
electronics

Article

Low-Latency Hardware Implementation of High-Precision
Hyperbolic Functions Sinhx and Coshx Based on Improved
CORDIC Algorithm

Wenjia Fu 1, Jincheng Xia 1 , Xu Lin 1, Ming Liu 2,* and Mingjiang Wang 1,*

����������
�������

Citation: Fu, W.; Xia, J.; Lin, X.; Liu,

M.; Wang, M. Low-Latency Hardware

Implementation of High-Precision

Hyperbolic Functions Sinhx and

Coshx Based on Improved CORDIC

Algorithm. Electronics 2021, 10, 2533.

https://doi.org/10.3390/

electronics10202533

Academic Editor: Luis Gomes

Received: 14 September 2021

Accepted: 13 October 2021

Published: 17 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Shenzhen Key Laboratory of IoT Key Technology, Harbin Institute of Technology, Shenzhen 518000, China;
19S152116@stu.hit.edu.cn (W.F.); 19S152115@stu.hit.edu.cn (J.X.); 20S152153@stu.hit.edu.cn (X.L.)

2 School of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518000, China
* Correspondence: lium@sziit.edu.cn (M.L.); mjwang@hit.edu.cn (M.W.); Tel.: +86-0755-8922-6908 (M.L.);

+86-0755-8655-5455 (M.W.)

Abstract: CORDIC algorithm is used for low-cost hardware implementation to calculate transcen-
dental functions. This paper proposes a low-latency high-precision architecture for the computation
of hyperbolic functions sinhx and coshx based on an improved CORDIC algorithm, that is, the
QH-CORDIC. The principle, structure, and range of convergence of the QH-CORDIC are discussed,
and the hardware circuit architecture of functions sinhx and coshx using the QH-CORDIC is plotted
in this paper. The proposed architecture is implemented using an FPGA device, showing that it
has 75% and 50% latency overhead over the two latest prior works. In the synthesis using TSMC
65 nm standard cell library, ASIC implementation results show that the proposed architecture is also
superior to the two latest prior works in terms of total time (latency× period), ATP (area× total time),
total energy (power × total time), energy efficiency (total energy/efficient bits), and area efficiency
(efficient bits/area/total time). Comparison of related works indicates that it is much more favorable
for the proposed architecture to perform high-precision floating-point computations on functions
sinhx and coshx than the LUT method, stochastic computing, and other CORDIC algorithms.

Keywords: hyperbolic functions; CORDIC; high-precision floating point; low latency; hardware
configurable architecture

1. Introduction

Scientific computing has penetrated almost all scientific and engineering computing
and is widely used in energy survey, game rendering, meteorology and oceanography,
finance and insurance, computer-aided design, etc. As for numerical precision during
computation, different fields have different requirements. Currently, IEEE’s 64-bit floating-
point (FP) standard is accurate enough for most scientific applications. However, a higher
level of numerical precision is required for the rapidly growing number of important
scientific computing applications such as climate modeling, fluid mechanics, etc. This
means that these applications require hundreds or more digits to achieve meaningful
numerical results. Furthermore, high demand for real-time computing is usually put
forward in these scientific computing applications.

In scientific computing, hyperbolic functions such as sinhx and coshx find wide ap-
plications in engineering fields such as signal processing, power transmission, aerospace,
statistics, etc. [1,2]. Hyperbolic functions were typically implemented only in software until
recently, wherein their hardware implementation has become important; this is largely
due to the performance gains of hardware systems compared with software implementa-
tions. Extensive literature exists describing hardware implementation of functions sinhx
and coshx. Look-up table (LUT) approach, polynomial approximation technique, and
coordinate rotation digital computer (CORDIC) algorithm are three typical computational

Electronics 2021, 10, 2533. https://doi.org/10.3390/electronics10202533 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7195-5574
https://doi.org/10.3390/electronics10202533
https://doi.org/10.3390/electronics10202533
https://doi.org/10.3390/electronics10202533
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10202533
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10202533?type=check_update&version=2

Electronics 2021, 10, 2533 2 of 18

implementation methods of sinhx and coshx functions [3]. In recent years, the stochastic
computing method has also attracted much attention.

LUT method [4,5] is considered simple and swift since it computes functions sinhx and
coshx with stored values in memory blocks via the interpolation method. For this method,
the number of entries in memory blocks has to be cautiously chosen, as its computational
accuracy and required hardware area cannot compromise each other.

Polynomial approximation technique [6,7] employs Maclaurin series to represent
functions sinhx and coshx. Maclaurin series is an infinite sum of derivatives derived from
the Taylor series approximation at zero, which demands a mass of multipliers and adders.
Although look-up tables can be used to store values of factorials, design area and design
memory of this technique still seem inefficient.

As a classic iterative algorithm, the CORDIC algorithm [8] was firstly proposed by
Jack E. Volder in 1959. Only shift and addition operations are applied in this algorithm to
compute functions sinhx and coshx. It takes much fewer registers and fewer clock cycles
to calculate functions sinhx and coshx, making CORDIC the most suited algorithm for
the realization of hardware [3,9,10]. However, the CORDIC algorithm calculates vector
rotations in one of two modes: rotation and vectoring [11]; as such, it is well characterized as
having the latency of a serial multiplication. Moreover, the CORDIC algorithm may not be
able to satisfy area requirements in specific applications. Three versions of parallel CORDIC
with sign precomputation have been proposed in previous literature—P-CORDIC [12],
Flat-CORDIC [13,14], and Para-CORDIC [15]. They have helped in reducing the logic delay
and hardware area of the CORDIC prototype.

Gaines firstly introduced stochastic computing [16] for arithmetic digital representa-
tion circuits in the late 1960s. Its properties, which are simple arithmetic units [17], fault
tolerance, and allowance for high clock rates [18], result in extremely low hardware cost
and power consumption, but its disadvantages, including degradation of accuracy and
long latency [19], cannot be ignored in some cases. Overall, this technique is likely to
find more applications in massively parallel computation driven by the very low-cost
hardware [20].

Generally, the LUT method is the fastest to compute hyperbolic functions, but it con-
sumes a large area of silicon. Polynomial approximation achieves excellent approximation
with low maximum error in a finite domain of definition but is not fast, as it usually
makes use of multipliers in hardware architectures. CORDIC units are commonly used
in systems that require a low hardware cost. However, in some applications, even the
CORDIC method may not be able to satisfy the area requirements. Stochastic computing
attains high frequency and low power consumption at the expense of computing accuracy
and long latency.

Among the four above hardware methods, there are no existing architectures reported
in the literature to perfectly merge the features of high precision, high accuracy, and
low latency, which is an urgent task for some scientific computing applications. In this
paper, a novel architecture based on the CORDIC prototype is proposed to fill in this
gap. This architecture, called quadruple-step-ahead hyperbolic CORDIC (QH-CORDIC),
is demonstrated to be well suited to calculate hyperbolic functions sinhx and coshx in
high-precision FP format with low latency. It is coded in Verilog Hardware Description
Language (Verilog HDL) to implement the two functions. A detailed comparison between
the proposed architecture and previously published work is also discussed in this paper.

