attack but at a 30 rps rate.

3. The training set obtained after the PCA feature reduction is used to train an SVM model.
4. The test set obtained after PCA processing is classified by the SVM model.

Figure 6. PCA-SVM model [41] adapted for HTTP traffic.

We present the performance of this model for various data-slice sizes and TCP flow
values in Section 5.

4. Datasets

The detection techniques based on ML/DL models critically depend on the availability
of large amounts of representative data for training (and validating) the models. For this
purpose, we considered the CIC-2019 and CIC-2017 DoS datasets from the University of
New Brunswick’s Canadian Institute for Cybersecurity [51,52]. The CIC-2019 dataset has
mostly high-rate continuous DDoS attacks, which are easy to detect. The CIC-2017 dataset
is specifically created to include several types of low-rate DoS attacks [45,53]. However, the
attack rates are still high; for example, the slow-read attack averages more than ten new
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flows/second and more than 150 packets/second. Our interest is in detecting attacks that
cannot be easily sensed by traffic volume or other commonly used flow-related features.

Since we are interested in the detection of very low-rate attacks that include incomplete
(SYN floods) and completed (HTTP slow-read) attack flows, we generated the benign
and attack traffic flows with various rates using a software-defined networking testbed
described below. For easier reference, we denote this as UTSA-2021 dataset [24]. The SYN
floods are launched at various rates with short durations of attack and long durations of
quietness. HTTP slow-read attacks are launched by consuming the data sent by the server
very slowly and throttling the web servers with zero receive-window advertisements. An
HTTP connection is kept alive for a significantly longer duration than it will be with a
normal client.

4.1. Experimental Setup

An experimental SDN testbed was set up to collect realistic benign and attack traffic.
The testbed consists of four Linux machines. One machine ran a vSwitch as the OpenFlow
switch and a Pox controller as the OpenFlow controller to create an SDN environment [54].
The southbound interface is a TCP channel with 1Gbps bandwidth. The OpenFlow (OF)
protocol v1.0 is used for communication between the switch and the controller. One
machine ran the benign clients (as separate processes), and another the attacker processes.
The fourth machine ran separate web servers for the attacker and the benign clients. The
client and the server machines are connected to the OpenFlow switch.

The SDN switch and controller are run on a machine with Ubuntu 16.04 LTS operating
system (OS), Linux 4.15.0-34-generic kernel, Intel core i7-7700 processor at 3.69 GHz clock
rate, and 32 GB, 2400 MHz DRAM memory, and a 4-port gigabit Ethernet interface card.
The server is run on a machine with Ubuntu 16.04 LTS, Linux 4.4.34abc, Apache 2.4.18
(Ubuntu), Intel Core2 Quad processor Q9550 at 2.83 GHz, 8 GB synchronous 800 MHz
DRAM, and a gigabit Ethernet interface card. The normal client is run on a machine with
Ubuntu 16.04 LTS, Linux 4.4.0-138 kernel, Intel Core2 Quad processor Q9550 at 2.83 GHz,
8 GB synchronous 800 MHz DRAM and a gigabit Ethernet card. The attacker is run on
a machine Ubuntu 16.04 LTS OS, Linux 4.4.0-134 kernel, Intel Core i7-2600 processor at
3.4 GHz, and 16 GB DRAM at 1333 MHz, and a gigabit Ethernet card.

4.2. Data Collection

The network traffic was collected at the switch interfaces connected to the client and
attacker machines. Eight instances of the client Python program communicated with
two instances of the server program with different ports to generate the benign traffic
consisting of HTTP downloads with various sizes and inter-arrival times. All benign
traffic is generated using the web client and server codes we created. The attack traffic is
generated using hping [55] and slowhttptest [4] tools. The attack traffic consists of various
low-rate TCP SYN attacks or HTTP slow-read attacks. In order to achieve low-rate SYN
attacks that are active only for small intervals of time, hping was modified to generate
attacks only in the first 0.1 s of every second.

