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Abstract: The paper presents a new memetic, cluster-based methodology for image registration in
case of geometric perturbation model involving translation, rotation and scaling. The methodology
consists of two stages. First, using the sets of the object pixels belonging to the target image and to the
sensed image respectively, the boundaries of the search space are computed. Next, the registration
mechanism residing in a hybridization between a version of firefly population-based search procedure
and the two membered evolutionary strategy computed on clustered data is applied. In addition, a
procedure designed to deal with the premature convergence problem is embedded. The fitness to be
maximized by the memetic algorithm is defined by the Dice coefficient, a function implemented to
evaluate the similarity between pairs of binary images. The proposed methodology is applied on
both binary and monochrome images. In case of monochrome images, a preprocessing step aiming
the binarization of the inputs is considered before the registration. The quality of the proposed
approach is measured in terms of accuracy and efficiency. The success rate based on Dice coefficient,
normalized mutual information measures, and signal-to-noise ratio are used to establish the accuracy
of the obtained algorithm, while the efficiency is evaluated by the run time function.

Keywords: bio-inspired computing; evolutionary strategies; firefly algorithm; meta-heuristics; rigid
transformation; image registration; memetic algorithms; cluster-based methodology

1. Introduction

Often inspiration comes from nature and this extends into the field of computer
science. Many algorithms mimic the behavior of biological organisms to solve problems
that are difficult or impossible to solve in other way. Such algorithms are increasingly
used to approach various problems. They are permanently adapted, modified, combined,
developed and seem to have a bright future [1].

With the advancement of technology came an avalanche of images that are used in
various sectors. More than often, they are images of the same object but they are not
identical, being recorded by different sensors, at different times, angles, luminosity and
other variations. These images must be processed in order to be used and the huge number
of images makes this a perfect candidate for automation. The process of image registration
has raised a lot of attention in the last two decades, reflected in numerous papers published.
Due to the wide range of variations, many authors turn to bio-inspired evolutionary
algorithms. Advancements are regularly surveyed and reported in scientific publications
such as [2–6].

Image registration can be applied to both deformable images and rigid transformations
and both types are studied through the use of bio-inspired evolutionary algorithms. In [7],
an evolutionary algorithm (EA) with multiple objective optimization is used to find the
best way to automate registration of deformable images in the medical field. The results
indicate the algorithm is suitable for solving problems with limited deformations and
can create better images to be used by experts, also freeing their time by automating
image processing.
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Registration of images with rigid transformations is advanced in [8] where authors
propose a genetic algorithm (GA) that computes best parameters (for translation, rotation
and scale) based on matching shapes of molecules. The results have been validated by
applying the algorithm for registration of various medical image types: magnetic reso-
nance image (MRI), computed tomography (CT) and positron emission tomography (PET).
Images used for testing were obtained from the retrospective image registration evaluation
(RIRE) project. The accuracy of the registration is enhanced by using a better fitness func-
tion for the genetic algorithm. Authors highlight the fact that the most commonly used
similarity function (mutual information of two images) has local optimums which bring
the risk of the algorithm becoming stuck in one such point. Improvements are needed in
order to ensure the global optimum is found and for this purpose the authors combine the
widely-used mutual information function with an interaction energy function.

All kinds of bio-inspired algorithms are used in reported works, from GA [8,9] and
evolutionary algorithms (EA) [7] to newer approaches that employ hybridizations and
metaheuristics.

Various articles report on the use of swarm intelligence and derivate algorithms for
image registration. An in-depth study of particle swarm optimization, with shortcomings
and numerous developments and hybridizations is reported in [10]. In [11], authors also
review such algorithms and hybridization with evolutionary strategies (ES) for biological
and medical image registration, indicating promising results for future developments.

The GA approach is compared to the artificial bee colony (ABC) approach in [9],
highlighting the advantages of each algorithm: while GA is faster, ABC gives better quality
of image registration. Another comparison between GA and swarm approach, using the
correlation function of two images to estimate the quality of registration process, is reported
in [12] with the conclusion that the PSO approach provides superior results.

Particle swarm optimization sample consensus (PSOSAC) is used in [13] to opti-
mize registration efficiency. The results are compared against random sample consensus
(RANSAC) algorithm and proved to lead to better results.