This paper is organized as follows: The principle and range of convergence (ROC)
of the basic CORDIC algorithm are reviewed in Section 2. In Section 3, the proposed
QH-CORDIC architecture based on basic CORDIC is demonstrated, including its general
architecture, ROC, and validity of computing exponential function ex, which is the main
component of hyperbolic functions sinhx and coshx. In Section 4, the overall architecture
of the quadruple precision FP hyperbolic functions sinhx and coshx and the architectures
of three internal main modules are detailed. Section 5 compares the FPGA implementation

Electronics 2021, 10, 2533 3 of 18

results of our proposed architecture with previously published work and reports the ASIC
implementation results of the proposed architecture. Finally, Section 6 concludes this paper.

2. Mathematical Background
2.1. Basic CORDIC Algorithm

Based on shift–addition and vector rotation, the basic CORDIC algorithm is simple
and efficient. Recurrent equations of basic CORDIC by theoretical studies [21] are

Xi+1 = Xi − m σi 2−i Yi
Yi+1 = Yi + σi 2−i Xi

Zi+1 = Zi − σi αi

(1)

where m ∈{1,0, −1} according to coordinate type of CORDIC (circular coordinates: m = 1; linear
coordinates: m = 0; hyperbolic coordinates: m = −1), αi represents micro-rotations according
to mode type of CORDIC (rotation mode: αi = tan−12−i; vectoring mode: αi = tanh−12−i), σi
designates rotation direction according to mode type of CORDIC (rotation mode: σi = sign(Zi);
vectoring mode: σi =− sign(Yi)), and i = 0, 1, · · · , n for circular coordinates or linear coordinates;
i = 1, 2, · · · , n for hyperbolic coordinates. Define scaling factors K and K’ for m = 1 and
m =−1 [22], respectively, as (2) and (3).

K =
n

∏
i=0

cos αi, m = 1 (2)

K′ =
n

∏
i=1

cosh αi, m = −1 (3)

2.2. Computation of Functions Sinhx and Coshx with CORDIC

Based on the recurrent Equation (1) and appropriate choice of initial values (X0,
Y0, and Z0 for circular coordinates or linear coordinates; X1, Y1, and Z1 for hyperbolic
coordinates), a variety of functions can be generated [23]. Table 1 lists common functions
that can be calculated with the CORDIC algorithm.

Table 1. Functions with CORDIC algorithm.

m Mode 1 Initial Values
Functions 2

Xn Yn or Zn

1 R X0 = 1, Y0 = 0, Z0 = θ cosθ Yn = sinθ

−1 R X1 = 1, Y1 = 0, Z1 = θ coshθ Yn = sinhθ

−1 R X1 = a, Y1 = a, Z1 = θ aeθ Yn = aeθ

1 V X0 = 1, Y0 = a, Z0 = π/2
√

(a2 + 1) Zn = cot−1a

−1 V X1 = a, Y1 = 1, Z1 = 0
√

(a2 − 1) Zn = coth−1a

−1 V X1 = a + 1, Y1 = a − 1, Z1 = 0 2
√

a Zn = 0.5lna

−1 V X1 = a + 1/4, Y1 = a – 1/4, Z1 = 0
√

a Zn = ln(a/4)

−1 V X1 = a + b, Y1 = a – b, Z1 = 0 2
√

ab Zn = 0.5ln(a/b)
1 In column mode, R represents rotation mode, while V represents vectoring mode. 2 Final values Xn and Yn are
obtained after the compensation of the scaling factors K (for m = 1) or K’ (for m = −1).

From Table 1, hyperbolic functions sinhx and coshx can be generated under the cir-
cumstance of rotation mode in hyperbolic coordinates. Exponential function ex, logarithm
function lnx, and their variant versions can be generated under the circumstance of either
rotation mode or vectoring mode in hyperbolic coordinates.

Electronics 2021, 10, 2533 4 of 18

2.3. Range of Convergence for Basic Hyperbolic CORDIC Algorithm

For basic CORDIC in hyperbolic coordinates, convergence conditions are expressed as
in (4) [24]. ∣∣∣tanh−1 Y1

X1

∣∣∣ ≤ αN +
N−1
∑

n=1
αn∣∣∣tanh−1 Y1

X1

∣∣∣ < 1.7433∣∣∣ Y1
X1

∣∣∣ < 0.94608

(4)

where Y1 and X1 are initial values of CORDIC. It can be inferred that a useful domain in
radian for basic CORDIC in hyperbolic coordinates must locate in (−1.7433, 1.7433). Such
ROC may not satisfy the across-all-range requirement of FP input values.

In addition, when i is 4, 13, 40, 121, · · · , (3u+2 – 1)/2, · · · where integer u starts from 0,
repeated iterations are necessary in order to ensure the convergence of basic CORDIC in
hyperbolic coordinates. Thus, actual iteration sequence of CORDIC is i = 1, 2, 3, 4, 4, 5, · · · ,
12, 13, 13, · · · .

2.4. Another Computation of Functions Sinhx and Coshx

Restricted to limited ROC, rough implementation of functions sinhx and coshx with ba-
sic CORDIC seems inappropriate. To realize the across-all-range computation of functions
sinhx and coshx, this paper proposes another methodology.

Hyperbolic functions sinhx and coshx can be defined in terms of exponential function ex,

sinhx =
ex − e−x

2
(5)

cosh x =
ex + e−x

2
(6)

where e−x = 1/ex. It can be seen from (5) and (6) that computation of sinhx and coshx
consists of function ex, division (to compute e−x), addition/subtraction operation, and
shift operation (right shift). When it comes to the computation of function ex, several
studies [25,26] address this problem using an approximation method. In addition to the
approximation approach, iterative methods are also widely exploited. Iterative methods
include digit-recurrence method [27–29] and hyperbolic CORDIC [30,31].

To enhance computational precision of function ex as high as possible with less com-
plex hardware, hyperbolic CORDIC was chosen for this study. However, hyperbolic
CORDIC brings about high-precision computation at the cost of high latency, which cannot
be tolerated by modern hardware. To eliminate the high-latency flaw from the hyperbolic
CORDIC algorithm, this paper proposes a novel QH-CORDIC architecture.

3. Quadruple-Step-Ahead Hyperbolic CORDIC Architecture
3.1. Improvement of Basic CORDIC Algorithm

Inspired by the double-step CORDIC algorithm [32], this paper proposes a QH-
CORDIC architecture, which combines four sequential iterations into one single iteration
step. Recurrent equations of the proposed QH-CORDIC are shown in (7)–(9).

Xi+4 = Xi * {1 + 2−(4i+6) * [σi+3 σi+2 σi+1 σi]
+ 2−(2i+5) * [16 σi+1 σi + 8 σi+2 σi+ 4 σi+2 σi+1 + 4 σi+3 σi+ 2 σi+3 σi+1 + σi+3 σi+2]}
+ Yi * { 2−(i+3) * [8 σi + 4 σi+1 + 2σi+2 + σi+3]
+ 2−(3i+6) * [8 σi+2 σi+1 σi + 4 σi+3σi+1σi + 2 σi+3 σi+2 σi + σi+3 σi+2 σi+1]}

(7)

Yi+4 = Yi * {1 + 2−(4i+6) * [σi+3 σi+2 σi+1 σi]
+ 2−(2i+5) * [16 σi+1 σi + 8 σi+2 σi + 4 σi+2 σi+1 + 4 σi+3 σi + 2 σi+3 σi+1 + σi+3 σi+2]}
+ Xi * { 2−(i+3) * [8 σi + 4 σi+1 + 2σi+2 + σi+3]
+ 2−(3i+6) * [8 σi+2 σi+1 σi + 4 σi+3 σi+1 σi + 2 σi+3 σi+2 σi + σi+3 σi+2 σi+1]}

(8)

Electronics 2021, 10, 2533 5 of 18

Zi+4 = Zi − σi+3 αi+3 − σi+2 αi+2 − σi+1 αi+1− σi αi (9)

where σi, σi+1, σi+2, σi+3 designate rotation directions of the i-th, (i+1)-th, (i+2)-th, (i+3)-th ro-
tations, αi = tanh−1(2−i), αi+1 = tanh−1[2−(i+1)], αi+2 = tanh−1[2−(i+2)], αi+3 = tanh−1[2−(i+3)],
and i = 1, 2, · · · , n.