The experiments were run for 5 min for each attack rate with one benign client and
one attacker. To further camouflage the low-rate attacks, some of the SYN attacks have
an altering pattern of 100 s of pulse-shaped attack and 100 s of sleep to interleave periods
of benign only traffic and periods of benign and attack traffic. Figure 7 gives the timing
of the attack and quiet periods. Additional SYN-attack experiments were run for 90 min
each with this pattern with eight benign clients and one attacker. The slow-read attacks,
generated using slowhttptest, did not use the pulse-shaped attack patterns.
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Figure 7. Attack burst (l) = 0.1 s; attack period (T) = 1 s. The attack is ongoing during the odd 100 s
intervals of the experiment.

The attack and benign flows interfere with one another at the SDN switch and the
server. Figure 1 shown in Section 1 illustrates this for an SYN attack that sends SYN
requests in 0.1-s durations at a peak rate of 50 requests per second (rps), which results in
an average attack rate of 2.5 rps. The details of the attack and benign traffic flows are given
in Table 1.

Table 1. The attack traffic in the UTSA-2021 dataset. Syn25 through Syn300 denote traffic with benign
flows and TCP SYN floods. Slowread denotes the traffic with benign flows and Slow Read attack
flows. Benign denotes traffic with only benign flows. All benign traffic is generated using the web
client and server codes we created. There are two types of benign traffic scenarios. In the one-client
scenario, a web client downloads a file from a web server back to back. In the eight-client scenario,
eight web clients download files from two web servers back to back, but at a slower rate owing
to contention.

Dataset Peak Attack Benign Total Total Duration
Attack Rate (rps) (rps) Benign Flows Attack Flows (min)

With 1 benign client

Syn25 25 2.5 26.41 7925 819

5
Syn50 50 5 27.09 8127 1461
Syn100 100 10 27.06 8119 2749
Syn200 200 20 22.98 6896 5270
Syn300 300 30 22.83 6850 7913

With 8 benign clients

Benign 0 0 4 40,755 0 150
Syn25 25 1.25 8.01 21,640 6930

90Syn50 50 2.5 6.79 18,351 12,520
Syn75 75 3.75 6.12 16,529 17,448

Slowread 1.29 1.29 8.07 21,801 3484

4.3. Data Processing and Features Extraction

We curate the DoS attack dataset we generated using the testbed to create a DDoS
attack dataset as follows. Since the testbed we used has only one server (with IP address
10.0.1.2) and two clients (a benign client with IP address 10.0.0.1 and an attacker client with
IP address 10.0.2.1), we process the data to create the effect of distributed denial of service
attacks. First, we replace the server IP address field in the packets of benign TCP flows
with addresses having the network prefix 10.0.1.0/24. For each benign flow, we use an
IP address of the form 10.0.1.y, where y is randomly generated with the Python function
random.randrange(2, 6); we replace the server IP address in all packets of that flow; that is,
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the destination address for packets from client to server and the source address in the other
direction. The destination IP addresses of the attack packets are left unchanged to capture
the attack traffic directed to a single target. The client and attacker IP addresses for benign
and attack flows can be randomized similarly. However, in this research, we do not use the
source IP addresses or source port numbers for any of the features used to train the models.
Only the destination addresses of new flows are used to compute the entropy feature used
in the second stage of the LSTM-RF hybrid model. We use the curated data to extract the
relevant features needed to train the model and detect attacks.

For the LSTM flow detection model, the preprocessing includes conversion of captured
packet traces into flows and extracting selected features from each flow. The conversion of
packet capture to individual flows is done with the help of a flow extractor script. The flow
extractor, initially, extracts all the packet information with a tcpdump command and sorts
the packets by flows and time. Then, the selected features are extracted from these flows
forming a feature matrix. The feature matrices of different benign and attack traffic are
input to the flow model. The open-source tools for feature extraction such as flowtbag [56]
and CICflowmeter [57] have limitations or do not extract the features we need. For example,
flowtbag extracts features only if the flows have complete TCP connections and not for
incomplete TCP connections resulting from the bogus SYN requests from the attacker.
Therefore, we developed tools to extract the necessary features.

