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Abstract: As one of the candidates for future network architecture, Information-Centric Networking
(ICN) has revolutionized the manner of content retrieval by transforming the communication mode
from host-centric to information-centric. Unlike a traditional TCP/IP network, ICN uses a location-
independent name to identify content and takes a receiver-driven model to retrieve the content.
Moreover, ICN routers not only perform a forwarding function but also act as content providers
due to pervasive in-network caching. The network traffic is more complicated and routers are more
prone to congestion. These distinguished characteristics pose new challenges to ICN transmission
control mechanism. In this paper, we propose an effective transmission scheme by combining
the receiver-driven transport protocol and the router-driven congestion detection mechanism. We
first outline the process of content retrieval and transmission in an IP-compatible ICN architecture
and propose a practical receiver-driven transport protocol. Then, we present an early congestion
detection mechanism applied on ICN routers based on an improved Active Queue Management
(AQM) algorithm and design a receiver-driven congestion control algorithm. Finally, experiment
results show that the proposed transmission scheme can maintain high bandwidth utilization and
significantly reduce transmission delay and packet loss rate.

Keywords: ICN; receiver-driven; congestion control; congestion detection; active queue manage

1. Introduction

The current Internet architecture is established on the TCP/IP protocol family where
communication is based on named hosts. However, with the emergence of new applications
and services on the Internet and the explosive growth of IP traffic [1], the traditional TCP/IP
network is facing a series of problems such as scalability, mobility and security [2]. The
existing end-to-end communication model has been unable to meet the needs of massive
content distribution. The usage patterns of the Internet have greatly changed. Compared
with the physical or logical location of data, users are more concerned about the data
themselves. Although Content Delivery Networks (CDN) and Peer-to-Peer (P2P) [3]
have been proposed to solve some of the problems by using the concept of information-
centric content retrieval, their performance is still limited due to their deployment at the
application layer.

In this context, Information-Centric Networking (ICN), as one of the candidates for
future network architecture, has been proposed to tackle these challenges. ICN transforms
the communication mode from host-centric to information-centric. Following this principle,
ICN decouples content addressing from routing by separating content identifiers (ID) and
network address (NA), and users can address and locate the content through the ID without
connecting to a specific server. The named content can be widely cached on the intermediate
routers, which makes the routers become content providers. The users’ requests can be
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served by the intermediate routers, which reduces the delay of downloading content and
the load of the servers, thereby realizing efficient content distribution.

Some ICN approaches deploy clean-slate ICN, such as Content Centric Networking
(CCN) [2], Named Data Networking (NDN) [4,5] and Publish Subscribe Internet Tech-
nology (PURSUIT) [6]. However, the existing Internet architecture is entrenched. The
deployment of a clean-state ICN requires a major upgrade of the entire network infras-
tructure [7], which is undoubtedly costly. To reduce the cost of deployment and smoothly
evolve, some researchers believe that the ICN approach should be compatible with existing
network to utilize IP facilities and routing schemes [8], such as Data-Oriented Network
Architecture (DONA) [9], MobilityFirst [10], Network of Information (NetInf) [11], and
On-Site, Elastic, Autonomous Network (SEANet) [12]. Readers should note that the trans-
mission scheme we propose in this paper is based on the latter ICN architecture.

In ICN, data are usually regarded as a Named Data Chunk (NDC), which is an
addressable data unit bound with a globally unique name. The NDC can be widely cached
on ICN routers and users adopt pull-based methods to obtain NDC from multiple content
sources. The ICN routers not only simply perform forwarding functions, but also are
content providers, which makes the ICN routers have two types of traffic, including external
forwarding traffic and internal cache service traffic. The traffic competition between the two
types of traffic can easily lead to congestion [13]. Therefore, the transmission in ICN has
the characteristics of receiver-driven, multi-source and multi-path, and the traffic behavior
is more complicated.

Content distribution is one of the key issues that need to be researched in ICN, and a
reasonable transmission scheme can improve the efficiency of content distribution. In ICN,
most studies on transmission control are focused on the receiver side [14]. Some researchers
proposed a method similar to TCP end-to-end congestion control mechanism, that is, the
receiver adjusts the request rate by maintaining one or more congestion windows or timers
and detects congestion through round-trip time (RTT) or packet loss [15–19]. However,
the receiver needs to maintain much state information for multiple sources or paths. Thus,
their cost is high [20]. Moreover, some researchers proposed to monitor the queue size or
available bandwidth of intermediate routers to detect congestion [20–25] such as Active
Queue Management (AQM) algorithms in TCP/IP network, and then notify the receiver
by explicitly marking data packets or negative acknowledgement (NACK). This method is
similar to the explicit congestion notification (ECN) in the IP network. However, the routers
do not directly drop packets, so it is difficult to quickly recover from a heavy congestion
state [13]. In addition, they mechanically apply the AQM algorithm of IP network to ICN
network, ignoring the difference in traffic between ICN and IP network. Therefore, in
this paper, we fully consider the characteristics of the ICN transmission mode and traffic
behavior and propose an effective transmission scheme based on early congestion detection.
The proposed transmission scheme includes a receiver-driven transport protocol and a
router-driven congestion detection mechanism. The main contributions of our work are as
follows:

To ensure the reliable and efficient transmission service for NDC, we design and
implement a receiver-driven transport protocol in an IP-compatible ICN architecture. The
basic functions of the transport protocol, including the transmission process, the protocol
stack, the retransmission mechanism, and the congestion control algorithm, are described
in detail.

We further propose an early congestion detection mechanism applied on ICN routers
based on an improved AQM algorithm. According to the queuing delay of packets, we
divide congestion into two phases: early congestion and permanent congestion. The router
takes the marking and dropping operations, respectively in these two phases and the
receiver takes the gentle and drastic congestion control methods, respectively according to
the marking signal and loss signal.