The necklace of the QH-CORDIC lies in the simultaneous prediction of σi for four sequen-
tial iterations. The value of σi is either −1 (rotating in a clockwise direction) or 1 (rotating in an
anticlockwise direction). A combination of {σi, σi+1, σi+2, σi+3} corresponding to four sequential
iterations has 16 possible cases as for their values, ranging from {−1, −1, −1, −1} to {1, 1, 1, 1}.

Substitute the 16 possible cases of {σi, σi+1, σi+2, σi+3} into (8) and obtain the 16
simplified expressions for Yi+4. Table 2 details the corresponding recurrent equations of
Yi+4 when {σi, σi+1, σi+2, σi+3} ranges from {−1, −1, −1, −1} to {1, 1, 1, 1}. Since recurrent
equations of Xi+4 are almost the same as those of Yi+4, table listing recurrent equations of
Xi+4 is omitted.

Table 2. Recurrent equations of Yi+4 in QH-CORDIC.

Case σi σi+1 σi+2 σi+3 Yi+4

1 −1 −1 −1 −1 Yi+4 = Yi × [1 + 2−(4n+6) + 35 × 2−(2n+5)] + Xi × [– 15 × 2−(n+3) – 15 × 2−(3n+6)]

2 −1 −1 −1 1 Yi+4 = Yi × [1 – 2−(4n+6) + 21 × 2−(2n+5)] + Xi × [– 13 × 2−(n+3) – 2−(3n+6)]

3 −1 −1 1 −1 Yi+4 = Yi × [1 – 2−(4n+6) + 9 × 2−(2n+5)] + Xi × [– 11 × 2−(n+3) + 7 × 2−(3n+6)]

4 −1 1 −1 −1 Yi+4 = Yi × [1 – 2−(4n+6) – 9 × 2−(2n+5)] + Xi × [– 7 × 2−(n+3) + 11 × 2−(3n+6)]

5 1 −1 −1 −1 Yi+4 = Yi × [1 – 2−(4n+6) – 21 × 2−(2n+5)] + Xi × [2−(n+3) + 13 × 2−(3n+6)]

6 −1 −1 1 1 Yi+4 = Yi × [1 + 2−(4n+6) – 2−(2n+5)] + Xi × [– 9 × 2−(n+3) + 9 × 2−(3n+6)]

7 −1 1 −1 1 Yi+4 = Yi × [1 + 2−(4n+6) – 15 × 2−(2n+5)] + Xi × [– 5 × 2−(n+3) + 5 × 2−(3n+6)]

8 −1 1 1 −1 Yi+4 = Yi × [1 + 2−(4n+6) – 19×2−(2n+5)] + Xi × [– 3 × 2−(n+3) – 3 × 2−(3n+6)]

9 1 −1 −1 1 Yi+4 = Yi × [1 + 2−(4n+6) – 19 × 2−(2n+5)] + Xi × [3 × 2−(n+3) + 3 × 2−(3n+6)]

10 1 −1 1 −1 Yi+4 = Yi × [1 + 2−(4n+6) – 15 × 2−(2n+5)] + Xi × [5 × 2−(n+3) – 5 × 2−(3n+6)]

11 1 1 −1 −1 Yi+4 = Yi × [1 + 2−(4n+6) – 2−(2n+5)] + Xi × [9 × 2−(n+3) – 9 × 2−(3n+6)]

12 −1 1 1 1 Yi+4 = Yi × [1 – 2−(4n+6) – 21 × 2−(2n+5)] + Xi × [– 2−(n+3) – 13 × 2−(3n+6)]

13 1 −1 1 1 Yi+4 = Yi × [1 – 2−(4n+6) – 9 × 2−(2n+5)] + Xi × [7 × 2−(n+3) – 11 × 2−(3n+6)]

14 1 1 −1 1 Yi+4 = Yi × [1 – 2−(4n+6) + 9 × 2−(2n+5)] + Xi × [11 × 2−(n+3) – 7 × 2−(3n+6)]

15 1 1 1 −1 Yi+4 = Yi × [1 – 2−(4n+6) + 21 × 2−(2n+5)] + Xi × [13 × 2−(n+3) + 2−(3n+6)]

16 1 1 1 1 Yi+4 = Yi × [1 + 2−(4n+6) + 35 × 2−(2n+5)] + Xi × [15 × 2−(n+3) + 15 × 2−(3n+6)]

Table 3 lists recurrent equations of Zi+4 when {σi, σi+1, σi+2, σi+3} ranges from {−1,−1,−1,−1}
to {1, 1, 1, 1}.

Table 3. Recurrent equations of Zi+4 in QH-CORDIC.

Case σi σi+1 σi+2 σi+3 Zi+4

1 −1 −1 −1 −1 Zi+4 = Zi + αi + αi+1 + αi+2 + αi+3

2 −1 −1 −1 1 Zi+4 = Zi + αi + αi+1 + αi+2 – αi+3

3 −1 −1 1 −1 Zi+4 = Zi + αi + αi+1 – αi+2 + αi+3

4 −1 1 −1 −1 Zi+4 = Zi + αi – αi+1 + αi+2 + αi+3

5 1 −1 −1 −1 Zi+4 = Zi – αi + αi+1 + αi+2 + αi+3

6 −1 −1 1 1 Zi+4 = Zi+ αi + αi+1 – αi+2 – αi+3

Electronics 2021, 10, 2533 6 of 18

Table 3. Cont.

Case σi σi+1 σi+2 σi+3 Zi+4

7 −1 1 −1 1 Zi+4 = Zi + αi – αi+1 + αi+2 – αi+3

8 −1 1 1 −1 Zi+4 = Zi + αi – αi+1 – αi+2 + αi+3

9 1 −1 −1 1 Zi+4 = Zi – αi + αi+1 + αi+2 – αi+3

10 1 −1 1 −1 Zi+4= Zi– αi + αi+1 – αi+2 + αi+3

11 1 1 −1 −1 Zi+4 = Zi – αi – αi+1 + αi+2 + αi+3

12 −1 1 1 1 Zi+4 = Zi + αi – αi+1 – αi+2 – αi+3

13 1 −1 1 1 Zi+4 = Zi – αi + αi+1 – αi+2 – αi+3

14 1 1 −1 1 Zi+4 = Zi – αi – αi+1 + αi+2 – αi+3

15 1 1 1 −1 Zi+4 = Zi – αi – αi+1 – αi+2 + αi+3

16 1 1 1 1 Zi+4 = Zi – αi – αi+1 – αi+2 – αi+3

3.2. General Architecture of QH-CORDIC

The hardware architecture of basic CORDIC and QH-CORDIC is presented in Figure 1a,b,
respectively. Figure 1a bears a close resemblance to Figure 1b because they both have three
major data paths (X data path, Y data path, and Z data path). Their differences mainly lie in the
signal(s) that determines the rotation direction of the next iteration.

