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Abstract: Machine learning-based systems are gaining interest in the field of medicine, mostly
in medical imaging and diagnosis. In this paper, we address the problem of automatic cerebral
microbleeds (CMB) detection in magnetic resonance images. It is challenging due to difficulty in
distinguishing a true CMB from its mimics, however, if successfully solved, it would streamline the
radiologists work. To deal with this complex three-dimensional problem, we propose a machine
learning approach based on a 2D Faster RCNN network. We aimed to achieve a reliable system,
i.e., with balanced sensitivity and precision. Therefore, we have researched and analysed, among
others, impact of the way the training data are provided to the system, their pre-processing, the
choice of model and its structure, and also the ways of regularisation. Furthermore, we also carefully
analysed the network predictions and proposed an algorithm for its post-processing. The proposed
approach enabled for obtaining high precision (89.74%), sensitivity (92.62%), and F1 score (90.84%).
The paper presents the main challenges connected with automatic cerebral microbleeds detection,
its deep analysis and developed system. The conducted research may significantly contribute to
automatic medical diagnosis.

Keywords: machine learning; deep neural networks; cerebral microbleeds; CMB detection; MR images

1. Introduction

The number of successful applications of machine learning algorithms is constantly
growing. Unlike classic approaches, deep neural networks (DNNs) are naturally predisposed
to efficiently handle vast amounts of data. They successfully cope with inaccurate or noisy
data, different sizes and orientations of objects, as well as, varying lighting conditions.
Moreover, if these algorithms are properly selected and trained, they have a high capacity
to generalise the acquired knowledge. The latter is extremely important in practical
applications where we have to struggle with a variety of cases, small, yet significant
differences between classes, and a large diversity of objects within a class or an insufficient
number of appropriately labelled unbalanced data.

This paper approached the very important problem of cerebral microbleeds (CMB)
detection in MR images. Cerebral microbleeds are small, oval, hypointense areas visible at
T2*-weighted or susceptibility-weighted (SW) imaging [1,2]. The cerebral microbleeds can
be seen in the images due to changes in local magnetic susceptibility because of pathologic
iron accumulation as a result of (most often) perivascular macrophages due to vasculopathy.
A single microbleed is mostly from 2 to 5 mm or even 10 mm in diameter [3]. However, the
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size is not the differentiation criterion, as it can be deceptively increased due to blooming
artifacts. MR images give a detailed three-dimensional view of organs and can be effectively
used to detect and analyse the abnormalities in them. Nonetheless, automated detection
and classification of brain lesions, in particular CMBs, in 3D MR images is a challenging
task due to their wide distribution within the brain, small sizes compared with the whole
image, and the similarity between different lesions and lesion mimics.

The paper is organised as follows: further, in this section, we present the medical aspect
of cerebral microbleeds as well as related works regarding CMB detection and challenges
in this field; in Section 2, we introduce the reader to the case study, our approach including
algorithms and data handling, while in Section 3, we describe conducted experiments and
deliver the results. Finally, in Section 4, we discuss obtained results and conclude them in
Section 5.

1.1. Cerebral Microbleeds—Fundamentals

Cerebral microbleeds are small, chronic brain haemorrhages that are caused by several
different pathological processes in the small, cerebral vessels [4–6].

According to [7], around 5% of the healthy population has microbleeds, but their
higher occurrence may be connected with several medical conditions. The presence of
CMBs is strongly correlated with cognitive dysfunction [8]. Moreover, it increases the risk
of stroke recurrence [9]. However, CMBs can also be found in healthy elderly people with
unknown clinical implications [9].

The most commonly used method for the detection of CMBs is Magnetic Resonance
Imaging (MRI) [10]. This method uses a non-ionizing radiation method to create diagnostic
images. The image is created thanks to the natural magnetic properties of tissues. Specifically
for detection of CMBs neuroimaging in MRI include T2* sequence or susceptibility-weighted
imaging (SWI) [1,2]. Cerebral microbleeds appear on MR images as spherical signal loss
(hypointense focal area), due to the paramagnetic properties of hemosiderin. CMBs as
hemosiderin deposits contained macrophages that are displayed as hypointense images,
which is related to containing high concentrations of iron. Paramagnetic properties of
hemosiderin cause a signal loss because of susceptibility effects [11,12]. Detection of CMBs
is increasing with the frequency of usage of MRI for diagnostic, CMBs are accidentally
found along with different diagnostic pathologies.

Detection of all present cerebral microbleeds in MRI is crucial for proper diagnosis
and treatment, as it is a common abnormality connected with different diseases. Despite
increasing detection, there is still a lack of clear guidance and quick detection of CMB.
The process of manual inspection and detection of microbleeds is very laborious and
time-consuming. Automating the whole process of CMBs detection would make radiologists’
work easier and faster.

1.2. Problem Statement and Related Works

The problem of CMB detection has been considered in a number of publications
in recent years. Based on their analysis, several important challenges and conclusions
regarding data, approaches and algorithms can be indicated.