In [14] authors use an adaptation of coral reef optimization algorithm with substrate
layers (CRO-SL) with real numbers for encoding the information. Both feature-based and
intensity-based variants for registration are attempted. This approach is compared with
others and yields very good results.

Bacterial foraging optimization (BFO) algorithm is applied on image registration
in [15,16]. Results are compared with those of other recent algorithms proving to be
competitive.

The intensive calculations required for the convergence of bio-inspired algorithms
might lead to unfeasible computation time, which is why one of the main concerns is
speeding up the algorithms. Use of multiple clusters of data in order to speed up the
registration algorithms is an idea presented in several articles. In [17], multiple swarms of
ABC are used to this purpose, with very good, reported results regarding the computation
time. In [18], authors compare PSO with multi-swarm optimization (MSO) and cuckoo
search algorithm (CSA) for image registration. For the dataset, used PSO offers the best
precision, while PSO and MSO offer best speed and CSA and MSO offer the least scatter
of results. As such, no algorithm prevails on all criteria, but authors mention that these
results might be particular to the problem solved and may be different in other cases.

The Firefly paradigm is also used to approach the problem of image registration,
with results reported in scientific publications. The many local optimums are a trap for
algorithms that use mutual information as fitness indicator for image registration, as
mentioned before. In [19], Firefly is used to overcome this problem by combining the use of
lower and higher resolution variants of an image and the Powell algorithm. Firefly is used
to produce an imprecise result using the lower resolution images, then Powell algorithm is
applied on higher resolution images.

A hybrid firefly algorithm (HFA) is used in [20] to solve the problem of slow conver-
gence and for a better coverage of the entire solution space during the search process.
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This paper presents a new memetic, cluster-based methodology for image registration.
The working assumption is that the sensed images are variants of the targets perturbed by
the geometric transformation consisting in rotation, translation and scaling. The proposed
approach is applied to align either binary or monochrome images. In both cases, the first
step consists in computing the boundaries of the search space based on the object pixels of
the processed images. Then, the memetic registration procedure is applied. The alignment
of pairs of monochrome images is performed on binarized and resized images. The scaling
step is meant to speed up processing of pairs of images and it is used in case of gray scale
images only. The quality of the resulted algorithms is measured in terms of accuracy and
efficiency. The success rate based on Dice coefficient, the normalized Shannon/Tsallis
mutual information measures and signal-to-noise ratio are used to evaluate the accuracy,
while the efficiency is established by the run time function. A comparative analysis
against two of the most commonly used methods to align images in case of rigid/affine
perturbation, namely one plus one evolutionary optimizer [21] and principal axes transform
(PAT) [22] experimentally proves the quality of the proposed methodology.

The rest of the paper is organized as follows. The similarity measures used both to
define the fitness function and to evaluate the accuracy of the alignment are supplied in
Section 2. The proposed methodology is exposed in the core section of the paper. We de-
scribe the accuracy and efficiency indices in Section 4. A series of experimental results and
the comparative analysis concerning the accuracy and the efficiency of the resulted algo-
rithms are presented next. The final part of the paper includes conclusions and suggestions
for further developments regarding bio-inspired methods for image registration.

2. Similarity Measures

Let X and Y be two binary sets. The Dice coefficient measures the similarities between
X and Y by:

Dice(X, Y) =
2 · |X∩ Y|
|X|+ |Y| (1)

where |X| stands for the cardinal of X. Obviously, max
X,Y binary sets

Dice(X, Y) = 1 and Dice(X, Y) = 1

if and only if X = Y. The Dice coefficient can be directly applied to pairs of binary images.
In general cases of monochrome and colored images, more complex functions should

be considered instead, one of the most commonly used being the normalized mutual
information computed using entropic measures.

Let X and Y be monochrome images with distributions p(x) and p(y), respectively.
Note that p(x) is the probability of intensity x appearing in image X. We denote by p(x, y)
the joint probability, that is the probability that corresponding pixels in X and Y have
intensity x and y, respectively. The joint probability distribution of the images X and Y
reflects the relationship between intensities in X and Y. Assuming that L is the number of
grey levels of the images, the Shannon entropy of X is defined by:

HS(X)= −
L−1

∑
x=0

p(x) · log2 p(x) (2)

The joint Shannon entropy is given by:

HS(X, Y)= −
L−1

∑
x=0

L−1

∑
y=0

p(x, y) · log2 p(x, y) (3)

Shannon normalized mutual information is defined by [23]:

NMIS(X, Y) =
2 ·MIS(X, Y)

HS(X) + HS(Y)
(4)

MIS(X, Y)= HS(X)+HS(Y)−HS(X, Y) (5)
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where MIS(X, Y) is the Shannon mutual information. The maximum value of Shannon
normalized mutual information is one and it is reached when X = Y.