Figure 1. (a) Hardware architecture of basic CORDIC; (b) hardware architecture of QH-CORDIC.

The hardware iteration of QH-CORDIC in two modes, vectoring mode and rotating
mode, is briefly demonstrated in Figure 2a,b, respectively. As explained in Section 2.3, in
order to ensure ROC of hyperbolic CORDIC, when i = 5, 13, 41, 121, · · · , (3u+2 – 1)/2, · · ·
where u starts from 0, repeated iterations are needed. Therefore, except X/Y/Z iterative
data path that performs iterative formulae of Xi+4/Yi+4/Zi+4, X/Y/Z repetitive data path
when i = 5, 13, 41, · · · is also listed.

It should be noted that QH-CORDIC in rotating mode can be used to compute ex-
ponential function ex. According to (5) and (6), this paper only employs QH-CORDIC in

Electronics 2021, 10, 2533 7 of 18

rotating mode to implement hyperbolic functions sinhx and coshx. As for QH-CORDIC in
vectoring mode, it can be used to compute the logarithmic function lnx.

Figure 2. (a) QH-CORDIC in vectoring mode; (b) QH-CORDIC in rotating mode.

3.3. ROC of QH-CORDIC for Exponential Function

The computation of exponential function ev is performed through (10).

ev =
ev + e−v

2
+

ev − e−v

2
= cosh v + sinhv. (10)

Initial conditions and terminated statuses for QH-CORDIC-based computation of ev

are listed in (11) and (12), respectively.
x1 = K∞
y1 = 0
z1 = v

K∞ =
∞
∏
i=1

1√
1−2−2i

(11)

x∞ = cosh v
y∞ = sinhv

z∞ = 0
(12)

According to (4), ROC of input v for function ev is (−1.7433, 1.7433).

3.4. Validity of Computing Exponential Function with QH-CORDIC

To study the validity of computation of exponential function ex in FP format using QH-
CORDIC, suppose input FP number x as (– 1)S ×M × 2E where S is the sign of x, E is the
exponent of x after correcting bias, and M is mantissa of x after complementing the implicit
bit. The assumption is made that the output of function ex is A × 2B where 0.5 < A < 1 and B
is an integer.

Suppose S = 0 first. The discussion of sign S = 1 will be involved later. From

eM×2E
= A× 2B, (13)

Electronics 2021, 10, 2533 8 of 18

we can obtain

0.5 <
eM×2E

2B < 1 (14)

2B−1 < eM×2E
< 2B. (15)

Performing the two-based-log operation of both sides to (15), we obtain

B− 1 < M× 2E

ln 2
< B. (16)

Since B is an integer, and the value of B can be attained with (16).
In order to ensure the value of A, suppose 2B = eZ. Then,

Z = B ln 2 (17)

Substitute (17) into (13) and yield

A = eM×2E−B ln 2 (18)

By (16), the value of B can be computed. A is in the range of (0.5,1). According to the
graph of exponential function ex, M × 2E – B × ln2 must locate in the ROC of CORDIC, i.e.,
(−1.7433,1.7433). Therefore, the value of A can be attained by (18).

When S = 1, ex = – A × 2B. Following the abovementioned steps, we can obtain

B− 1 < −M× 2E

ln 2
< B. (19)

A = e−M×2E−B ln 2 (20)

Similarly, for the condition where S = 1, the value of B can be computed by (19) and A is
also in the range of (0.5,1). According to the graph of exponential function ex, – M× 2E – B× ln2
must locate in the ROC of CORDIC. Therefore, the value of A can be attained by (20).

Thus, the validity of computing exponential function ex with CORDIC is checked.

3.5. Simplified Computing of B in Formula (16) or (19)

Since the proposed QH-CORDIC architecture is mainly for quadruple precision FP
hyperbolic functions sinhx and coshx, it is necessary to reduce the area of circuit design in
the context of high-precision FP input. In Section 3.4, if input FP number x is a quadruple
precision FP number, M will be a 113-bit fixed-point number. The difficulty of computing B
in Formula (16) or (19) lies in the calculation of M × 2E/ln2 where both M and 1/ln2 are 113-
bit fixed-point numbers. Multiplying M with 1/ln2 straightforward is theoretically feasible.
However, in practice, such operation will take an extremely large circuit design area.

It can be observed that in the context of the above situation, B will be a 15-bit fixed-
point number, which means that the complex multiplication of M and 1/ln2 can be simpli-
fied. The challenge is to reduce effective digits of M and 1/ln2 in the actual calculation.
Denote M and 1/ln2 as (21) and (22),

M =
p︷ ︸︸ ︷

1.x−1x−2 · · · x−(p−2)x−(p−1)
x−px−(p+1) · · · x−111x−112

=
p︷ ︸︸ ︷

1.x−1x−2 · · · x−(p−2)x−(p−1)
00 · · · 00 +

p︷ ︸︸ ︷
0.00 · · · 00

x−px−(p+1) · · · x−111x−112

= P + ∆P

(21)

Electronics 2021, 10, 2533 9 of 18

1/ ln 2 =
p︷ ︸︸ ︷

1.101x−4x−5 · · · x−(q−2)x−(q−1)
x−qx−(q+1) · · · x−111x−112

=
p︷ ︸︸ ︷

1.101x−4x−5 · · · x−(q−2)x−(q−1)
00 · · · 00 +

p︷ ︸︸ ︷
0.00 · · · 00

x−qx−(q+1) · · · x−111x−112

= Q + ∆Q

(22)

where p and q are two positive integers. P is defined as the high-order p bits of M
extended with 0s to obtain a 113-bit number, while Q is defined as the high-order q bits of
1/ln2 extended with 0s to obtain a 113-bit number. Let ∆P = M – P and ∆Q = 1/ln2 – Q.
Hence, P < 2 and Q < 2; |∆P| < 2−p, and |∆Q| < 2−q.

According to (21) and (22), B must be x1x0. x−1x−2· · · x−13 where x1x0 may be 01, 10, or
11. Finding appropriate values for integers p and q to ensure |P × Q – M × 1/ln2| < 2−13

is the key for simplified computing of B. Since M = P + ∆P and 1/ln2 = Q + ∆Q, then

|P×Q−M× 1/ ln 2| = |P∆Q + Q∆P + ∆P∆Q|. (23)

As P < 2, Q < 2, |∆P| < 2−p, |∆Q| < 2−q, p�1 and q�1, (23) can be approximated
as (24),

|P∆Q + Q∆P + ∆P∆Q| ≈ |P∆Q + Q∆P| (24)

and
|P∆Q + Q∆P| < 2−p+1 + 2−q+1 ≤ 2·

√
2−p−q+2 = 2

−p−q
2 +2. (25)

Thus, it becomes
2
−p−q

2 +2 < 2−13. (26)

We can obtain
p + q > 30. (27)

Let p = q = 16, and (23) becomes

|P∆Q + Q∆P + ∆P∆Q|
< 2·2−16 + 2·2−16 + 2−16−16

< 2−14 + 2−32

< 2−14 + 2−14

< 2−13

(28)

From the check of (28), we can derive that setting p and q to 16 can ensure |P× Q – M×
1/ln2| < 2−13. That is to say, effective digits of M and 1/ln2 only need to be 16 rather than 113.
This helps to simplify the calculation of B in formula (16) or (19), which is also reflected in the
architecture of state PRE_B in Section 4.