Despite the great success of ML-based systems in the medical field, which outperforms
other classic methods, there are many problems related to the use of algorithms. Among
others: insufficient number of publicly available, labelled datasets; different quality and
resolution of data; uneven class balance within the datasets; still poor ability to generalise
results in some cases; and inconsistent evaluation of results, hindering their analysis [13–20].

In this paper, we try to discuss and find a solution to some of them in the case of CMB
detection. Our extensive analysis and experiments were conducted to propose a way of
synthesis the suitable DNN-based system for reliable CMB detection, which shows high
performance and generalisation ability.

The problem of data shortage is common in the analysis of medical data. In radiology,
class annotations alone are hardly enough for most prediction tasks. CMB similarly
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requires manually annotated bounding boxes or segmentation masks, which have to be
done by medical experts. Such a precise manual data annotation is not only expensive and
time-consuming, but also requires data anonymisation, and still, the CMBs are labelled
only by a single point. Mostly, new datasets are created for specific research carried out by
research teams. They are not later published due to complicated privacy regulations.

Moreover, existing datasets are prepared by different groups with different measurement
equipment, medical procedures and also, for different purposes (e.g., strictly for the needs
of physicians, data analysts, ML specialists). For instance, there are differences between
the labelling methodology or the examination parameters. Not only the MRI machines
specification depends on their producer, but also during the MRI examination technician
set parameters depending on a case. The differences between patient origin are also crucial,
as the human anatomical structure is different.

Therefore, although datasets seem similar, especially for non-specialists in the medical
field, to design a data-driven decision-support system able to efficiently operate in very
different conditions, it is essential to have scans as diversified as possible.

In the case of automatic detection systems, it is fairly easy to mistake microbleeds
with other objects, mainly because of their small size compared to the whole image, their
similarity to the background, and lesion mimics (see Figure 1). For instance, an oval
cross-section through a vessel or calcification is very similar to a CMB. The differences
between microbleeds and other objects can be observed when rating the whole MRI
altogether.

Sometimes, it is difficult to objectively compare the research results because, as
mentioned earlier, there is a lack of objective benchmark databases. Besides, different
metrics are used to evaluate the systems. For example, sensitivity is sometimes the only
metric reported. However, it is relatively easy to obtain high sensitivity scores, but at
the price of a large number of false positives. To avoid this, other metrics should also be
provided—for instance, precision or FPavg (average number of false positives per subject).
Of course, the goal is to have as high sensitivity as possible with a low false-positives score.

The development of ML methods has caused that traditional methods of image
processing and analysis have been replaced by methods using mainly different types of
tools based on deep neural networks.

Generally, ML-based solutions for object detection tasks may be divided into two
groups: one-stage and two-stage detectors. In one-stage detectors, both detecting an object
and assigning it to the predefined class are done at the same time, while in the two-stage
approach, these two sub-tasks are carried out separately by producing the regions of
interest (RoI) and then its classification.

The most popular representative of the one-stage approach is the family of YOLO
(You Only Look Once) networks, the most recent ones are YOLOv4 [21], scaled YOLO [22]
and YOLOv5 [23]. Although such approaches are much faster than two-stage ones,
they produce a larger number of false positives and have significantly worse results for
detecting small objects. This problem is clearly visible in the work [24]. The YOLO detector
produces dozens of false-positive CMBs for one subject; hence, another stage is needed to
reduce them.

Although new and better architectures are emerging, such as EfficientDet [25] and
Vision Transformer [26], the above-mentioned issues related to the one-step approach have
not been diminished.

The most popular architecture from the family of two-stage detectors is R-CNN [27,28]
and its successors. The idea was based on defining regions of the proposal using selective
search [29]. Then, scale them to a fixed size and apply them to a CNN network for feature
extraction and finally to assign them the proper category using a linear SVM classifier.
The biggest issue in this approach was the detection speed. Although computational
capabilities continue to grow, creating more efficient algorithms makes them more usable
in everyday life.
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Figure 1. Sample of SWI sequence from MR image. One of the slices is enlarged to visualise a cerebral
microbleed, marked with the red arrow.

This led to an improvement called Fast R-CNN [30] combining RCNN with Spatial
Pyramid Pooling Network (SPPNet) [31] that did not require the fixed size of the region of
the proposal passed to CNN.

Another proposed solution to speed up the computation process was Faster RCNN [32].
The novelty was in the generation of regions of interest by applying the Region Proposal
Network (RPN). The interesting proposal was Feature Pyramid Networks (FPN) [33]
enabling usage of the whole CNN network, instead of just its top layer for the detection
task. That enabled achieving significantly better results. These days, the mentioned
architecture is often used in object detection problems with different backbone variants.