We conduct extensive experiments to evaluate the performance of our transmission
scheme. The experimental results show that the proposed transmission scheme has good
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performance in terms of bandwidth utilization, fairness, buffer occupancy, and packet
loss rate. In addition, we evaluate our proposal in ICN scenario and the results show that
the proposed transmission scheme has the shortest flow completion time and the lowest
average content download delay compared with other schemes.

The remainder of the paper is organized as follows. In Section 2, we review the related
work of the congestion control mechanism and the congestion detection mechanism. The
complete receiver-driven transport protocol is introduced in Section 3. Section 4 presents
the early congestion detection mechanism based on an improved AQM algorithm. Then,
the experimental results and analysis are shown in Section 5. Finally, we make a conclusion
of this paper in Section 6.

2. Related Work

Since the transmission mode in ICN is quite different from the existing TCP/IP
network, it is necessary to redesign the transmission scheme for ICN to improve the
efficiency of content distribution. The transmission scheme we propose includes two key
issues: congestion control mechanism at receiver side and congestion detection mechanism
at intermediate routers. In this Section, we conduct a comprehensive study of the current
literature on them.

2.1. Congestion Control Mechanism

As ICN shifts the content retrieval model from host-centric to information-centric, the
logic of congestion control mechanism for the ICN is usually placed on the receiver side.

Information-Centric Transport Protocol (ICTP) [15] is one of the earliest transport
protocols for ICN, which adopts TCP-like algorithm to adjust congestion window through
additive increase multiplicative decrease (AIMD) algorithm. The authors also discussed
the problem of the proper chunk size to realize a balance between safety overhead and
flow control efficiency. In [16], the authors proposed the Interest Control Protocol (ICP)
as the receiver-driven transport protocol for CCN. ICP uses a window-based interest
control mechanism and detects congestion according to whether the retransmission timeout
(RTO) timer expires or not. The authors analyzed the fact that ICP can achieve optimal
bandwidth sharing and efficient bandwidth utilization. However, the transmission mode
of ICN is multi-source, and ICP and ICTP do not perform well in RTT estimation. Then,
Remote Adaptive Active Queue Management (RAAQM) [17] was proposed to enhance the
robustness of RTT estimation. RAAQM monitors RTT on each path and realizes efficient
multipath congestion control. Unlike RAAQM, ConTug [18] and Content Centric TCP
(CCTCP) [19] maintain an independent timer for each content source to solve the problem
of inaccurate RTT estimation in CCN. ConTug assumes that the receiver knows the location
of the content source, and the location remains the same during transmission, which
violates the basic concept of ICN. CCTCP adopts a method to predict the location of the
content source and calculates the RTO based on the predicted RTT between each content
source and receiver. However, these methods require the receiver to maintain much state
information, increasing the complexity of congestion control. NetInf TP [26] is designed as
a receiver-driven transmission protocol in NetInf, which uses cyclic retransmission and
TCP-like congestion control to provide reliable data transmission. The simulation results
showed that NetInf TP can achieve high bandwidth utilization and fairness with TCP
flows or other concurrent NetInf TP flows. In [27], the authors proposed a delay-based
congestion control protocol (DCP), which measures the delay of the forwarding path from
content sources to receiver to detect and control congestion at the receiver side. Likewise
in [28], the authors designed and implemented a delay-based transmission mechanism in
the wireless scenario, and applies the Bottleneck Bandwidth and Round-trip-time (BBR)
algorithm in the receiver-driven context for the first time. Experimental results showed that
the proposed method has a high bandwidth utilization and low propagation delay. In [29],
the authors proposed a two-level congestion control mechanism, which first selects the
best replica and then performs rate control at the receiver. However, the above congestion
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control methods are based on the receiver side, and relying on only RTT variation or packet
loss to detect congestion is inaccurate and untimely.

2.2. Congestion Detection Mechanism

The internal traffic of ICN is dynamic and complex due to ubiquitous in-network
caching. Only relying on the end system to detect congestion is not accurate [13], so the
congestion detection mechanism based on intermediate nodes is necessary.

The AQM algorithm can be used for congestion detection, and it has been extensively
studied in the past 20 years. Drop Tail is a commonly used Passive Queue Management
(PQM) algorithm. Generally, when the queue length reaches the limit threshold, the
enqueue packets will be discarded until the queue length converges within the threshold.
The Random Early Detection (RED) [30] is the first AQM algorithm which sets minimum
and maximum thresholds for queue length on routers. When the average queue length is
between the minimum and maximum threshold, the enqueue packets are dropped with a
variable probability. The performance of RED depends on the setting of parameters and
the fairness is not guaranteed [31], leading to it having poor adaptability in the variable
network environment. In this context, many improved versions have been derived, such as
Gentle-RED [32], ARED [31]. Unlike RED, BLUE [33] detects network congestion through
packet loss event and link idle event, and sets a separate probability to mark or drop
enqueue packets based on the detection results. In addition, some researchers used control
theory for queue management. Misra et al. [34] established a nonlinear fluid flow model of
TCP/AQM system by using stochastic differential equations and analyzed the dynamic
characteristics of queue size in routers. In [35], the proportional integral (PI) controller is
proposed to maintain the queue stability, but it has a certain hysteresis in queue size changes.
Moreover, the queue-based AQM schemes have been studied from the perspective of chaos
theory that also solve congestion control problems by using bifurcation analysis [36–38].
In [36], the authors conduct bifurcation analysis on the nonlinear time-delay model for
congestion control process of TCP/AQM network based on control theory and bifurcation
theory. The local dynamics around the equilibrium of a class of proportional feedback
TCP/AQM network is studied and the influence of communication delay on network
stability is discussed in the literature [37]. In [38], the bifurcation and chaotic behavior of
the fluid model of the TCP/AQM network congestion control system are studied, and an
impulse control method is proposed. In [39], the authors proposed an innovative queue
management method, Controlled Delay (CoDel), according to the queuing delay instead
of the queue length. CoDel simply maintains the target and the interval parameters and
allows the sojourn time of packets to be higher than the target for one interval. However,
the drastic dropping operation will cause a high loss rate in the dropping state. Although
some researchers attempted to improve CoDel by dropping packets in advance [40], the
operation will affect the performance of the congestion algorithm at end side. Readers
should note that the proposed early congestion detection mechanism in this paper is based
on Codel algorithm.