4. Hardware Implementation of Hyperbolic Functions Sinhx and Coshx
with QH-CORDIC

The proposed QH-CORDIC architecture can apply to both fixed-point and FP opera-
tions. Meanwhile, the QH-CORDIC architecture is appropriate for configurable precision.
In this paper, based on the QH-CORDIC architecture, a quadruple precision FP hardware
implementation of hyperbolic functions sinhx and coshx is presented.

The overall architecture of the quadruple precision FP hyperbolic functions sinhx
and coshx is illustrated in Figure 3. The proposed architecture is divided into three parts:
Module Pre_deal, Module Cordic_core, and Module exp_divide_sinh_cosh. Inputs are an
FP number, input_num, and two signals—clk and rst_n. Outputs are sinh_result, cosh_result,
sinh_cosh_done, and sinh_cosh_exception, which are a 128-bit calculated FP result of function
sinhx, a 128-bit calculated FP result of function coshx, a completion signal, and an exception
signal, respectively.

Electronics 2021, 10, 2533 10 of 18

Figure 3. Overall architecture of quadruple precision functions sinhx and coshx in FP format.

Module Pre_deal is to judge whether exception situations exit after breaking down
the FP input input_num into three portions: 1-bit sign (sign), 15-bit exponent (e), and 112-bit
mantissa (m). The output of Module Pre_deal is a 3-bit signal exception. There are five
possible values of exception: 3′b000 (no exception), 3′b001 (input_num is not a number),
3′b010 (input_num is negative infinite), 3′b011 (input_num is positive infinite), and 3′b100
(input_num is small enough to be seen as zero when 15-bit exponent of input_num is smaller
than 15’h3f8c).

After Module Pre_deal, Module Cordic_core computes function einput_num with the
proposed QH-CORDIC algorithm under the circumstance of no exception. If any exception
exists, signal exception_out will be outputted and completion signal finish turns to be 1.
Module Cordic_core is mainly composed of a finite state machine (FSM), which has six
states in total. The state transition diagram of the FSM is shown in Figure 4.

Figure 4. State transition diagram of finite state machine.

Among these six states, state PRE_B and state PRE_A are to calculate the value of B
and A, respectively, in (16) and (18). The architectures of state PRE_B and state PRE_A are
shown in Figure 5a,b, respectively.

Electronics 2021, 10, 2533 11 of 18

Figure 5. (a) Architecture of state PRE_B; (b) architecture of state PRE_A.

State INIT is to perform the initialization process of exponential function einput_num.
Figure 6 shows the data path of state INIT. In Figure 6, input A is the output of state PRE_A.
K_inv is a constant, and its value is expressed in (21).

K_inv = 1/K∞ = 1/(
∞

∏
i=1

1√
1− 2−2i

) (29)

Figure 6. Architecture of state INIT.

State ITE is to perform QH-CORDIC computation of exponential function einput_num.
Figure 7 shows the data path of state ITE. The red box in Figure 7 corresponds to the
rotating-mode X/Y/Z iterative data path in Figure 2b. The three important modules x_pre,
y_pre, and z_pre, respectively, perform iterative data path of Xi+4 in (7), Yi+4 in (8), and
Zi+4 in (9). In addition, the signal in the register cnt_next and signal exception_in determine
the next state of state ITE together.

Figure 7. Architecture of state ITE.

Electronics 2021, 10, 2533 12 of 18

Figure 8a,b demonstrates architectures of state ONE_STEP_1 and state ONE_STEP_2,
respectively. Two blue boxes in Figure 8a,b make up X/Y/Z repetitive iterative data path
and in Figure 2b for exponential function jointly.

Figure 8. (a) Architecture of state ONE_STEP_1; (b) architecture of state ONE_STEP_2.

After Module Cordic_core, output signals x_out, y_out, exp_out, exception_out and finish are
generated. Receiving the above-mentioned five signals and two control signals clk and rst_n,
Module exp_divide_sinh_cosh firstly calculates exponential function e−input_num with x_in and
y_in. As Figure 9 demonstrates, einput_num = x_in + y_in. Furthermore, e−input_num = 1/einput_num.
The computation of e−input_num is implemented through the Predict-Correct algorithm in [33]
with p = 113, q = 113, m = 11, n = 3 and t = 3. After obtaining e−input_num and einput_num, the two
desired hyperbolic functions sinh(input_num) and cosh(input_num) can be attained with (21)
and (22).

sinh(input_num) =
einput_num − e−input_num

2
(30)

cosh(input_num) =
einput_num + e−input_num

2
(31)

It can be inferred from (21) and (22) that computation of sinh(input_num) and cosh
(input_num) is made up with a 128-bit FP addition/subtraction operation and a right-shift
operation, which is also demonstrated in Figure 9.

There also exists exception handling in Module exp_divide_sinh_cosh. If no exception
conditions exist, Module exp_divide_sinh_cosh outputs the result of hyperbolic functions
sinh(input_num) and cosh(input_num), respectively, sinh_out and cosh_out. Otherwise,
Module exp_divide_sinh_cosh outputs an exception flag signal sinh_cosh_exception and
the corresponding exceptional result of sinh(input_num) and cosh(input_num), respectively,
sinh_out and cosh_out.

Electronics 2021, 10, 2533 13 of 18

Figure 9. General architecture of Module exp_divide_sinh_cosh.

5. Implementation and Comparisons

The proposed architecture was coded in Verilog Hardware Description Language.
Verification of hardware implementation of the two functions sinhx and coshx is presented
in Section 5.1. After that, it was synthesized in the Xilinx ISE Design Suite and mapped to an
FPGA device (xc7vx485). Comparisons in terms of timing analysis and device utilization are
discussed in Section 5.2. The proposed architecture was also synthesized with TSMC 65 nm
standard cell library, using Synopsys Design Compiler. The ASIC implementation details
are shown in Section 5.3. Section 5.4 compares the proposed architecture with the LUT
method, stochastic computing, and other CORDIC algorithms to show its characteristics of
high accuracy, low error, and vast ROC when performing high-precision computing.

5.1. Functional Verification

The functional verification of the proposed architecture was carried out using 1-million
random test cases for normal, sub-normal, and other exceptional input numbers with IEEE’s
128-bit FP mode. This paper compares the hardware simulation results of the proposed
architecture with software results using the bigfloat package. The bigfloat package is a

Electronics 2021, 10, 2533 14 of 18

Python wrapper for the GNU MPFR library for arbitrary-precision FP reliable arithmetic. It
provides precise control over precisions and gives correctly rounded reproducible platform-
independent results.

In the case of the 1-million random 128-bit FP tests, the statistical correct rate of the
proposed architecture is 99.6%, compared with bigfloat data results using Python. Among
the 0.4% not-matched 128-bit FP tests, the proposed architecture produces a maximum of
2-ULP (unit at last place) precision loss.