Regarding the detection of microbleeds, we can generally distinguish between two
approaches, two-dimensional (2D) [34,35] and three-dimensional (3D) [36–38]. However,
three-dimensional convolutional networks have significantly more parameters. For instance,
2D ResNet-50 has 23.9M parameters, while 3D ResNet-50 46.4M has almost twice as
much [39]. That leads to high computational costs, without a significant improvement in
sensitivity and precision.

Most of the proposed methods were based on a two-stage approach [24,36,37,40].
The first stage aimed to detect CMB candidates and was implemented in different ways,
not always using neural networks; for example, the authors of [37,40] used fast radial
symmetry transform (FRST). As a result, at this stage, it was possible to detect CMBs with
high sensitivity, but the price for that is an enormous number of false-positives, which
should be reduced in the next stage.
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The challenge in 2D cerebral microbleeds detection is the fact that CMBs are mistaken
with objects, like vessels, which are similar in two-dimensional space. The features to
effectively distinguish CMBs from CMB mimics become apparent when analysing the
sequence of adjacent slices and different types of images from the SWI sequence. Although
cerebral microbleeds are best visible in the SWI, other ones also can be used to detect CMB.
While most authors [34–37,40] used only SWI, others used also Phase [24], GRE [41,42], or
QSM [43]. The results reported in these papers and a comparison with our approach can
be found in Section 4.

In this paper, we present the results of our efforts put into the synthesis of a cerebral
microbleeds detection system. We aimed to achieve a reliable system, i.e., one characterised
by both high sensitivity and precision. Therefore, we have researched and analysed, among
others, the impact of the way the training data are provided to the system, their resolution,
the way of input images pre-processing, the choice of model and its structure, and also the
ways of regularisation. Finally, we proposed a new algorithm for the system’s predictions
post-processing, which enabled us to partially take into account the three-dimensional
nature of the analysed problem, despite using a 2D detector.

The results of the most interesting research are presented in Tables 3–7. The system
with the most suitable structure was compared with the results reported by other research
groups (see Table 8). Its performance was also tested on a different dataset, completely
different from the data used to train, validate and test the system (see Table 7).

2. Materials and Methods

Although the most valuable feature of ML-based systems is their ability to efficiently
extract knowledge directly from data, to make the system effective and reliable, it is crucial
to provide a sufficient number of representative and well-pre-processed data selections,
suitable model and accompanying learning algorithms, and finally, draw appropriate
conclusions from the achieved results. In Figure 2, a pipeline illustrating the steps of the
synthesis of the proposed system is shown. In the following section, they are described
in detail.

2.1. Datasets

During the research, we took advantage of the cerebral microbleeds dataset collected
and prepared by Medical Imaging LABoratory (MILAB) at Yonsei University and Gachon
University Gil Medical Center [24]. The dataset, along with the ground-truth labels, was
prepared by expert neuroradiologists using the pre-processed SWI, Phase and Magnitude
images following the gold standard labelling. The details of the data annotation procedure
can be found in [44].

The dataset consists of two types of MRI images:

• High in-plane resolution (HR_data): 0.5 × 0.5 mm2;
• Low in-plane resolution (LR_data): 0.8 × 0.8 mm2.

The exact parameters describing the images within the dataset are gathered in Table 1.
For each subject, there are three types of sequences—SWI , Phase and Magnitude, as well
as corresponding labels containing a number of slices and coordinates of a microbleed.
Although microbleeds are usually visible on more than one slice, the labels do not always
relate to all slices where the given microbleed is visible. To test the generalisation abilities
of our system, we also used another dataset [36]. This dataset was used only for testing
purposes (see Table 1). Its in-plane resolution is similar to HR_data—0.45 × 0.45 mm2. This
dataset was built for work [36], and it consists of 320 subjects, but only 20 of them are
publicly available. Nevertheless, such a batch of data collected in other conditions than
data used for training and evaluation of the proposed system, used just for testing, ensures
higher confidence of obtained results evaluation.
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Figure 2. The pipeline of the proposed cerebral microbleeds detection system. The input dataset undergoes pre-processing
including padding, resize, normalisation, slice concatenation and labelling correction. Next, it goes through a deep neural
network model and all the predictions are checked in the post-processing stage. At the output we get a bounding box with a
predicted microbleed with a confidence score supported by the specific metrics.

Table 1. Summary of data parameters.

Parameter Shortcut HR_Data LR_Data test_Data Unit

subjects - 72 107 20 -
number of labels - 188 572 78 -
repetition time TR 27 40 17 ms

echo time TE 20 13.7 24 ms
flip angle FA 15 15 - ◦

pixel bandwidth BW 120 120 - Hz/pixel
image matrix size - 512 × 488 × 72 288 × 252 × 72 512 × 512 × 150 voxels

slice thickness - 2 2 2 mm
slice spacing - - - 1 mm
field of view FOV 256 × 224 201 × 229 230 × 230 mm2

scan time - 4.45 1.62 - min

2.2. Data Pre-Processing

It is well known that proper data pre-processing has an important influence on the
capability to properly train a model. In this case, the pre-processing stage involved a
few steps.