In ICN, there have been some attempts to apply the idea of an AQM algorithm to detect
congestion. Some researchers propose hop-by-hop congestion control mechanism which
requires the intermediate routers to participate in the rate control process. HoBHIS [20] is
the first hop-by-hop congestion control method which calculates the interest forwarding
rate based on the buffer occupancy of routers. In [21], the authors proposed that the routers
adjust the interest forwarding rate in the upstream direction according to the available
bandwidth in the downstream direction. Although the hop-by-hop method can adjust
the forwarding rate according to the real-time congestion state, it also greatly increases
the calculation pressure of the router. In addition, some researchers use the idea of AQM
algorithm to detect congestion and assist the receiver to adjust the request rate through
ECN. In [22], the congestion degree of the forwarding port is simply marked with three
colors of red, yellow, and green by monitoring the queue length, indicating that the port is
not congested, may be congested, and congested, respectively. When congestion occurs,
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the congested node will generate a NACK signal and forward it to the downstream nodes.
NACK mechanism enables routers to respond to the changes in link state in a timely manner.
Explicit Congestion control Protocol (ECP) [23] is proposed to measure the congestion level
in NDN by monitoring the average interest queue size of each interface. According to the
average interest queue size, ECP classifies the network congestion state into three levels
(namely Free Link, Busy Link and Congested Link), and guide the receiver to shape its
interest sending rate by ECN. In [24], the authors proposed to use random early marking
(REM), which marks the data packets with a variable probability according to the queue
size, to indicate the degree of congestion. In [25], a practical congestion control scheme,
PCON, is proposed based on the CoDel algorithm to detect congestion. PCON signals
congestion by explicitly marking data packets, so that downstream routers can divert
traffic to other paths. However, these congestion detection methods mentioned above
mechanically apply the traditional AQM algorithm of TCP/IP network to ICN network,
ignoring the difference in traffic characteristics between the ICN and the TCP/IP network.

Inspired by the above research, the design of the ICN transmission scheme should
fully consider the characteristics of the transmission mode and traffic behavior. In this
context, we provide an effective transmission scheme based on early congestion detection.
By detecting early congestion and permanent congestion at intermediate nodes, the receiver
can make the correct response according to the network status.

3. Proposed Transport Protocol

In this section, we first outline the transmission process based on an IP-compatible
ICN network. Then, we detail a receiver-driven transport protocol, including the design of
protocol, retransmission mechanism and congestion control mechanism.

3.1. Overview of Transmission Process

In order to reduce the cost of deployment and smoothly evolve, the new ICN ar-
chitecture should be incrementally deployed on existing networks [7]. The ID and NA
are separated in ICN and the name resolution system (NRS) is an important network
component that stores the mapping between them [41]. We use a flat ID to name content or
device and the ID has the characteristics of self-verification. Considering that the existing
TCP/IP network is entrenched, using an IP address as a NA is a reasonable option [29].
Therefore, the users’ requests can be addressed through looking the corresponding IP on
the NRS by content ID, and then forwarded to the content source via IP routing function.
Readers should note that late-binding technology [42] is applied in our scenario, that is,
the intermediate node can make a name resolution request to the NRS and change the IP
of the packet during forwarding. Considering the large overhead that small NDC impose
on transmission and caching [43], the NDC size is set to several MBs. Additionally, we
consider a hybrid network of IP and ICN and the entire network consists of ICN routers
and IP routers. In [44], the authors designed a cache-enabled router in this kind of ICN
architecture by adding a content store (CS) module with a complete ICN protocol stack on
routers, so the routers can handle both IP flows and ICN flows.

Figure 1 shows the overview of the transmission process based on an IP-compatible
ICN network. The user builds the request packets based on the ID of the NDC to be
requested and sends it to the edge router (R1) (Step 1). For security reasons, the terminal
cannot obtain the NA of the nodes inside the network, so the name resolution process is
performed at the edge nodes. Specifically, R1 sends a name resolution request to the NRS
based on the ID of NDC to obtain the list of NAes (NA2, NA4 and NA6) of cache routers or
servers. Then, R1 selects an optimal NA from the list through the multi-source selection
strategy. Typically, the nearest node (here is R2) is selected (Step 2). Since IP is regarded as
NA in our scenario, R1 fills the selected NA into the destination network address field of the
request packet and sends it to the corresponding cache router (R2) through the IP routing
function (Step 3). While receiving the users’ request, R2 segments the NDC according
to the Maximum Transmission Unit (MTU). These segments are encapsulated into ICN
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packets and then sent back to the receiver (Step 4). During the transmission process, the
routers (for example, R1) on or off the path actively decide whether to cache the NDC or
not according to the caching strategy (Step 5). The receiver performs congestion control
and retransmission during the whole transmission, and finally assembles the received ICN
packets into a complete NDC (Step 6).

Figure 1. The overview of the transmission process in ICN.

3.2. Protocol Design
3.2.1. Protocol Description

Figure 2 shows a practical ICN protocol stack that is compatible with IP network. The
functionality of the network layer is extended by placing an ID layer on top of the IP layer.
Considering that the existing TCP/IP network intermediate nodes are basically two-layer
or three-layer structure, the ICN packets can be routed and forwarded normally on the
existing network. Therefore, our proposal is theoretically compatible with most network
architectures which are built on TCP/IP. There is a transport layer on top of the ID layer,
and we design a receiver-driven transport protocol which can provide reliable and efficient
transmission service for NDC.