5.2. FPGA Implementation Analysis

Timing analysis and device utilization are discussed in this subsection. This paper
mainly implements a 128-bit (i.e., quadruple precision) FP hyperbolic functions architecture,
where the number of internal iterations is up to 128.

The methods developed by [3,32] and the proposed architecture in this study are
three variants of the CORDIC algorithm. For an equal comparison, set N to 128 in [3,32].
Meanwhile, the study by [3] only focuses on hyperbolic functions with fixed-point inputs
that are convergent to ROC of basic CORDIC. Hence, for equal comparison, only Module
Cordic_core (without states PRE_B and PRE_A) of the proposed architecture is synthesized.

The designed hardware was simulated with a clock of period 10 ns. Table 4 provides
the timing analysis and device utilization of [3] (N = 128), [32] (N = 128), and the proposed
architecture. According to Table 4, the method by [3] takes three times more clock cycles
than the proposed architecture, while the method by [32] takes one time more clock cycles
than the proposed architecture. It can be inferred that for [3], the number of clock cycles
absolutely depends on the value of N; for [32] and the proposed architecture, the number of
clock cycles equals N/2 and N/4, respectively. The reason why clock cycles of the proposed
architecture are so few lies in the fact that the proposed architecture performs four-bits
computation every iteration.

Table 4. Timing waveform and device utilization comparison.

Paper [3] Paper [32] Proposed

Clock cycles 128 (100%) 64 (50%) 32 (25%)

Time taken (ns) 1280 (100%) 640 (50%) 320 (25%)

Slice 1106 (100%) 7624 (689.3%) 9430 (852.6%)

Slice flip flops 337 (100%) 462 (137.1%) 512 (151.9%)

Four-input LUTs 3403 (100%) 24168 (710.2%) 29172 (857.2%)

Bonded IOBs 403 (100%) 425 (105.5%) 403(100%)

Table 4 also shows that the number of device resources consumed by [3] (N = 128), [32]
(N = 128), and the proposed architecture (only Module Cordic_core). According to Table 4,
the number of bonded IOBs consumed by the proposed architecture is the same as or even
smaller than that consumed by [3] or [32]. The number of slice flip flops consumed by the
proposed architecture is half-time more than or slightly larger than that consumed by [3]
or [32], respectively.

However, the number of slices and four-input LUTs consumed by the proposed
architecture is about 7.5 times more than those consumed by [3]. The reason why the
proposed architecture consumes so many slices and LUTs lies in the calculation of X, Y, and
Z’s 16 predictive formulae. Considering the amount of calculation magnified by a factor of
16 in theory, the practical utilization of the device resources of the proposed architecture
seems to be acceptable.

5.3. ASIC Implementation Performance

The proposed architecture is synthesized with the best achievable timing constraints,
with a constraint of the max-area set to zero and a global operating voltage of 0.9 V.

Electronics 2021, 10, 2533 15 of 18

Section 5.3 compares the performance of ASIC implementation of the proposed architecture
with [3] (N = 128) and [32] (N = 128). This paper retrieves studies [3,32] after enlarging the
ROC of [3,32] to (−215, 215) and reducing their error to be below 2−113.

Table 5 lists nine parameters of ASIC implementation of the three variants of the
CORDIC algorithm. Since the clock period is set to be 3.3 ns for [3,32] and the proposed
architecture, the clock frequency of ASIC implementation is 300 MHz. Keeping the same
clock frequency, the latency parameter of [3,32] and the proposed architecture is 137, 73,
and 41, respectively, for 128-bit FP input numbers. The downward trend of parameter
latency from [3], to [32], to the proposed architecture, is steeper, showing that the pro-
posed architecture can dramatically cut down on latency. Therefore, it is with the total
time parameter.

Table 5. Comparison of ASIC implementation details @ TSMC 65 nm.

Paper [3] Paper [32] Proposed

Area (µm2) 451782 (100%) 909540 (201.3%) 1321500 (292.5%)

Power (mW) 4.11 (100%) 8.12 (197.6%) 12.60 (306.6%)

Latency (cycle) 137 (100%) 73 (53.3%) 41 (29.9%)

Period (ns) 3.3

Total time (ns) 1 452.1 (100%) 240.9 (53.3%) 135.3 (29.9%)

ATP (mm2·ns) 2 204.25 (100%) 219.11 (107.3%) 178.79 (87.5%)

Total energy (fJ) 3 1858.13 (100%) 1956.11 (105.3%) 1580.04 (85%)

Energy efficiency
(fJ/bit) 4 14.52 (100%) 15.28 (105.2%) 12.34 (84.9%)

Area efficiency
(bit/(mm2·ns)) 5 0.63 (100%) 0.58 (92.1%) 0.71 (112.7%)

1 Total time = latency× period. 2 ATP = area× total time. 3 Total energy = power× total time. 4 Energy efficiency = total
energy/efficient bits where efficient bits equal to N = 128 in Table 5. 5 Area efficiency = efficient bits/(area× total time)
where efficient bits equal to N = 128 in Table 5.

However, the latency and total time of the proposed architecture are reduced at the
expense of area and power. In comparison to [3], the area and power of the proposed
architecture are approximately three times those of [3]. In comparison to [32], the area and
power of the proposed architecture are approximately 1.5 times those of [32].

ATP and total energy parameters are usually used to evaluate ASIC performance
more properly and roundly. The smaller ATP and total energy are, the better the ASIC
design is. In Table 5, ATP and total energy of the proposed architecture are smaller than
those of [3,32]. This can be explained as the advantage of the proposed architecture is
low latency at the cost of area and power. To solve the problem of the expanded area
and power, the proposed architecture employs module re-using, clock gating, and other
techniques. Meanwhile, low latency leads to less computing time, which eventually makes
the proposed architecture superior to the first two CORDIC variants in terms of ATP and
total energy.

According to the definitions of energy efficiency and area efficiency, the smaller the
energy efficiency is and the larger the area efficiency is, the better the ASIC design is. As for
the energy efficiency and area efficiency of the two architectures, the proposed architecture
also achieves better performance. Due to low latency, less energy is consumed, and more
area is utilized per bit in the computing of hyperbolic functions with 128-bit FP inputs
using the proposed architecture. Specifically, the proposed architecture has 15.1% energy
efficiency and 19.2% energy efficiency overhead over [3,32], respectively. The proposed
architecture has 12.7% and 22.4% more area efficiency over, respectively, [3,32].

To summarize, the proposed architecture does not supersede [3] or [32] in terms of
parameter area and power. However, it outperforms the other two variants of the CORDIC

Electronics 2021, 10, 2533 16 of 18

algorithm in terms of ATP, energy efficiency, and area efficiency parameters since the
proposed QH-CORDIC algorithm brings about a low-latency feature.

5.4. Related Works and Comparisons

The proposed architecture also focuses on high-precision computing of the two func-
tions sinhx and coshx by enhancing accuracy, lowering function error, and enlarging ROC.
Table 6 demonstrates the comparisons of the LUT method, stochastic computing, and
CORDIC algorithms. It should be noted that the data of the CORDIC algorithm is adopted
from original studies [3,9,32], without retrieval.