We resized images to select the appropriate size of the input images and then to scale
them accordingly. Based on the number of experiments we decided to utilise images of
a size: 512 × 512 (or 288 × 288 in the case of LR_data). The content of medical data (e.g.,
regarding the images shape, size, colour, contrast, etc.) is of great importance for analysis,
and therefore should be modified very carefully, if needed. In particular, the aspect ratio
of the images should not be changed because it might deform the lesions in the original
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images. We first pad all images to square size. This way, any further resize will not deform
the lesions. The influence of image size on the final results was also the subject of research
(see Section 3.3).

Next, the data were normalised and standardised by reducing the value of a single
pixel by the image mean and dividing it by the image standard deviation.

As it was aforementioned in the text, microbleeds may be easily mistaken with vessels
or other objects visible in the image. To distinguish CMB from its mimics, analysis of few
adjacent slices is essential. It is possible through the 3D sequence; however, in our case, we
use 2D instead of 3D. To provide information from the adjacent slices, many configurations
of input images were tested. Finally, we took advantage of 3 DNN input channels, usually
used in computer vision applications, to analyse red, green and blue channels. We decided
to use each of the channels as a separate input; therefore, thanks to MRI slices being only
one-channel images, we can put multiple images as an input to the network.

Another, as it turned out, important study involved the modification of the original
labels in the dataset that we used. Although microbleeds are small (up to 10 mm in
diameter), they are usually visible on more than one slice. We carefully analysed the images
slice by slice and noticed that their annotations are not always fully consistent.

In most cases, one microbleed was labelled only in one slice, more precisely on the
one where the microbleed was most visible. In cases where CMBs were relatively big and
clear, they were labelled on a few successive slices. It inspired us to slightly change the
way that annotations were provided. We created two new datasets to obtain consistency
of labelling throughout the dataset. It was done by a machine learning specialist with
prior consultation and approval from a radiologist. In the first one—HR_data_reduced, we
removed part of the labels, so that there was only one annotation per microbleed. While in
the second one—HR_data_extended, we added some labels so that each CMB was labelled
in each slice in which it was visible.

Furthermore, in the original database, the microbleeds were marked as single points
indicating their location, yet we replaced these points with 20x20 bounding boxes with a
given point in the centre.

2.3. Model

Drawing from the experience of other authors confirmed by our preliminary research
and regarding the poor performance of one-stage detectors in small objects detection, we
decided to take advantage of a two-stage detector. We chose Faster R-CNN structure and
ResNet50 architecture as a feature extraction backbone since it is widely recognised as one of
the most effective structures in numerous studies, including medical applications considered
in this paper. Although, two-stage detectors, are more computationally demanding, they
more effectively handle the problems of small object detection and produce fewer false
positives, which is crucial in cerebral microbleeds detection. The scheme of Faster R-CNN
is illustrated in Figure 2.

Although another backbone MobileNetV3-Large FPN was tested—ResNet-50-FPN
gave significantly better results.

To improve the results and make them more reliable, we applied several regularisation
techniques. To enlarge the training set, we applied data augmentation. As far as medical
data are concerned, we should be very careful with the image modifications because some
relevant data may be lost or some artifacts added. The images from the training set were
randomly flipped—with a 50% chance for a horizontal or vertical flip. In addition, they
were also randomly rotated between 0◦ and 90◦—with a 30% chance. To facilitate and
accelerate the training, we adopted the network weights from ResNet-50-FPN pretrained
on the COCO dataset using transfer learning.

The Smooth L1 Loss as the loss function for box prediction and Cross Entropy Loss
for its classification were used to train the network. Nevertheless, it is worth remembering
that in our case it was only one class during classification. As an optimiser, we employed
Stochastic Gradient Descent (SGD) with momentum algorithm, with 0.005 learning rate,
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0.9 momentum. The weight decay was set to 0.0005 and we used the batch size of 2. In
addition, we applied the learning rate scheduler StepLR with step size set to 4 and gamma
of 0.9, which means that every 4th epoch the learning rate is multiplied by 0.9 to prevent
overfitting. Based on observation, the threshold was set to 70%. Nevertheless, we also
further investigated the appropriate threshold value.

The networks were trained using the PyTorch library. All tests were performed on
a computing unit equipped with: GeForce GTX 2080 Ti GPU with 8 GB memory and
32 GB RAM.

2.4. Predictions Post-Processing

To deal well with the three-dimensional problem by applying two-dimensional DNN,
we proposed to apply an extra stage for post-processing of the given system’s predictions.
The idea is illustrated in the flowchart presented in Figure 3. The post-processing consists of
two phases: verification of ground truth CMB detection and verification of false positives.