To create the feature matrix for the data-slice model (PCA-SVM), the network traffic is
partitioned into samples, each containing 0.1 s of traffic data. From each sample, a TCP
flow value, which could be the number of new connections, number of active connections,
number of packets sent, or number of application data bytes sent, is computed. A data
slice is formed by taking the TCP flow values for several consecutive samples; the number
of samples is determined by the data-slice duration. The feature matrix consists of rows of
data slices.

For the window model (LSTM-RF hybrid), the network traffic is partitioned into
windows of k consecutive flows based on their start times. For each window, the inter-
arrival times between new flows and the Shannon entropy of destination IP addresses
are computed.

In the next section, we describe the performances of the detection models described in
Section 3 using the features data extracted from the UTSA-2021 Low-rate DoS Attack dataset.

5. Results

In this section, we investigate the effectiveness of detection at various levels of granu-
larity using the models described in Section 3. We used the UTSA-2021 dataset [24]; 70%
of each traffic type is used for training and validation and the rest for testing. The 70–30
ratio is a commonly used rule of thumb for splitting the data into training and testing sets,
especially when the dataset contains several thousands of samples [30,58].

The testing dataset was further categorized into all traffic, which included all of
the testing datasets, and sparse traffic, which included SYN attacks with 25 and 50 peak
requests/second (rps), HTTP slow READ attack, and purely benign traffic.

5.1. Detection of Attack Flows

We evaluated the LSTM Autoencoder model described in Section 3.2 for attack flow
detection accuracy. We consider a traffic flow as benign only if the LSTM Autoencoder
reconstructs the flow with an error less than or equal to the threshold value determined
from the reconstruction errors observed during the training and validation stages. For the
UTSA-2021 dataset, with 15,400 benign flows for training and an additional 7700 flows for
validation, the threshold is 0.0167. Table 2 shows the results for the all traffic and sparse
traffic cases. The LSTM Autoencoder detects DDoS attack flows with an accuracy of 99.24%
for the all traffic case and 99.37% for the sparse traffic case.
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Table 2. LSTM Autoencoder flow detection results.

Metric All Traffic Sparse Traffic

Accuracy (%) 99.24 99.37
Precision (%) 97.98 98.07

Recall (%) 100 100
F1-Score (%) 98.98 99.02

False Positive Rate (%) 1.18 0.9
False Negative Rate (%) 0 0

ROC AUC 0.997 0.996

A random forest model can also detect attack flows with high accuracy but typically
requires a large number of features with high data processing overhead. The RF model
by Pérez-Díaz et al. [45] uses 39 features and works for completed flows. Since we are
interested in SYN flooding attacks, which are incomplete flows, and slow-read attacks,
which may not always terminate cleanly, we do not consider RF models for individual
flow detection.

5.2. Detection of Attacks in Windows of Flows

We used the LSTM-RF hybrid model (Section 3.3) to detect DDoS attacks in windows
flows. We tried different window sizes, 50, 100, and 150, and determined that the entropy
feature works better for windows of 100 flows. Therefore, we present below the results for
windows with 100 consecutive new flows based on their start times. Later, we analyze the
impact of the window size on the performance. Table 3 shows the corresponding results.
Our window detection model gives accuracies of 94% and 93.5% for the all traffic and
sparse traffic cases, respectively.

Table 3. LSTM-RF window detection results.

Metric All Traffic Sparse Traffic

Accuracy (%) 94 93.5
Precision (%) 90.8 86.1

Recall (%) 96.1 94.3
F1-Score (%) 93.3 90

False Positive Rate (%) 7.7 6.8
False Negative Rate (%) 3.9 5.7

ROC AUC 0.98 0.98

We also performed a 10-fold cross-validation to verify that the LSTM-RF hybrid model
was not overfitted. With 10-fold cross-validation, the average accuracy was 91.2%, with a
standard deviation of 6%. The precision was 95.9%, with a standard deviation of 5.8%, the
recall was 92.8% with a standard deviation of 8.2%, the F1-score was 94% with a standard
deviation of 5.5%, and the ROC AUC score was 94.9% with a standard deviation of 5.1%. It
is worth mentioning that cross-validation experiments may have cases where the training
data for some attack rates may be significantly less than 70% or even entirely missing.
Hence, the average accuracy could be lower than that of the experiments in which 70% of
all attack rates are present in the training dataset.