Figure 2. The protocol stack of IP-compatible ICN network.
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The brief design of the packet format of an ICN header is shown in Figure 3. There is
a “Protocol” field in the IP header, which is used to indicate what protocol the IP payload
belongs to. For example, TCP corresponds to a “Protocol” field value of 6, and UDP
corresponds to a “Protocol” field value of 17. We set the value of the “Protocol” field to
a 0 × 99 to indicate that the next header represents the ID header. The ID layer contains
two important fields, “Source ID” and “Destination ID”, which represent the ID of the
receiver’s device and the ID of NDC to be retrieved, respectively. The NDC transmission
is labelled by these two location-independent IDs. The pair of IDs remains the same
during the whole NDC transmission, even though the NAes have changed (multisource
selection mechanism or mobility requirement). Therefore, the transport mode is ID-to-
ID. Although the transmission process is affected by mobile nodes, our research focuses
more on congestion control mechanism rather than mobility support mechanism to ensure
the stability for data transmission. The “Next Header” field of the ID header points to
our proposed transport protocol. There are two types of packets in ICN, request packets
and data packets, which are distinguished by the “Identity” field in the transport layer
header. Additionally, the transport layer header includes two important fields, “Offset”
and “Length”. The “Offset” and “Length” fields of the request packet indicate where the
data start to be transmitted and the amount of data that is expected to be received. The
receiver calculates the amount of data expected to be received through the congestion
control module, and assigns the value to the “Length” field to explicitly inform the sender.
Similar to the delayed acknowledgment (ACK) in TCP, the request packets are sent in
an aggregated manner, which greatly reduces the overhead caused by the uplink control
message. In addition, we design an “Option” field in the transport layer header by TLV
(Tag-Length-Value) structure. The information about a segment that is thought to have
been lost can be filled into the TLV structure and brought to the sender via the next request
packet. In this way, a single request packet can request multiple discrete segments of NDC,
which enhances the ability to recover from the loss state. The logic of the sender side is
relatively simple. When listening the users’ request, the sender only needs to send the
corresponding data back according to the ID of NDC, the “Offset” and the “Length” fields
in the request packet. Considering that the size of NDC is usually larger than the MTU,
the sender needs to split the complete NDC into many small segments and encapsulate
a ICN header for them. To ensure the reliable delivery of NDC, we designed an error
check mechanism. The fine-grained error check mechanism ensures the reliability of each
packet. Specifically, the sender calculates the checksum of the entire packet and fills in
the “Checksum” field of the transport layer. The receiver rechecks the field to decide
whether to discard it. The concept of an end-to-end connection does not apply in ICN,
so our proposed transport protocol is connectionless. There is no handshake throughout
the transmission, thus reducing the latency associated with establishing the connection.
To ensure the efficient and reliable transmission service for NDC, we also design the
retransmission mechanism and the congestion control algorithm.

Figure 3. The packet format of ICN header.



Electronics 2021, 10, 2205 8 of 22

3.2.2. Retransmission Mechanism

We design two retransmission mechanisms, including fast retransmission and timeout
retransmission. On one hand, fast retransmission enables the transport protocol to recover
quickly from the loss state. In TCP, the ACKs are used to acknowledge whether a data
packet is received and the fast retransmission is triggered by three duplicate ACKs. In
ICN, the fast retransmission mechanism relies on statistics of out-of-order packets because
the data packets are used to acknowledge whether the requests are served. In ICTP [15],
the fast retransmission is triggered by the arrival of three consecutive out-of-order data
packets. In NetInf TP [26], the segment is inferred as lost when the counter of a request
entry reaches a predefined value (preferably three, similar to the concept of three duplicate
ACKs). Inspired by them, the fast retransmission mechanism we propose is triggered when
three out-of-order data packets are received in a row. The receiver immediately generates a
new request packet or populates the TLV structure based on the offset and length of the
lost segment.

On the other hand, the receiver realizes loss detection by maintaining a timer locally
and the timeout retransmission is triggered by the timer expiration. The timeout retrans-
mission depends on the observed RTT and estimation of the RTO. Inspired by TCP, we
calculate the RTO in a smooth manner. Readers should note that only if an ordered packet
is received, the receiver updates the current RTO. When the timer expires, the receiver
immediately re-requests the segment that are thought to have been lost.

3.2.3. Congestion Control Algorithm

During the transmission of NDC, the receiver needs to adjust the request rate accord-
ing to the feedback signal, including loss signal and marking signal. To be able to coexist
with the existing protocol, we designed a window-based congestion control mechanism
following the logic of TCP. The receiver maintains a congestion window (cwnd) to repre-
sent the maximum amount of data allowed to be requested. We refer to some effective
congestion algorithms in TCP that have been proven by a large number of theories and
experiments, such as reno [45], Cubic [46] and BBR [47], and so on. In this paper, we
propose a new window adjustment algorithm, which takes different control operations for
loss signal and marking signal. In Section 4.3, we provide more insight into the design of
congestion control algorithm.

4. Design of Early Congestion Detection

Considering that it is difficult to detect congestion accurately only relying on the
receiver side in ICN [23–25], we propose an early congestion detection mechanism based
on an improved AQM algorithm applied in ICN routers. First, we explain the necessity of
congestion detection in ICN network. Then, we show the specific steps of early congestion
detection mechanism based on an improved AQM algorithm. Finally, we introduce the
design of the congestion control algorithm at the receiver side in detail.