Of course, the main goal is to detect all the microbleeds within the analysed images.
However, it is crucial to find CMB in any slice, not exactly one in which it was labelled.
Therefore, we investigate if the ground truth CMB is present in the adjacent slices and add
them to True Positive Candidates. To verify that we use IoU (Intersection over Union) of
40%, which means that a predicted bounding box has 40% of the common area with the
ground truth bounding box. Finally, we eliminate all the duplicates.

On the other hand, even if the network prediction seems to be falsely positive, it is
crucial to check if the mistake does not arise because of the labelling type. In the second
stage, we validate if any of the false positives cover the ground truth CMB from the adjacent
slices. If so, we no longer treat it as a false-positive prediction.

2.5. System Evaluation

Selected metrics, i.e., sensitivity, precision, F1 score, FP average, allow for a comprehensive
assessment of achieved results. The metrics are calculated as follows:

sensitivity =
TP

TP + FN
(1)

precision =
TP

TP + FP
(2)

F1 score = 2 × sensitivity × precision
sensitivity + precision

(3)

FPavg =
FP
n

(4)

AP =
∫ 1

0
p(r) dr (5)

where:

• TP—true positive – the number of actual CMBs, that were detected;
• FP—false positive – the number of predicted CMBs, that were not marked as CMB in

ground truth;
• FN—false negative – the number of actual CMBs, that were not detected;
• n—the number of subjects (patients) in the test set;
• r—recall (sensitivity);
• p(r)—precision as a function of recall.

Sensitivity (recall) (1) shows how the system deals with ground truth CMB detection. A
high score means that almost all ground-true CMBs were detected. Precision (2) represents
how accurate the predictions are, a high score means that the system generates a small
number of false positives. F1 score (3) helps to check if there is a balance between sensitivity
and precision. FPavg (4) shows the average number of false alarms per subject, while
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average precision (5) AP@0.5 represents an area under the precision-recall (sensitivity)
curve with an IoU of 0.5.

Figure 3. The flowchart illustrating the predictions post-processing stage.

We used k-fold cross-validation, with 5 folds. The exact number of subjects and
microbleeds in each fold is presented in Table 2.
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Table 2. Folds used in model evaluation.

Fold Number of Subjects Number of Microbleeds

Test Val Train Test Val Train

1 14 14 44 20 22 116
2 14 14 44 22 36 100
3 14 14 44 36 35 87
4 14 14 44 35 27 96
5 16 14 42 45 20 93

3. Case Study Results

To effectively select the system parameters and comprehensively evaluate the system,
we conducted a series of experiments. To increase the objectivity of the results, the study
was performed using cross-validation. Each study was repeated ten times—two per each
fold, and the presented results are the averages of the experiments.

3.1. Input Configuration

To deal with a three-dimensional problem using a two-dimensional model we need
to organise the model input so that the spatial dependence between successive slices of
the MRI image sequence is taken into account as much as possible. For this purpose,
separate input channels to the DNN were used and consecutive images from the sequence
are fed to the network. Therefore, there are several ways in which a sequence of images
can be delivered to network input. Images can be provided, as a single image, or as
a sequence of consecutive images, or as a weighted average of consecutive images, etc.
Similar research reported by other authors suggested merging of different sequences like
Phase or Magnitude; however, our research found that relying solely on SWI images yields
the best results. The structure of inputs with more channels was also analysed; however,
there was no efficiency improvement, while the computation time increased significantly.
The analysed ways of structuring the network inputs are gathered in Table 3.

Table 3. Experiment results considering the type of data concatenation. The first three columns present the type of
concatenation—which image was put to the channel and the rest are results for each case.

Input
Configuration Channels Results

I II III Sensitivity Precision F1 score FPavg

1 - 1_img - 89.14% 71.77% 79.45% 0.93
2 1_img− 1_img 1_img+ 84.85% 80.21% 82.29% 0.58
3 2_img− 1_img 2_img+ 86.27% 76.55% 80.71% 0.73
4 1_img 1_phase_img 1_img 87.63% 72.04% 78.27% 0.99
5 3_img 3_phase_img 3_img 83.38% 74.84% 78.33% 0.78
6 3_img 3_img 3_img 89.41% 71.89% 79.47% 0.99

where:

• 1_img: a k-th SWI slice with an annotated CMB;
• 1_img−: a k−1 SWI slice adjacent to the k SWI slice;
• 1_img+: a k+1 SWI slice adjacent to the k SWI slice;
• 1_phase_img: a negative k-th phase slice responding to the k SWI slice;
• 1_phase_img−: a negative k-1 phase slice adjacent to the k phase slice;
• 1_phase_img+: a negative k+1 phase slice adjacent to the k phase slice;
• 2_img−: 1

2 (1_img− + 1_img);
• 2_img+: 1

2 (1_img + 1_img+);
• 3_img: 1

3 (1_img− + 1_img + 1_img+);
• 3_phase_img: 1 − 1

3 (1_phase_img− + 1_phase_img + 1_phase_img+);
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where k stands for each image with an annotated CMB. For the sake of simplicity, the k
representing the consecutive number of a slice is omitted in notations and in the Table 3.