Shannon mutual information is widely used in image registration, but it is sensitive to
noise. To reduce the influence of outliers, one can use similarity measures based on Tsallis
entropy instead [22,24].

Tsallis entropy of order α is defined by [24]

HT
α(X) =

1
α− 1

·
(

1−
L−1

∑
x=0

p(x)α
)

(6)

The joint Tsallis entropy of order α is given by

HT
α(X, Y) =

1
α− 1

·
(

1−
L−1

∑
x=0

L−1

∑
y=0

p(x, y)α
)

(7)

Note that when α approaches to 1, Tsallis entropy approaches Shannon entropy.
For α > 1, Tsallis mutual information is expressed as:

MIT
α(X, Y)= HT

α(X)+HT
α(Y)−HT

α(X, Y) (8)

and Tsallis normalized mutual information

NMIT
α(X, Y) =

MIT
α(X, Y)

HT
α(X, Y)

(9)

For α > 1, the following properties hold [25]

1. NMIT
α(X, Y) ∈ [0, 1]

2. NMIT
α(X, Y) = 0 if X and Y are independent

3. NMIT
α(X, Y) = 1 if X = Y.

In our work the fitness function is defined in terms of Dice coefficient, while NMIS

and NMIT
α, α > 1, are used to evaluate the accuracy of the registration procedure.

3. The Proposed Methodology for Binary Image Alignment

The proposed methodology used to align two binary images is developed to deal with
perturbations involving rotation, translation and scaling. Note that in image registration
literature, a rigid transformation involves either rotation and translation [4,22], or rotation,
translation and scale changes [26]. The first case corresponds to rigid geometric transfor-
mations which preserve distances and it is given by three parameters, the translation [a, b]
and the rotation angle θ. In the second approach, objects in the images retain their relative
shape and position, rigid transformation being defined by four parameters, the translation
[a, b], the rotation angle θ and the scale factor s. From the geometrical point of view, the
transformation corresponds to a similarity with stretching factor s. In our work, we used
the second version of rigid transformations.

Let T be the target image of size M×N. The sensed image S results as a geometric
transformation of T, defined in terms of rotation, translation and scale changes. Let θ be

the rotation angle defining the rotation matrix R =

[
cos θ −sin θ
sin θ cos θ

]
, s the scale factor

and [a, b]T the translation vector. For each pixel (x, y), 1 ≤ x ≤ M, 1 ≤ y ≤ N, the output
S(x, y) is given by:

S(x, y)= T(f(x, y)) (10)

where

f(x, y) =
[

a
b

]
+s · R ·

[
x
y

]
(11)
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The computation of the transformation parameters can be carried out by an evolution-
ary algorithm, where the boundaries of the search space are established using the sets of
object pixels belonging to the target image and to the sensed image respectively.

The components of our methodology are described below.

3.1. The Search Space Boundaries

The first stage of our method consists in defining the search space. Based on the
assumption that the deformation is reversible, that is each object in T corresponds to a
certain object in S, namely its perturbed version, the computation of the search space
boundaries is performed taking into account only the object pixels.

We consider that the initial image was rotated to the left, that is θ ∈ [−π, 0] and the
scale factor s ∈ (0 , smax]. Obviously, similar results can be obtained in case of right-side
rotations. We denote by {(x1

S, y1
S), . . . , (xp

S , yp
S)} the set of object pixels belonging to S, let

{(x1
T, y1

T), . . . , (xp
T, yp

T)} be the set of object pixels of T and

minxS = min
i=1,...,p

xi
S, minyS = min

i=1,...,p
yi

S, maxxS = max
i=1,...,p

xi
S, maxyS = max

i=1,...,p
yi

S (12)

minxT = min
i=1,...,p

xi
T, minyT = min

i=1,...,p
yi

T, maxxT = max
i=1,...,p

xi
T, maxyT = max

i=1,...,p
yi

T (13)

maxS = max{maxxS, maxyS} (14)