The RF model in Stage 2 is fed with the reconstruction errors of windows from LSTM
in Stage 1 and the Shannon entropies of windows. If Stage 1 is omitted, then, with the
Shannon entropy as the lone feature, RF model performs worse, with accuracy dropping to
90% or below for both traffic cases. To use an LSTM model by itself for window detection,
we need to provide more data than the interarrival times of new flows. Determining
whether a flow is an attack flow based on its interarrival time only is similar to predicting
success in a Bernoulli trial. Figure 8 gives the accuracy of the LSTM-RF hybrid model for
each traffic type present in the testing dataset.
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Figure 8. LSTM-RF detection accuracy for different traffic types.

Figure 9 shows the accuracy, F1-score, and ROC AUC score of the LSTM-RF hybrid
model for window sizes 50, 100 and 150. The window size of 100 flows provides the best
results for all three metrics.

Figure 9. LSTM-RF detection results for various window sizes.

5.3. Detection of Attacks in Data Slices

We used the PCA-SVM model described in Section 3.4 to detect the presence of attacks
in slices of network traffic. We partition the traffic dataset into 0.1-s samples. Each sample
gives a number representing a flow value such as the number of new TCP flows or active
TCP flows in that sample. A 10-s data slice, the duration used in [41], is an array of flow
values from 100 consecutive samples. Consecutive data slices form a two-dimensional
matrix of flow values. Since Zhang et al. [41] do not indicate what is considered as a TCP
flow value, we tried the number of new flows, active flows, packets, or bytes per sample as
the flow values. Our analysis shows that the number of bytes and the number of packets
as TCP flow values give low detection accuracy and high false-negative rates. Therefore,
we present the performance of the PCA-SVM model with the number of new TCP flows
or active TCP flows as the flow values in Table 4 for the all traffic and sparse traffic cases.
Using the number of new flows as TCP flow values gives the best performance and matches
the results by Zhang et al. for continuous TCP flows.

The data-slice duration determines the time required to form a data slice for detection;
ten seconds could be too long to wait during a DDoS attack. Therefore, we analyzed the
performance of the PCA-SVM model with 2, 4, 6, and 8 s as data-slice durations for the
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all traffic case. Our analysis shows that the performance decreases with shorter data-slice
durations. Figure 10 presents F1-scores for various data-slice durations with the number of
new flows, active flows, and packets per sample as TCP flow values.

Table 4. PCA-SVM detection results for 10-s data slices with new and active flows as TCP
flow values.

Metric
All Traffic Sparse Traffic

New Flows Active Flows New Flows Active Flows

Accuracy (%) 97.20 95.52 97.80 96.72
Precision (%) 95.47 93.73 93.33 95.05

Recall (%) 87.53 78.67 90.15 79.92
F1-Score (%) 91.33 85.54 91.71 86.83

False Positive Rate (%) 0.84 1.07 1.01 0.65
False Negative Rate (%) 12.47 21.33 9.85 20.08

ROC AUC 0.933 0.888 0.946 0.896

Figure 10. F1-scores of PCA-SVM for different data-slice durations.

5.4. Practical Applications of Detection Models

The three detection models—flow, window, and data-slice—have different data pro-
cessing and analysis overheads. The flow model has the highest data processing overheads
since the data for its features are extracted from each flow by collecting multiple packets
per flow, which is hard to accomplish in real-time. It has high detection accuracy, but
the detection is delayed by the flow data collection duration, which is two seconds in
our analyses.

The window and data-slice models detect attacks in groups of flows. These models
have lower overhead than the flow model but require additional analysis to identify specific
malicious flows so that appropriate countermeasures may be taken. Both types of models
have low data processing overheads since they do not require keeping track of packets
by flows. For the data-slice model, each new flow requires incrementing a counter. For
the window model, each new flow requires the computation of the time elapsed since
the previous new flow and recording the destination IP address to compute the Shannon
entropy used in the second stage. The data-slice model is traffic rate-oblivious since the
data used for detection is based on the data-slice duration and not on the traffic rate. The
window model is traffic rate-adaptive since the time required to collect a window of flows
depends on the combined benign and attack traffic rates. The PCA-SVM data-slice model
has a low overhead but performs poorly for shorter data-slice durations. The LSTM-RF
window model has low overhead and high detection accuracy.
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Compared to the results in the literature, the models we presented have lower over-
head, higher accuracy, or both for each detection granularity level. Table 5 provides a
comparison of our results for all traffic with the most relevant recent results.