Please note that in the case of other input configurations, the sensitivity is higher, but
the number of false predictions is significantly higher as well. The latter may be since
that information from neighbouring images is not provided, therefore CMBs can be easily
mistaken with, e.g., an oval cross-section through a vessel.

The results clearly present that information from CMB’s surroundings is necessary
to distinguish an actual CMB from its mimics. Applying information from adjacent slices
significantly increases the precision. Although sensitivity drops, the delivered predictions
are more accurate. Differences between the second and third cases are very slight as these
two cases are pretty similar. Nevertheless, a bigger emphasis on image surrounding is
crucial in terms of generated number of false positives.

It is also visible that providing only the SWI image (without a Phase image) gives
better results in terms of F1 score.

The main goal in this experiment was to increase the precision and therefore lower
the false positive ratio. We decided to choose the second variant in which we applied the
additional SWI images—previous and next to the main one, as it had the highest precision
(80.21%), the lowest FPavg (0.58) and the highest F1 score (82.29%).

3.2. Selection of Data Annotation Type

As mentioned in Section 2.2, we prepared two versions of dataset annotations, HR_data_reduced
(one annotation per microbleed) and HR_data_extended (each CMB labelled in each slice in
which it is visible). We checked how these influenced the results.

Raising the number of labels not only did not improve the sensitivity, but also
increased the number of false positives. However, reducing the number of labels resulted
in lowering the false positive ratio (FPavg = 0.64), while keeping the sensitivity at a high
level (88.22%) at the same time. Therefore, we decided to use this kind of annotation in our
further investigations. See Table 4 for more detailed results.

Table 4. Experiment results considering the type of data annotation. (The best result is marked
in bold.)

Annotation Type Sensitivity Precision F1 Score FPavg

HR_data 86.77% 76.61% 80.96% 0.77
HR_data_reduced 88.22% 76.90% 82.11% 0.64
HR_data_extended 82.72% 76.94% 78.03% 1.56

3.3. Input Image Size

MR images are relatively small comparing to those used in other computer vision
problems. Usually, images are resized to smaller dimensions so that the computation cost
was smaller.

In our research, we decided to enlarge our images. There were two main reasons. The
first one was the size of CMB. As it is presented in the Figure 1, they are really small objects.
Resizing the image to make it bigger also makes objects more visible. In this case, there are
not many images, so a slight extension of training time is acceptable.

As it is presented in Table 5, the biggest image size—1500 × 1500, appeared to achieve
the best results, as expected. In this experiment, our main goal was to obtain the best
sensitivity (92.62%), because resizing the image was supposed to provide high true positive
detection. However, increasing the size of images leads to longer computation time, thus
1500 × 1500 seems to be a good compromise.
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Table 5. Experiment results considering input image size. (The best result is marked in bold.)

Image Size Sensitivity Precision F1 Score FPavg

256 × 256 72.10% 71.14% 70.78% 0.54
512 × 512 88.22% 76.90% 82.11% 0.64

1024 × 1024 91.78% 80.68% 85.48% 0.54
1500 × 1500 92.62% 82.92% 87.38% 0.41

3.4. Confidence Score Threshold Selection

Although the F1 score provides a fairly objective assessment, in practical solutions,
keeping the appropriate balance between sensitivity and precision is important. To achieve
this, we analysed the relationships between these metrics.

Confidence score shows how reliable the prediction from the network is with a value
between 0 and 1, where a high value indicates a strong likelihood of a detected object to be
an actual CMB. It is crucial to select an appropriate confidence score threshold that will
reduce the number of predictions to only reliable ones (with high confidence scores).

As it is visible in Figure 4, all the metrics meet at one point for the value of threshold
equal to 80%, where sensitivity equals 81.12% and precision equals 79.13%. Our main
goal was to achieve a high precision value with as high sensitivity as possible, therefore
we decided to select a threshold value of 70%. In that case, sensitivity equals 90.18%, but
precision equals 72.97%.

Figure 4. Sensitivity and precision metrics depending on the confidence score threshold.

This experiment was conducted for an image size of 1024 × 1024 on the hr_data dataset,
using no. 2 input configuration. It should be noted that, depending on one’s priorities,
threshold values within the range of 70–90% will still be a suitable choice.

3.5. Predictions Post-Processing

As mentioned in Section 2.4, to improve and make the results more reliable, we
introduced an algorithm for predictions post-processing. In Table 6, we gathered results
showing a comparison of the metrics with and without the post-processing stage employed.
It is clear that most metrics are significantly better in the case of an extra analysis taking
into account the adjacent slices. Especially noteworthy is an impressive rise in precision.