Using (11) we obtain

minxT ≤ a + s · cos θ · x− s · sin θ · y ≤ maxxT (15)

Using straightforward computation, since sin θ ≤ 0, we obtain

minxT ≤ a + s · (|cos θ| · x + |sin θ| · y) ≤ a + smax ·
√

2 ·maxS

and
maxx T ≥ a − s · |cos θ| · x + s · |sin θ| · y ≥ a− smax ·maxxS

We obtain the following definition domain of parameter a

Da =
[
minxT− smax ·

√
2 ·maxS, maxxT + smax ·maxxS

]
(16)

In the same way, since

minyT ≤ b + s · sin θ · x + s · cos θ · y = b − s · |sin θ| · x + s · cos θ · y ≤ maxyT (17)

we obtain

minyT ≤ b − s · |sin θ| · x + s · |cos θ| · y ≤ b + smax · maxyS (18)

maxyT ≥ b − s · |sin θ| · x− s · |cos θ| · y = b− s · (|cos θ| · x + |sin θ| · y)
≥ b− smax ·

√
2 ·maxS

(19)

and consequently, the definition domain of b is given by

Db =
[
minyT− smax · maxyS, maxyT + smax ·

√
2 ·maxS

]
(20)

The proposed image registration method aims to compute the parameter (a, b, θ, s)
such that the relations (10) and (11) hold, where:

(a, b, θ, s) ∈ D(S, T) = Da×Db× [−π, 0]× (0, smax] (21)
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3.2. Metaheuristics for Image Registration

The binary image registration procedure can be developed using evolutionary ap-
proaches. The proposed methodology uses a special tailored version of Firefly algorithm
and standard two membered evolutionary strategy (2MES) to compute a solution of (10).
In this section, we briefly describe the versions of Firefly algorithm and 2MES specially
tailored to binary image registration [27,28].

From the evolutionary algorithms point of view, solving the problem (10) involves
defining a search space and a fitness function, and applying an iterative procedure to
compute an individual that maximizes the fitness. In our approach, the search space is
defined by (19) and, for each candidate solution c = (ca, cb, cθ, cs), the fitness function
measures the similarity between the target image T and the image T̃,

T̃(x, y)= S
(
gc(x, y)

)
(22)

gc(x, y) =
1
cs
· cRT ·

([
x
y

]
−
[

ca
cb

])
(23)

fitness(c) = Similarity
(

T̃, T
)

(24)

where cR =

[
cos cθ −sin cθ
sin cθ cos cθ

]
.

Evolutionary Strategies (ES) are self-adaptive methods for continuous parameter opti-
mization. The simplest algorithm belonging to ES class is 2MES, a local search procedure
that computes a sequence of candidate solutions based on Gaussian mutation with adaptive
step size. Briefly, the search starts with a randomly generated/input vector c0, an initial
step size σ0 and the values ϑ ∈ [0.817, 1) and τ implementing the self-adaptive Rechenberg
rule [29]. At each iteration t, the algorithms computes:

ct =

{
ct−1+z , if fitness(ct−1+z) > fitness(ct−1)
ct−1, otherwise

(25)

where z is randomly generated from the distribution N(0,σt−1). The dispersion is updated
every τ steps according to Rechenberg rule:

σt =


σt−1
ϑ , p/τ> 0.2

σt−1 · ϑ, p/τ< 0.2
σt−1, p/τ= 0.2

(26)

where p is the number of distinct vectors computed by the last τ updates. The search is
over either when the fitness if good enough, i.e., the maximum value exceeds a threshold
υ or when a maximum number of iterations MAX has been reached. Let us denote by
2MES(x, σ0, ϑ, τ, υ, MAX, S, T) the 2MES procedure with the initial input vector x = c0.
The procedure computes the improved version of x, xfinal, using the termination condition
defined by the parameters υ and MAX, respectively.

Note that 2MES algorithm usually computes local optima and it is used to lo-
cally improve candidate solutions computed by global search procedures in hybrid or
memetic approaches.

Firefly algorithm (FA) is a nature inspired optimization procedure, introduced in [30].
FA belongs to the class of swarm intelligence methods and it mimics the behavior of fireflies
and their bioluminescent communication. The ideas underlying FA are that each firefly is
attracted by the flashes emitted by all other fireflies, the attractiveness of an individual is
linked to the brightness of its flashes, and influenced by the light absorption and the law of
light variations with distance.