Table 5. Comparison of DL/ML-based LDDoS detection techniques. MLP: multilayer perceptron, FM: factorization machine,
ILR: improved logistic regression, and MFF: multi-feature fusion. ‘-’: data not available.

Model Granularity Data
Results

Remarks
ROC AUC F1-Score Accuracy Recall

LSTM-RF window 1st packets of flows 0.98 0.93 0.94 0.96
Results from this paper.
UTSA-2021 dataset [24]

LSTM flow first 2 s of flow 0.99 0.99 0.99 1.0
PCA-SVM data-slice 10 s 0.93 0.91 0.97 0.87
PCA-SVM data-slice 2 s 0.86 0.81 0.94 0.73

PCA-SVM [41] data-slice 10 s - - 0.95 0.98 Continuous TCP flows

MLP [45] flow entire flow - 0.95 0.95 0.94 Custom slow-read
traffic for testingRF [45] flow entire flow - 0.80 0.94 0.82

FM [43] flow entire flow 0.89 0.92 0.92 0.91 Data for the lowest
attack rate: 1.6 Mbps

ILR [40] flow entire flow - 0.98 0.99 0.98 Testbed results

MFF [42] packet arrival time
of packet - - - 0.99 Custom dataset of

continuous TCP flows

We believe that it is practical to monitor seemingly normal traffic for the presence
of low-rate malicious traffic using window or data-slice models and then switch over to
flow models to identify the attack flows and block them. Our window-detection model
acts like an ML/DL-based sampling method that flags the flows or packets that need to be
examined in depth.

6. Conclusions

Distributed denial of service attacks are disruptive. They exhaust the network band-
width and computing resources of a target and also camouflage other malware traffic.
Compared to high-rate flooding attacks, low-rate DDoS attacks do not attract much atten-
tion since the average rate of attack flows from an attacker is about the same as that of a
normal client. Instead, these attacks exploit protocol features such as the TCP congestion
control to reduce the throughputs of normal flows. There have been several results in
detecting LDDoS attacks. They tend to have high data processing overhead, low detection
accuracy, or both, making them suitable for mostly offline analysis and detection. To cope
up with high data processing overheads, traffic sampling is often used [53]. However,
sampling distorts the composition of the attack packets examined, which adversely impacts
the detection accuracy.

In this paper, we have focused on DL/ML models to detect LDDoS attacks at various
levels of granularity: individual flows, windows of flows, and slices of network traffic.
In particular, we have presented a novel two-stage LSTM-RF model that requires only
two features and detects the presence of one or more attack flows in a window of flows
with high accuracy. The processing overhead is low since the data for the features is easily
gathered using only the first packets of the flows.

We have also presented an LSTM Autoencoder model to detect individual attack
flows with high accuracy. This model has a higher overhead than the two-stage model:
it requires data from the packets in the first two seconds of each flow. Compared to the
ML/DL models presented in the literature, however, the number of features used and the
processing overheads are significantly lower. Finally, we have presented a detailed analysis
of an SVM model with feature reduction using PCA [41] to detect attacks in slices of
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network traffic. This model also has a very low data processing overhead, but its accuracy
suffers if the data slices are not large.

Compared to the detection techniques presented in the literature, our results provide a
choice of models based on the granularity of detection and overhead. If on-the-fly detection
of attacks without resorting to sampling is needed, the window detection model is useful
owing to its low overhead and high accuracy. Flows in the windows that are flagged by the
window model may then be analyzed to detect individual attack flows followed by suitable
mitigative actions. In such a setup, our window-detection model acts like an ML/DL-based
sampling method that flags flows or packets that need to be examined in depth.

Our results are applicable to TCP-based attacks and traffic. We have not investigated
the impact of UDP-based DDoS attacks on normal TCP and UDP traffic. We intend to
investigate this in our future work.
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