In Figure 5, we present examples of how the proposed algorithm works.
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Figure 5. Two example cases presenting the application of predictions post-processing stage. The (a)
example represents verification of false-positive prediction and (b) example represents verification of
ground truth CMB detection

In the first case, the same microbleed was found in two adjacent slices (see case (a)
in Figure 5). Even if there was a single label in one slice, we should not treat the other
prediction as a false positive, since it is actually a true positive. Therefore, in the verification
of false positives, we inspect if the prediction is already in ground truth CMB from adjacent
slices. If yes, we mark a prediction as correct. Only if we do not find any ground truth
CMB matching a prediction, we add it to False Positive.

Another case is when a ground truth CMB was not detected (see case (b) in Figure 5).
However, it was verified that it was detected on the next slice. Therefore, it was added to
the True Positive candidates. After inspection, if it is not duplicated, it was marked as True
Positive, as this microbleed was actually detected in the adjacent slice.

This approach prevails, because it lets us evaluate the system in terms of the whole
MR image, not only a single slice.

Table 6. Results with post-processing compared to one without it.

Metric without Post-Processing with Post-Processing

sensitivity 92.62% 92.62%
precision 82.92% 89.74%
F1 score 87.38% 90.84%
FPavg 0.41 0.24

3.6. Subsets

It is commonly known that having a well-prepared dataset used to train a model is
crucial to obtain satisfying results. In medical data analysis, very often we have to struggle
with the problem of highly unbalanced training sets. The reason is the shortage of data
describing lesions, especially in the early stage. Regarding the issue of cerebral microbleeds
analysis, it is obvious that images containing microbleeds represent just a small fraction of
all images. Besides, the number of microbleeds in the MR image has a significant impact
on the learning process of the neural diagnostic system, as well as on its further ability to
generalise the acquired knowledge to similar cases.

In the opinion of radiologists confirmed by our experiments, crucial information in
terms of cerebral microbleeds detection is its number, not necessarily its size or placement
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in the brain. Therefore, we analysed the effect of training set selection on performance. The
idea was to select the datasets in such a way as to ensure their representativeness, i.e., to
include various possible cases of the number of microbleeds per patient.

In particular, the 72 patients were divided into the following sub-groups:

• Patients with 1 CMB;
• Patients with between 2 and 5 CMB;
• Patients with over 5 CMB.

As a result, we received three groups containing 38, 30 and 4 patients, respectively.
Next, we prepared training, validation and test set, so that in each of them were patients
from each subset. To not exclude any of the subjects from the test set, we performed the
cross-validation through 4 folds (different from the original ones).

The test results presented in the Table 7 show a significant rise in the sensitivity
metric, on the other hand, precision dropped. Training using original folds achieved more
balanced results comparing to the prepared subset folds. Adding subjects with a clearly
higher number of CMBs causes a greater ability to detect microbleeds, but entails a rise in
false-positive predictions. Probably it is due to data imbalance. Ensuring a similar number
of subjects for each group could significantly improve the performance.

It is worth noting, that results obtained at test_data are only slightly worse than
from the HR_data_reduced. It is probably due to similar resolution and type of labelling.
Nevertheless, it is a great success of the system to perform so well on a completely
different database.

However, sensitivity obtained on the LR_data is markedly worse. Naturally, detecting
a small object in the images with a much worse resolution is hard. It was also observed
during the experiment described in Section 3.3. Obtained results were a lot worse for an
image size of 256 × 256. Moreover, there is also a labelling factor. Data from LR_data were
not unified as HR_data_reduced were. However, it may be interesting to note that precision
for LR_data using subsets is higher than for HR_data_reduced or test_data. We assume that
it might be connected with the lower system’s ability to detect—not only CMBs, but also
its mimics.

Table 7. Test results depending on defining a training dataset. (The best result is marked in bold.)

Dataset Nr of Subjects Sensitivity Precision F1 score FPavg

Subsets (HR_data_reduced) 72 95.56% 77.58% 85.12% 0.85
Subsets (test_data) 20 89.47% 74.79% 80.19% 0.53
Subsets (LR_data) 107 73.97% 80.99% 76.46% 0.22

Folds (HR_data_reduced) 72 92.62% 89.74% 90.84% 0.24
Folds (test_data) 20 87.37% 80.40% 82.85% 0.36
Folds (LR_data) 107 72.12% 79.70% 74.52% 0.24

Nevertheless, we decided to keep our final results tested on traditional folds as the
results are more balanced and comparable to other research.

4. Discussion

The research and analysis presented in Section 3 allowed us to synthesise the final
structure and parameters of the neural system supporting the detection of microbleeds. As
the most suitable, we have selected three channels input configuration no. 2 (see Section 3.1),
we took advantage of the reduced form of labelling (see Section 3.2), as the model we chose
Faster R-CNN structure with ResNet50 architecture as a feature extraction backbone, we
trained the model utilising images rescaled to 1500 × 1500 size (see Section 3.3), and finally,
we applied the predictions post-processing (see Section 3.5).