In terms of image registration problem (10), the position of a firefly i corresponds to a
candidate solution ci = (cai, cbi, cθi, csi), its light intensity being given by fitness(ci). For
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each pair of fireflies i and j, if j is brighter than i, that is fitness(ct
j ) > fitness(ct

i), then i is
attracted by j, its position being updated based on the following equation:

ci(t + 1)= ci(t)+βj(r) ·
(
cj(t)−ci(t)

)
+α · ε (27)

where α controls the randomness, ε is randomly drawn from U(0, 1), βj(r) is the attrac-
tiveness of j seen by i defined by:

βj(r)= β0 · e−γr2
(28)

where r = ||xj − xi|| is the Euclidian distance between i and j. The constant β0 is the
brightness of any firefly at r = 0 and γ represents the light absorption coefficient.

Usually, the update rule (25) is applied if the attractiveness of i in the new location
ci(t + 1) is higher than the attractiveness corresponding to the old position ci(t). The
termination criterion of the FA is formulated in terms of number of iterations. Obviously, if
the maximum value of the brightness function is known, the FA ends when the current
best individual is good enough.

The image registration problem (10) has been solved using the fixed-size model
of FA, where the population at time t, t ≥ 0, has n individuals, Xt= {c t

1, ct
2, . . . , ct

n

}
,

ct
i = (c t

i(1), . . . , ct
i(4)) and ct

i(k) ∈ [l(k), h(k)], k = 1, . . . , 4 [27]. Note that the search
space ∏

k
[l(k), h(k)] used in the cited work is predefined, it does not change or adapt in

any way depending on the image properties.
The initial population, X0, is randomly generated according to the uniform probability

distribution U(l(k), h(k)). We denote by cf a constant scale factor and let U(a, b) be a
draw from the uniform distribution on the interval [a, b]. The update rule introduced
in [27] is given by:

ct+1
i (k)= ct

i(k)+βij(k) ·
(

ct
j (k)−ct

i(k)
)
+

h(k)−l(k)
max

k
(h(k)−l(k))

· cf · exp
(

1− fitness
(

ct
j

))
· U(0, 1) (29)

In addition, a border reflection rule has been proposed to deal with unfeasibility:

if ct+1
i (k) > h(k)

then ct+1
i (k)= U(p · l(k) + (1− p) · h(k), b(k))

else

if ct+1
i (k) < l(k)

then ci(k)= U(l(k), p · l(k) + (1− p) · h(k))

(30)

where p ∈ (0, 1) and U(a, b) represents a draw from uniform distribution on [a, b].
Note that in Attractiveness Formula (27) the quality of the attractor affects the ran-

domness parameter. In case of high luminous intensity individual j, less randomness value
is added. If the flashes emitted by the firefly j are weak then the perturbation grows.

3.3. Cluster-Based Memetic Registration

The proposed methodology is based on a core cluster-based memetic algorithm de-
veloped to register pairs of binary images. The global search procedure is directed by the
variant of FA described in Section 3.2, where the positions of fireflies belong to the domain
defined by (19). The fitness function defined by (22) implements Dice coefficient. Note that
the maximum value of the fitness function is one.

The initial population is randomly generated and a small number of individuals
are locally improved (a fixed percentage of population size). The local optimization is
implemented by 2MES method provided in Section 3.2. We denote by nr the number of
individuals to be initially processed by 2MES.
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The population-based optimization is an iterative process, at each iteration t the
algorithm selecting pairs of distinct individuals (ct

i , ct
j ) and, if fitness(ct

j ) > fitness(ct
i),

applies the update rule (27). If the brightness of the best individual in Xt+1 does not
exceed the highest fitness value in Xt, then the local optimization procedure 2MES is used.
The individuals selected for further improvements are computed based on clustered data.
The candidate solutions in Xt+1 are grouped in k clusters using the Euclidian distance
metric, one individual per cluster being chosen to be locally improved. The selection can
be random or deterministic, for instance, one may choose either the centroid or the best
candidate solution of each cluster.