4.1. Problem Description

In ICN, the routers not only simply perform forwarding functions, but are also content
providers, which makes ICN routers have two types of traffic, external forwarding traffic
and internal cache service traffic. With the increase in concurrent services and cache hit rate
of ICN routers, the two types of traffic will compete aggressively for bandwidth which is
more likely to cause high buffer occupancy and queue fluctuation [13]. Additionally, users’
requests can be served by caching routers rather than a fixed remote server, so the traffic in
routers is characterized by short bursts. Therefore, it is necessary to propose a congestion
detection mechanism applied in ICN routers. Since the classical RED algorithm detects
congestion only according to the queue length and its performance is limited by parameters
settings [31], we choose a well-studied AQM algorithm, Codel, to judge congestion by
monitoring the queuing delay of packets. CoDel simply maintains two parameters, the
target (default 5 ms) and the interval (default 100 ms), and allows the sojourn time of
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packets to be higher than the target for one interval. Specifically, when the sojourn time of
a dequeue packet exceeds the target but the timeout duration fails to last one interval, the
router continues to forward the packet without any dropping or marking operation. When
the sojourn time of a dequeue packet exceeds the target for at least one interval, CoDel
enters into the dropping state and the router aggressively drops dequeue packet to make
the sojourn time converge within the target.

Although the Codel algorithm has an excellent performance in the current TCP/IP
network [48], we believe that mechanically applying the CoDel algorithm to ICN routers
will not yield significant performance gains. The reasons for this include the following two
points. First of all, the router still forwards the packet without taking any action in the
initial period of congestion, which will cause the receiver to increase the request rate due to
the lack of feedback signal, thus aggravating the congestion. Second, the drastic dropping
operation in the dropping state may result in the NDC that the lost packet belongs not
being able be cached completely, thus reducing the cache success rate. Although the fast
retransmission mechanism may solve this problem, the high queuing delay generated by
each router is sufficient to release the memory space pre-allocated to the NDC in advance
when the network is in a heavy congested state [44].

4.2. Early Congestion Detection Based on Improved AQM Algorithm

The AQM algorithm needs to maintain a low loss rate, high bandwidth utilization and
small queuing delay to improve users’ QoE (Quality of Experience). As shown in Algorithm
1, we propose an improved AQM algorithm based on CoDel without violating its design
principles. According to the queuing delay of packets, we divide the congestion into two
phases, early congestion and permanent congestion. The behavior of our improved AQM
algorithm depends on the congestion phase. To avoid massive packet loss caused by CoDel
frequently entering the dropping state, an active operation should be adopted in the early
congestion phase. Considering that the high loss rate will affect the cache success rate and
link utilization, we suggest marking instead of dropping at early congestion phase to guide
the receiver to adjust the request rate through ECN. Although Codel supports the ECN
mechanism, the performance of Codel using the ECN mechanism is insufficient in terms
of queue convergence speed [40]. The dequeue packets processing logic of the improved
AQM algorithm is shown in Figure 4.

Figure 4. The dequeue packets processing logic of the improved AQM algorithm.
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Secondly, when the sojourn time of the dequeue packet exceeds the target and the
timeout fails to last for an interval, it means that the router is in the early congestion state.
In addition to the target and interval, we introduce a probability p to indicate the current
congestion degree of the router. Since the sojourn time of the dequeue packet can reflect the
congestion degree of the router, the p is linearly positively correlated with the sojourn time.
The dequeue packet will be marked with p in advance to avoid frequently entering the
dropping state. Additionally, we set a maximum probability Pmax and a threshold C. When
the sojourn time of the dequeue packet exceeds the product of C and target, the dequeue
packet will be marked with the Pmax. In [39], the authors who propose CoDel conduct a
comprehensive evaluation for CoDel. The results show that the maximum median queuing
delay of the packets is about 12.5 ms, which is the product of 2.5 and target, under different
bandwidths and RTTs. Based on this, we can infer that the congestion is already heavy
when the sojourn time reaches 12.5 ms. Therefore, we set the parameter C as 2.5 and Pmax
as 1. When the sojourn time exceeds the product of 2.5 and target, all dequeue packets are
marked and the receiver reduces the cwnd drastically according to the congestion control
algorithm so that the router can quickly recover from congestion state. The relationship
between congestion degree and queuing delay is shown in Figure 5. The design in which
the probability increases linearly with the sojourn time enhances the router’s robustness to
burst traffic. The calculation of p is shown in Equation (1).

p =


0 sojourn_time < target, last_time < interval
sojourn_time−target

(C−1)×target Pmax C× target > sojourn_time > target, last_time < interval
Pmax sojourn_time > C ∗ target

(1)

where sojourn_time is the sojourn time of packet, last_time is the duration when the sojourn
time of packet exceeds the target.

Figure 5. The relationship between congestion degree and queuing delay.

Thirdly, the permanent congestion means that the Codel has entered the dropping
state. In this phase, the logic of queue management is taken over by the original Codel
algorithm, that is, the dequeue packet will be hard dropped until the sojourn time converges
to the target. The advantage of this method is that the router can recover from congestion
state more quickly.

Because the ICN router has four or even five layers of protocol stacks in our scenario,
it can handle packets at the transport layer. To improve the applicability of the improved
AQM algorithm, the router marks packets at the transport layer header rather than the
network layer header during the early congestion phase. In this way, when the improved
AQM algorithm is applied to IP routers, the effect is the same as the original CoDel al-
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gorithm. From a theoretical point of view, the usage scenarios of our improved AQM
algorithm and the original CoDel algorithm are the same regardless of the wired link or
the wireless link, because we have not violated the CoDel’s design principle.