The final results presented against the state of the art results are gathered in Table 8.
In cases where the F1 score was not reported in the papers we compare against, it was
calculated by us using sensitivity and precision.
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The proposed approach outperformed state of the art results in terms of precision and
false-positive ratio (FPavg). Moreover, with such a high precision level (89.74%) that is
higher at least ten percentage points than reported by other researchers, we also managed to
obtain relatively high sensitivity (92.62%). Additionally, the F1 score, which is an essential
measure of the quality of the system’s performance, is at the highest level among the others.
It surpasses the next-best system by more than 5%. Moreover, our system also reached a
high AP@0.5 level (88.16%).

Table 8. Final results compared with other research. (The best result is marked in bold.)

Reference Method nr of Subjects Sensitivity Precision F1 score FPavg

Dou et al. [36] 3D-FCN + 3D-CNN 1149 93.16% 44.31% 60.06% 2.74
Liu et al. [37] 3D-FRST + 3D-ResNet 1641 95.80% 70.90% 81.49% 1.6

Chen et al. [40] 2D-FRST + 3D-ResNet 2835 94.69% 71.98% 81.79% 11.58
Al-masni et al. [24] YOLO + 3D-CNN 72 94.32% 61.94% 74.78% 1.42
Chesebro et al. [41] MAGIC 78 95.00% 11.00% 19.72% 9.7
Myung et al. [42] YOLO with single label 186 80.96% 60.98% 69.57 6.57
Myung et al. [42] YOLO with double labels 186 59.69% 62.70% 61.16 4.50
Myung et al. [42] YOLO + CSF filtering 186 66.90% 79.75% 72.76 2.15

Li et al. [45] SSD(512)-FE 58 90% 79.7% 84.54% -
Our proposal 2D Faster RCNN 72 92.62% 89.74% 90.84% 0.24

An example of how the system detects a microbleed is illustrated in Figure 6. The
red boxes indicate ground truth CMBs, while the green ones represent system predictions.
Although cerebral microbleeds are small lesions, the detector manages to find even hardly
visible ones. It is also apparent that false-positive predictions are really similar to ground
truth CMBs (see Figure 6d, for example).

Figure 6. Samples of results obtained by the proposed system. With red box there are marked Ground
truth CMBs are marked with red boxes, while predicted CMBs are marked green. Images were
intentionally brightened just for presentation purposes. Examples (a–c,e,f) show correct predictions.
Examples (d,h,i) show false-positive predictions. Example (g) shows a false-negative prediction.
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5. Conclusions

To conclude, the main goal of our research was to develop a system that allows
efficient and reliable detection of microbleeds. To achieve this, we analysed the influence
of many important issues on the system performance. The analysis allowed us to draw
many interesting conclusions and finally to implement the system accordingly.

In particular, we pointed out a number of pre- and post-processing techniques that
allow increasing the ability to detect CMBs and distinguish them from their mimics.

Enlargement of the images has improved the networks ability to detect CMBs while
providing information from the adjacent slices by skilfully input structuring has enabled a
significant reduction of false-positive rate. We also confirmed that appropriate unification
of the method of labelling the lesions is also crucial in terms of final results.

As a result, we achieved high levels of both sensitivity and precision metrics, confirmed
by a high F1 score and a low number of false positives. As proven, compared to other
such systems, ours performs very well. Joint analysis of reported metrics is important and
allows for proper evaluation of the system and its comparison to other ones. It should
be emphasised that this would not have been possible without the close cooperation of
machine learning and radiologists.

Three-dimensional approaches seem to naturally fit this problem, as the data is also
three-dimensional and with the increasing availability of powerful GPUs, it is becoming
possible to efficiently analyse the volumetric medical data using 3D deep learning, but still,
the issues like limited availability of data, the curse of dimensionality and related high
computational cost, difficulties in analysing and interpreting the achieved results are still
a challenge. At this stage of research and application, using 2D approaches seems more
practical and effective.

Although the model that we used is not a state-of-the-art solution, it was carefully
chosen considering its ability to detect small objects despite the longer computational time.
We also selected appropriate hyper-parameters as well as image augmentation methods.
Moreover, we have tested the impact of training set selection. We confirmed a significant
impact of proper data selection, its diversity, representativeness and balance.

Finally, we proposed a novel prediction post-processing algorithm to appropriately
evaluate the model. This has enabled the transition from two-dimensional to three-dimensional
space of consideration. It made possible the reduction of false-positive predictions that are in
fact CMBs. Moreover, it allowed the detection of cerebral microbleeds not only on slices, where
they were labelled but also on the adjacent ones.

In our current research, we are focused on extending the functionality of the system
to diagnose Small Vessels Disease (SVD), of which one of the symptoms are cerebral
microbleeds. This requires the preparation of a more numerous, balanced and more
precisely labelled patient dataset, which we are already involved in.
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and M.G. (Małgorzata Grzywińska); writing—original draft preparation, M.A.F., M.G. (Michał
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