LUT method is a way to compute hyperbolic functions sinhx and coshx. The study
by [5] computes trigonometric and hyperbolic functions using look-up tables whose size
is 77 bit × 14 to achieve the accuracy of 4 bits. In order to improve accuracy, the volume
of look-up tables used in this method will increase exponentially; that is, high-precision
function values will run out of a huge amount of LUTs. Meanwhile, a larger look-up table
brings about the lower searching speed.

Another way to compute hyperbolic functions is stochastic computing, as performed
in studies by [20,34]. Stochastic computing applies stochastic bitstreams to compute, and
its main features are having a low cost and low power [35]. The accuracy of stochastic
computing is related to the length of stochastic numbers. According to [36], the length of
stochastic numbers l is related to the precision i, and the number of independent variables
n in the calculated function, i.e., l = 2i−n. High-precision function values require a larger
length of stochastic numbers. For 128-bit FP inputs, the accuracy of 113 for the mantissa
part should be guaranteed. In this case, l = 2113−n. In practice, l cannot be too large, so n
needs to be appropriate. This means that for high-precision computation, a large number
of stochastic data will be generated, leading to tremendous latency, area, and power.

From Table 6, the function error of the proposed architecture is less than 2−113,

and ROC is expanded to (−215,215). It is a dramatic improvement, compared with the
other structures.

Table 6. Comparisons of LUT, stochastic computing, and CORDIC on high-precision computing.

LUT
Method Stochastic Computing CORDIC Algorithms

Paper [5] Paper [34] Paper [20] Paper [9] Paper [3] Paper [32] Proposed

Accuracy (bit) 4 10 7 8 4 10 128

Function Error - - MAE 1 = 0.0043 MRE 2 = 0.45 MAE = 0.043 - <2−113

LUT volume 3 77 × 14 No LUTs 20 × 8 Entry depth = 8 Entry depth = 4 Entry depth = 10 136 × 128

ROC 4 [0,10080] [0,1] [0,1] [−1,1] [−1.207,1.207] [−1.743,1.743] (−215,215)
1 MAE stands for mean absolute error. 2 MRE stands for mean relative error. 3 LUT volume = data width (bit) × entry depth. 4 ROC stands
for range of convergence.

To summarize, both the LUT method and stochastic computing are disadvantageous
when performing high-precision computation. Among the above four CORDIC algorithms,
metrics accuracy (or function error) and ROC are both considered in the proposed architecture.

6. Conclusions

A new method and hardware architecture were proposed to compute hyperbolic
functions sinhx and coshx based on the QH-CORDIC algorithm in this study.

Restricted to limited ROC of basic CORDIC algorithm, hardware implementation of
functions sinhx and coshx with all-floating-point-domain inputs on basis of basic CORDIC
seems infeasible. The proposed QH-CORDIC algorithm is based on a basic hyperbolic
CORDIC algorithm. Explaining the principle and structure of the QH-CORIDC, this study
discussed ROC and validity of the QH-CORDIC when computing exponential function ex

with all-floating-point-domain inputs since function ex mainly consists of functions sinhx
and coshx.

Electronics 2021, 10, 2533 17 of 18

As for the circuit design of functions sinhx and coshx with QH-CORDIC, the entire
logic path was tuned to perform a low-latency computation. The proposed circuit architec-
ture has 75% clock cycles overhead over [3] and 50% clock cycles overhead over [32]. From
the trade-off aspect of performance–power–area, in Section 5.3, the proposed architecture
was proved to be superior to [3,32] in terms of metrics of total time, ATP, total energy,
energy efficiency, and area efficiency. Section 5.4 showed that it is much more favorable for
the proposed architecture to perform high-precision computing of hyperbolic functions.

In addition, the proposed architecture can be configured for single-precision, double-
precision, quadruple-precision, or other user-defined precisions. Meanwhile, the proposed
architecture can also be adapted in computations of hyperbolic functions sinhx and coshx
with fixed-point input numbers after simple adjustment. Moreover, other common hyper-
bolic functions such as tanhx, arcsinhx, arccoshx, and arctanhx can also be computed using
the QH-CORDIC algorithm.

Author Contributions: Conceptualization, M.W. and M.L.; methodology, W.F.; software, W.F.; vali-
dation, W.F. and J.X.; writing—original draft preparation, W.F.; writing—review and editing, W.F.
and X.L.; funding acquisition, M.W. and M.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of Guangdong Province,
China (Grant No. 2020B1515120004), Shenzhen Science and Technology Plan-Basic Research (Grant
No. JCY20180503182125190), Shenzhen Science and Technology Plan-Basic Research (Grant No.
JCYJ20180507182241622), and Scientific research project in school-level (SZIIT2019KJ026).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Muller, J.M. Elementary Functions: Algorithms and Implementations, 2nd ed.; Birkhauser: Basel, Switzerland, 2006.
2. Parhami, B. Computer Arithmetic: Algorithms and Hardware Designs; Oxford University Press: Oxford, UK, 1999.
3. Saha, A.; Kumar, K.G.; Ghosh, A.; Naskar, M.K. Area efficient architecture of Hyperbolic functions for high frequency applications.

In Proceedings of the 2017 International Conference on Circuits, Controls, and Communications (CCUBE), Bangalore, India,
15–16 December 2017; pp. 139–142.

4. Tang, P.T.P. Table-lookup Algorithms for Elementary Functions and Their Error Analysis. In Proceedings of the 10th IEEE
Symposium on Computer Arithmetic, Grenoble, France, 26–28 June 1991; pp. 232–236.

5. Saint-Geniès, H.d.L.; Defour, D.; Revy, G. Exact Lookup Tables for the Evaluation of Trigonometric and Hyperbolic Functions.
IEEE Trans. Comput. 2017, 66, 2058–2071. [CrossRef]

6. Koren, I.; Zinaty, O. Evaluating Elementary Functions in a Numerical Coprocessor Based on Rational Approximations. IEEE
Trans. Comput. 1990, 39, 1030–1037. [CrossRef]

7. Schulte, M.J.; Swartzlander, E.E. Hardware Design for Exactly Rounded Elementary Functions. IEEE Trans. Comput. 1994, 43,
964–973. [CrossRef]

8. Volder, J.E. The CORDIC Trigonometric Computing Technique. IEEE Trans. Electron. Comput. 1959, EC-8, 330–334. [CrossRef]
9. Boudabous, A.; Ghozzi, F.; Kharrat, M.W.; Masmoudi, N. Implementation of hyperbolic functions using CORDIC algorithm. In

Proceedings of the 16th International Conference on Microelectronics, Tunis, Tunisia, 6–8 December 2004; pp. 738–741.
10. Vazquez, Á.; Villalba, J.; Antelo, E. Computation of Decimal Transcendental Functions Using the CORDIC Algorithm. In

Proceedings of the 2009 19th IEEE Symposium on Computer Arithmetic, Portland, OR, USA, 8–10 June 2009; pp. 179–186.
11. Ross, D.-M.; Miller, S.; Mihai, S. Exploration of sign precomputation-based CORDIC in reconfigurable systems. In Proceedings of

the 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific
Grove, CA, USA, 6–9 November 2011; pp. 2186–2191.