Algorithm 1 Improved AQM algorithm

1: sojourn_time: the sojourn time of the dequeue packet

2: last_time: the duration of the dequeue packets timeout
3: p: the marking probability
4: On departure of every dequeue packet:
5: if outside the dropping state then
6: if last_time > interval then
7: enter dropping state
8: drop the packet
9: else
10: if sojourn_time < target then
11: forward the packet
12: else if target < sojourn_time < C*target then
13: p←− Equation (1)
14: mark with p and forward the packet
15: else
16: mark with Pmax and forward the packet
17: else if inside the dropping state then
18: if sojourn_time < target then
19: come out dropping state
20: forward the packet
21: else
22: drop the packet

4.3. Congestion Adjustment

The fundamental way to alleviate congestion is to control the number of request
packets entering the network. On one hand, when the routers are in the early congestion
phase, there is no need to take drastic cwnd reduction operations to avoid insufficient
link utilization. On the other hand, when the routers are in the permanent congestion
phase, a drastic cwnd reduction strategy should be adopted to enable the router to quickly
recover from the congestion state. As shown in Algorithm 2, we propose a new congestion
control algorithm through taking different control operations for loss signal and marking
signal, respectively. Specifically, during the initial phase of transmission, the cwnd increases
according to the slow start algorithm as shown in Equation (2).

cwmd = cwnd + 1 (2)

As shown in Equation (3), the cwnd is adjusted according to the congestion avoidance
algorithm when the cwnd exceeds the slow start threshold (ssthresh).

cwnd = cwnd + 1/cwnd (3)

When the RTO timer expires, it means that the routers are in the permanent congestion
phase. As shown in Equation (4), a drastic cwnd reduction method should be adopted at
this time.

cwnd = cwnd/2 (4)

When the marked data packets are received, the receiver should adjust the cwnd
adaptively instead of mechanically reducing it by half. Inspired by [49], we suggest that
the receiver adjusts the cwnd according to the congestion degree. The cwnd adjustment is
shown in Equation (5).

cwnd = (1− α/2)× cwnd (5)
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where the parameter α represents the congestion degree. The calculation of α is shown as
Equation (6).

α = (1−ω)× α + ω× F (6)

where F is the percentage of marked packets in the previous window received, which is
updated once for every window of data (roughly one RTT). ω is the weight given to the
new sample relative to the past in the estimation of α, which is an adjustable parameter.
According to the suggestion in [49], we set the value of ω as 1/16.

The proposed receiver-driven congestion control algorithm should be coordinated
with the improved AQM algorithm to provide efficient transmission service. Firstly, when
the router is not congested, the dequeue packets are forwarded normally and the receiver
adjusts the cwnd according to slow start algorithm or congestion avoidance algorithm. Sec-
ondly, the dequeue packets are marked with the probability p when in the early congestion
phase. The receiver detects the percentage of marked packets in the previous window to
calculate α. Therefore, the α can reflect the congestion degree of the router to a certain
extent and the cwnd is completely affected by the congestion degree. When the congestion
degree is high, the cwnd is almost reduced to half; when the congestion degree is low,
the cwnd is not affected too much. Thirdly, if CoDel has entered the dropping state, it
indicates that the router is in the permanent congestion phase. In this case, the receiver will
reduce the cwnd to half by detecting packet loss to allow the router to quickly recover from
permanent congestion. Readers should note that when the proposed congestion control
algorithm is used in conjunction with Codel, RED and other AQM algorithms, its effect is
the same as reno algorithm.

Algorithm 2 Congestion Adjustment Algorithm

1: cwnd: congestion control window
2: ssthresh: slow start threshold
3: alpha: congestion degree
4: Initially:
5: cwnd←− 2
6: ssthresh←− infinite
7: New packet received:
8: if marked packet then
9: if expire an RTT then
10: alpha←− Equation (6)
11: cwnd←− Equation (5)
12: if non-marked packet then
13: if cwnd < ssthresh then
14: cwnd←− Equation (2)
15: else
16: cwnd←− Equation (3)
17: Timeout:
18: ssthresh←− Equation (6)
19: cwnd←−ssthresh;

5. Performance Evaluation

The transmission scheme based on early congestion detection has been clarified.
Next, we carry out a series of experiments to evaluate the performance of our proposed
transmission scheme in this section. We firstly introduce the experiment parameters. Then,
we test the basic performance of our transmission scheme under different conditions, and
we conduct an extended experiment in the ICN scenario.

5.1. Experiment Setup

To evaluate the performance of our proposal, we implemented our transmission
scheme based on mininet [50]. Mininet is a lightweight network simulator which can work
on a real Linux protocol stack by isolating network resources. The receiver-driven transport
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protocol and the improved AQM algorithm are integrated into a kernel module and then
embedded in the kernel space.

As shown in Figure 6, we performed simulations in a linear topology to evaluate
the performance of our proposed transmission scheme. To observe the effect of the trans-
port protocol and the improved AQM algorithm, the linear topology is sufficient for our
purposes. The linear topology consists of three ICN routers (R1–R3), one server (S), and
50 clients (C1-C50). ICN client applications are installed on all clients, which are responsible
for generating NDC requests and performing congestion control. ICN server applications
are installed on the server and ICN routers, which are responsible for sending the cor-
responding NDC after receiving the requests. Readers should note that different AQM
algorithms can be configured on all ICN routers. The default bandwidth and latency be-
tween nodes are indicated in Figure 6. The packet size is set to 1500 bytes and the buffer of
each ICN router can accommodate 200 packets. The workload is simulated with a catalog
of N = 103 NDCs which follows a Zipf distribution with a default skewness parameter
alpha = 0.8. The NDC size is set to 2 MB by default. The cache capacity of each ICN router
is set to 100 NDCs.

Figure 6. Simulation topology.

To make a comprehensive comparison, The ICN routers are deployed with a passive
queue management algorithm, Drop Tail, and several different AQM algorithms, including
RED, Codel, and our improved AQM algorithm. These queue management algorithms are
used in conjunction with the receiver-driven congestion control to test the performance
of our transmission scheme. According to the experience of previous work [30,39], the
configuration settings are shown in Table 1.

Table 1. Configuration settings of CoDel and RED.

Parameter Value

CoDel
target 5 ms

interval 100 ms

RED

Thmin 20%
Thmax 40%
Pmax 0.1

w 0.02

5.2. Basic Performance

We evaluate the basic performance in terms of bandwidth utilization, fairness of
multiple flows sharing the same link, buffer occupancy and loss rate. We disable the
caching function of the ICN routers and only use the IP-based routing and forwarding
capability to verify the basic performance of the transmission scheme. Under this condition,
the ICN server can be regarded as content source and the data are transmitted from the
ICN server to each ICN client.
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5.2.1. Bandwidth Utilization

Bandwidth utilization is an important index to evaluate transmission performance.
We test the steady-state throughput (by letting C1 continuously send requests to S) of
the transport protocol under different bottleneck bandwidths (by setting the bottleneck
bandwidth between routers to 10 Mbps, 20 Mbps, 50 Mbps and 100 Mbps, respectively).
Meanwhile, we test TCP steady-state throughput under the same link conditions for a
comprehensive comparison. We use the iperf tool to generate TCP traffic on S and transmit
it to C1. Readers should note that TCP uses the cubic [46] congestion algorithm. The
experimental results are shown in Figure 7. It can be seen that the proposed receiver-driven
transport protocol (denoted as TP) can achieve almost the same throughput as TCP under
different bottleneck bandwidths. Their throughput difference is no more than 10 KB/s.
Moreover, we also test the steady-state throughput when different AQM algorithms are
deployed on routers. The throughput remains almost the same when Drop Tail, RED,
Codel, and improved AQM are deployed. Their throughputs are 9.54 Mbps, 19.07 Mbps,
47.68 Mbps and 95.37 Mbps, respectively, under different bottleneck bandwidth. This
shows that the improved AQM algorithm will not have a negative impact on the bandwidth
utilization of the transport protocol.

Figure 7. Bandwidth utilization under different bottleneck bandwidth.

5.2.2. Fairness

In ICN, NDC is the basic unit of transmission and storage. A complete content will be
split into several NDCs and stored separately in different places, which will cause users to
obtain data from multiple places at the same time. Therefore, the transport protocol needs
to maintain fairness when there are multiple parallel ICN flows on the bottleneck link. We
simulate the situation where multiple ICN flows share a bottleneck link (by letting C1–C5
continuously send requests to S at different moments). Figure 8 shows the throughput of
multiple parallel flows sharing a bottleneck link when deploying Drop Tail, RED, Codel,
and improved AQM, respectively. From Figure 8a, it can be observed that even if the routers
do not deploy any AQM algorithm, all ICN flows can share bandwidth fairly. Moreover,
the total bandwidth usage of all flows remains the same when new flows are added, and
the remaining flows can quickly take up bandwidth and converge to a fair state when
some flows end. As we can see from Figure 8b–d, all flows can maintain better fairness
and the throughput of each flow has better stability when deploying RED, Codel, and
improved AQM. In conclusion, the experimental results prove that the proposed transport
protocol itself has good fairness, even if no AQM is deployed. Meanwhile, the improved
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AQM algorithm has almost the same good performance as Codel and RED algorithms in
maintaining fairness.

Figure 8. The fairness of the transport protocol in deploying different queue management algorithms: (a) Drop Tail; (b) RED;
(c) CoDel; (d) Improved AQM.

5.2.3. Buffer Occupancy

The queue formed on routers will cause an extra queuing delay during transmission.
In this part, we monitor the instantaneous queue length of routers under a different number
of ICN flows to prove the advantages of our transmission scheme. The transmission process
is controlled by ICN clients, so each client can maintain a ICN flow by continuously sending
request packets to content source. We control the number of ICN flows by varying the
number of ICN clients involved in the transmission. Figure 9 shows the queue length over
time on R3 when there are 1, 3, 6, 9, 20 and 40 ICN flows in the bottleneck link. Since Drop
Tail has no mechanism to actively control the queue, it has the worst effect in controlling
queue length. When the number of flows is low, the queue length of the router deploying
Drop Tail varies in a zigzag shape, and the queue oscillations are especially obvious. As
the number of flows increases, its buffer is gradually filled which will cause the high delay.
Moreover, RED and CoDel have a better performance in controlling queue length compared
with Drop Tail. As the number of flows increases, RED is slightly better than CoDel in
controlling the queue stability. We can also conclude that the improved AQM has the
best performance in controlling the queue length and stability when the number of flows
is low. As the number of flows increases, the queue stability decreases. This is because
the improved AQM algorithm begins to frequently enter the dropping state when a large
number of flows exist. Figure 10 shows the variation curve of the average queue length
with the number of ICN flows when different queue management algorithms are deployed.
The experimental results show that CoDel, RED, and our improved AQM algorithm can
control the queue length at a relatively low level compared to the Drop Tail. It is worth
noting that the performance of the improved AQM algorithm is significantly better than
the other two typical AQM algorithms when the number of flows is low. Additionally,
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its performance is also the best even in the presence of a large number of flows. This is
because the improved algorithm adopts an early congestion detection mechanism and the
receiver adjusts the request rate in time before permanent congestion occurs.

Figure 9. The queue length under different numbers of ICN flows: (a) 1 flow; (b) 3 flows; (c) 6 flows; (d) 9 flows; (e) 20 flows;
(f) 40 flows.
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Figure 10. The average queue length under different numbers of ICN flows.