12. Kuhlmann, M.; Parhi, K.K. P-CORDIC: A Precomputation Based Rotation CORDIC Algorithm. EURASIP J. Adv. Signal Process.
2002, 2002, 936–943. [CrossRef]

13. Srikanthan, T.; Gisuthan, B. A novel technique for eliminating iterative based computation of polarity of micro-rotations in
CORDIC based sine-cosine generators. Microprocess. Microsyst. 2002, 26, 243–252. [CrossRef]

14. Gisuthan, B.; Srikanthan, T. FLAT CORDIC: A Unified Architecture for High-Speed Generation of Trigonometric and Hyperbolic
Functions. In Proceedings of the 43rd Midwest Symposium on Circuits and Systems (MWSCAS 2000), Lansing, MI, USA, 8–11
August 2000; pp. 1414–1417.

15. Juang, T.-B.; Hsiao, S.-F.; Tsai, M.-Y. Para-CORDIC: Parallel CORDIC Rotation Algorithm. Trans. Circuits Syst.—I Regul. Pap. 2004,
51, 1515–1524. [CrossRef]

16. Gaines, B.R. Stochastic Computing. In Proceedings of the American Federation of Information Processing Societies Spring Joint
Computer Conf, Atlantic City, NJ, USA, 18–20 April 1967.

http://doi.org/10.1109/TC.2017.2703870
http://doi.org/10.1109/12.57042
http://doi.org/10.1109/12.295858
http://doi.org/10.1109/TEC.1959.5222693
http://doi.org/10.1155/S1110865702205028
http://doi.org/10.1016/S0141-9331(02)00026-1
http://doi.org/10.1109/TCSI.2004.832734

Electronics 2021, 10, 2533 18 of 18

17. Parhi, K.; Liu, Y. Computing Arithmetic Functions Using Stochastic Logic by Series Expansion. IEEE Trans. Emerg. Top. Comput.
2016, 7, 1–13. [CrossRef]

18. Card, B.D.; Brown, H.C. Stochastic Neural Computation I: Computational Elements. IEEE Trans. Comput. 2001, 50, 891–905.
19. Liu, Y.; Parhi, K.K. Computing hyperbolic tangent and sigmoid functions using stochastic logic. In Proceedings of the 2016 50th

Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2016; pp. 1580–1585.
20. Luong, T.; Nguyen, V.; Nguyen, A.; Popovici, E. Efficient Architectures and Implementation of Arithmetic Functions Approxi-

mation Based Stochastic Computing. In Proceedings of the 2019 IEEE 30th International Conference on Application-Specific
Systems, Architectures and Processors (ASAP), New York, NY, USA, 15–17 July 2019; pp. 281–287.

21. Walther, J.S. A Unified Algorithm for Elementary Functions. In Proceedings of the AFIPS Spring Joint Computer Conference,
New York, NY, USA, 18–20 May 1971; pp. 379–385.

22. Kharrat, M.W.; Loulou, M.; Masmoudi, N.; Kamoun, L. A New Method to Implement CORDIC Algorithm. In Proceedings of the
International Conference on Electronics, Circuits and Systems ICECS, Malta, Malta, 2–5 September 2001.

23. Eklund, N. CORDIC: Elementary Function Computation Using Recursive Sequences. Issue Coll. Math. J. 2001, 32, 330–333.
[CrossRef]

24. Llamocca-Obregón, R.D.; Agurto-Ríos, P.C. A fixed-point implementation of the expanded hyperbolic CORDIC algorithm. Lat.
Am. Appl. Res. 2007, 37, 83–91.

25. De Dinechin, F.; Pasca, B. Floating-point exponential function-ns for DSP-enabled FPGAs. In Proceedings of the IEEE International
Conference on Field-Program Technology, Beijing, China, 8–10 December 2010; pp. 110–117.

26. Langhammer, M.; Pasca, B. Single precision logarithm and exponential architectures for hard floating-point enabled FPGAs. IEEE
Trans. Comput. 2017, 66, 2031–2043. [CrossRef]

27. Pineiro, J.-A.; Ercegovac, M.D.; Bruguera, J.D. Algorithm and architecture for logarithm, exponential, and powering computation.
IEEE Trans. Comput. 2004, 53, 1085–1096. [CrossRef]

28. Chen, D.; Han, L.; Ko, S.B. Decimal floating-point antilogarithmic converter based on selection by rounding: Algorithm and
architecture. IET Comput. Digit. Technol. 2012, 6, 277–289. [CrossRef]

29. Chen, D.; Han, L.; Choi, Y.; Ko, S.-B. Improved decimal floating-point logarithmic converter based on selection by rounding. IEEE
Trans. Comput. 2012, 61, 607–621. [CrossRef]

30. Meher, P.K.; Valls, J.; Juang, T.-B.; Sridharan, K.; Maharatna, K. 50 years of CORDIC: Algorithms, architectures, and applications.
IEEE Trans. Circuits Syst. I Reg. Pap. 2009, 56, 1893–1907. [CrossRef]

31. Wang, Y.; Dinavahi, V. Real-time digital multi-function protection system on reconfigurable hardware. IET Gen. Transm. Distrib.
2016, 10, 2295–2305. [CrossRef]

32. Phatak, D.S. Double step branching CORDIC: A new algorithm for fast sine and cosine generation. IEEE Trans. Comput. 1998, 47,
587–602. [CrossRef]

33. Xia, J.; Fu, W.; Liu, M.; Wang, M. Low-Latency Bit-Accurate Architecture for Configurable Precision Floating-Point Division. Appl.
Sci. 2021, 11, 4988. [CrossRef]

34. Huai, L.; Li, P.; Sobelman, G.E.; Lilja, D.J. Stochastic computing implementation of trigonometric and hyperbolic functions.
In Proceedings of the 2017 IEEE 12th International Conference on ASIC (ASICON), Guiyang, China, 25–28 October 2017;
pp. 553–556.

35. Hayes, J.P. Introduction to stochastic computing and its challenges. In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), San Francisco, CA, USA, 8–12 June 2015; pp. 1–3.

36. Chen, T.; Ting, P.; Hayes, J.P. Achieving progressive precision in stochastic computing. In Proceedings of the 2017 IEEE Global
Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 1320–1324.

http://doi.org/10.1109/TETC.2016.2618750
http://doi.org/10.1080/07468342.2001.11921899
http://doi.org/10.1109/TC.2017.2703923
http://doi.org/10.1109/TC.2004.53
http://doi.org/10.1049/iet-cdt.2011.0089
http://doi.org/10.1109/TC.2011.43
http://doi.org/10.1109/TCSI.2009.2025803
http://doi.org/10.1049/iet-gtd.2015.0718
http://doi.org/10.1109/12.677251
http://doi.org/10.3390/app11114988

	Introduction
	Mathematical Background
	Basic CORDIC Algorithm
	Computation of Functions Sinhx and Coshx with CORDIC
	Range of Convergence for Basic Hyperbolic CORDIC Algorithm
	Another Computation of Functions Sinhx and Coshx

	Quadruple-Step-Ahead Hyperbolic CORDIC Architecture
	Improvement of Basic CORDIC Algorithm
	General Architecture of QH-CORDIC
	ROC of QH-CORDIC for Exponential Function
	Validity of Computing Exponential Function with QH-CORDIC
	Simplified Computing of B in Formula (16) or (19)

	Hardware Implementation of Hyperbolic Functions Sinhx and Coshx with QH-CORDIC
	Implementation and Comparisons
	Functional Verification
	FPGA Implementation Analysis
	ASIC Implementation Performance
	Related Works and Comparisons

	Conclusions
	References