5.2.4. Lost Rate

In this part, we calculate the average packet loss rate of routers under different
numbers of ICN flows to illustrate the performance of queue management algorithms in
controlling packet loss. Figure 11 shows the packet loss rate of the router using Drop Tail,
RED, Codel and improved AQM algorithm, respectively, in the case of different numbers
of ICN flows. Although the Drop Tail has a lower loss rate comparing with CoDel and
RED algorithms, the long-term high buffer occupancy will cause serious queuing delay.
Therefore, Drop Tail is not desirable even if the packet loss rate is relatively low. It can
be seen that the CoDel and RED algorithms have a high loss rate. The router deploying
the CoDel algorithm continuously drops packets when permanent congestion is detected,
which easily leads to obvious queue oscillation and periodic retransmission peak. Similarly,
the router deploying the RED algorithm also controls queue length by probabilistically
dropping packets so it is difficult to maintain a low packet loss rate. Readers should note
that the improved AQM algorithm can significantly reduce the packet loss rate when the
number of flows is low, this is because it reduces the frequency of entering the dropping
state. As the number of flows increases, it is still better than the other two typical AQM
algorithms in controlling packet loss rate.

Figure 11. The loss rate under different numbers of ICN flows.

5.3. ICN Scenario Simulation

To simulate the performance of our proposal in ICN scenarios, we enable the caching
function of the ICN routers in Figure 6. The ICN server and ICN routers can be regarded
as content sources and the data are transmitted from the ICN server or ICN routers to
each ICN client under this condition. Similarly, we control the number of ICN flows by
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varying the number of ICN clients involved in the transmission. Since all ICN routers can
respond to users’ requests, the queue can be generated on any ICN router. All ICN routers
are deployed with the LCE strategy. At the beginning of the simulation, the cache space of
each router is empty. All clients randomly request 500 NDCs. Readers should note that
the first 400 NDCs are used to warm up the cache space of routers and the next 100 NDCs
are used to obtain statistics for analyzing the proposed transmission scheme. The results
are obtained by running the experiments 10 times. We built our simulation scenarios by
altering the number of ICN flows (from 1 to 50) and skewness parameter alpha (from 0.6 to
1.3). The default skewness parameter alpha = 0.8 and the default number of ICN flows = 3.
We illustrate the effectiveness of our transmission scheme in terms of the average flow
completion time (FCT) and average content download delay.

5.3.1. Average FCT

In ICN scenario, a NDC cannot be delivered to the application layer until it is fully
received. The FCT represents the transmission efficiency, so we use this indicator to
evaluate our proposal. From Figure 12a, it can be concluded that the transport protocol
has a longer average FCT when the Codel and RED algorithms are deployed. This is
because the fact that the CoDel and RED algorithms frequently drop the packets has a
negative impact on goodput. Although the average FCT of the Drop Tail is comparable
to that of the improved AQM algorithm in the case of a small number of ICN flows, the
additional high queuing delay will make Quality of Service (QoS) of the whole network
drop sharply. Compared with the Codel and RED algorithms, the transport protocol has a
smaller average FCT when the improved AQM algorithm is deployed, which indicates that
the improved AQM algorithm can improve the goodput. Figure 12b shows the average FCT
when each client requests 20 NDCs in the case of a large numbers of ICN flows. Similarly,
we can conclude that the improved AQM algorithm has a smaller average FCT compared
with the Codel and RED algorithms. Figure 13 shows the average FCT for each client
requesting 100 NDCs in the presence of three ICN flows. As shown in Figure 13, we can
draw a similar conclusion that when transport protocol is used in conjunction with the
improved AQM algorithm, the average FCT can be maintained at a minimum level under
different skewness.

Figure 12. The average FCT under different numbers of ICN flows: (a) the case of low number of flows; (b) the case of high
number of flows.

5.3.2. Content Download Delay

The content download delay is one of the most important indicators of content retrieval
performance in ICN scenarios. Although a reasonable caching strategy can also reduce
content download delay, our focus is on how to reduce the content download delay through
the congestion control mechanism on the determined network path. Figure 14 shows the
influence of the number of ICN flows on content download delay. Compared with other
methods, we can determine that the transport protocol applying the improved AQM
algorithm has the smallest content download delay even if the number of flows grows
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high. This is because the improved AQM algorithm can control the queue length to a
smaller level. The skewness determines the distribution of the users’ requests. The larger
the skewness, the higher the cache hit rate of the router and the lower the corresponding
content download delay. As shown in Figure 15, with the increase in skewness parameter
alpha, the average content download delay is always kept the lowest when transport
protocol is used in conjunction with the improved AQM algorithm.

Figure 13. The average FCT under different Zipf alpha.

Figure 14. The average content download delay under different numbers of ICN flows.

Figure 15. The average content download delay under different skewness.



Electronics 2021, 10, 2205 20 of 22

In summary, our proposed transmission scheme not only has a small average flow com-
pletion time but also maintains a low content download delay in ICN scenario. Therefore,
our proposed transmission scheme is effective.

6. Conclusions

In this paper, we introduce an effective transmission scheme based on early conges-
tion detection which is used in an IP-compatible ICN architecture. First, we show the
receiver-driven transport protocol and describe the key functions in detail, including the
transmission process, the protocol stack, the retransmission mechanism, and the congestion
control algorithm. Then, we focus on the congestion detection of intermediate routers
and propose an improved AQM algorithm according to the queuing delay of packets.
Specifically, we define the concepts of early congestion and permanent congestion and
the routers take marking and dropping operation, respectively during these two phases.
Additionally, a detailed description of the congestion control algorithm, which adopts the
gentle and drastic congestion window reduction methods according to the congestion level,
is discussed. Finally, the experimental results show that the proposed transmission scheme
has an excellent performance in terms of bandwidth utilization, fairness, queue length and
loss rate. Meanwhile, when applied in ICN scenarios, the proposed transmission scheme
has the shortest average FCT and lowest average download delay.

Future work should focus on two aspects. Firstly, it is necessary to design a reasonable
caching strategy to ensure the expected time for downloading content with high probability
by combining it with congestion control mechanism. Secondly, due to the extensive content
caching supported by routers, data transmission has the characteristics of multipath. We
will focus on the design of the multipath transmission mechanism to make full use of the
bandwidth of multiple paths and avoid congested paths.
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