In addition, the proposed hybridization between the population-based search and
the local optimization procedure is designed to reduce the risk of premature convergence.
Basically, two mechanisms are developed to deal with the situation of premature conver-
gence. On one hand, at each iteration t, the number of clusters is set inverse proportional
to the fitness value of the best individual in Xt+1, denoted by fitness (best). Let k0 be the
initial number of clusters, set as a small percentage of population size. We propose the
computation rule:

k = k0 · [
1

fitness(best)
] (31)

Moreover, the initial step size of 2MES procedure increases in case its consecutive
iterations do not lead to quality improvement. The proposed update rule is given by:

σ =
σ0

fitness(best)
(32)

Note that fitness(best) ≤ 1.
On the other hand, if the fitness is not improved over it2, it2 > it1, consecutive it-

erations, some new individuals are created to replace a set of randomly selected old
ones. The newly created individuals are randomly generated using the uniform prob-
ability distribution, each one of them being improved next by 2MES procedure. We
denote by NEW(Xt+1,ind) the procedure that refreshes Xt+1 by adding individuals, as we
explained above.

The search is over after NMAX iterations or when the best computed fitness value is
above a threshold τstop.

The detailed description of the proposed algorithm is provided below. We denote by
S and T the sensed image and the target image, respectively. The parameters σ0, ϑ, τES, υ
and MAX correspond to the 2MES procedure applied to improve the initial population
and we denote by σ′0, ϑ′, τ′ES, υ′, MAX′ the parameters of the local optimizer applied on
clustered data. The parameters β0 and γ are specific to FA, according to Section 3.2 and let
us denote by Xt= {c t

1, ct
2, . . . , ct

n

}
the current population at the tth iteration. The variable

counter counts the number of consecutive populations having the same best fitness value.

3.4. Monochrome Image Registration

The method described by Algorithm 1 can also be applied, after a preprocessing stage,
when monochrome images should be registered. Obviously, the main idea is to binarize
the images by representing them using only the boundaries of their objects. However,
depending on the complexity and quality of the analyzed images, further specific image
processing techniques may be needed, as for instance image enhancement, de-blurring and
noise removal. Alternatively, one can use edge detectors insensitive to noise and variations
in illumination. Examples of such filters are reported in [31–33].

In the following we assume that the input images have already been processed such
that a contour detection mechanism can be applied.
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Algorithm 1 Cluster-based memetic algorithm

1. Inputs: n, NMAX, τstop, nr, k0, ind, β0, γ, cf, σ0, ϑ, τES,
υ, MAX, σ′0, ϑ′, τ′ES, υ′, MAX′, S, T

2. Compute D(S, T) according to (19)
3. t = 0; counter = 0
4. Compute Xt, the initial population according to Algorithm 2
5. Evaluate the individuals in Xt and compute best : fitness(best) = max

x∈Xt
fitness(x)

6. while t < NMax and fitness(best) < τstop do
7. Apply an FA iteration, according to Algorithm 3
8. Compute bestc: fitness(bestc) = max

x∈Xt+1
fitness(x)

9. if fitness(best c) ≤ fitness(best)
10. if counter == it1
11. Update σ′0 according to (30)
12. end if
13. if counter == it2 NEW(Xt+1,ind)
14. end if
15. compute k according to (29)
16. apply k-means to Xt+1 and obtain the clusters C1, . . . , Ck
17. for i = 1 . . . k
18. Select x ∈ Ci –randomly/the centroid/the best candidate solution
19. xnew= 2MES(x, σ′ 0, ϑ′, τ′ES , υ′, MAX′, S, T

)
20. Replace x by xnew in Xt+1

21. end for
22. Compute bestc: fitness(bestc) = max

x∈Xt+1
fitness(x)

23. if fitness(bestc) > fitness(best)
24. best = bestc; counter = 0
25. else if fitness(bestc) < fitness(best)
26. Randomly select x ∈ Xt+1

27. replace x by best in Xt+1

28. else counter = counter + 1
29. end if
30. end if
31. end if
32. t = t + 1
33. end while
34. Output: best, T̃ = S

(
gbest

)
according to (21)

Algorithm 2 Computation of the initial population

1. Inputs: n, σ0, ϑ, τES, υ, MAX, S, T

2. Randomly generate an initial population X0= {c0
1, c0

2, . . . , c0
n

}
3. for i = 1 . . . nr
4. Randomly select x ∈ Xt

5. xnew = 2MES(x, σ0, ϑ, τES, υ, MAX, S, T)
6. Replace x by xnew in X0

7. end for
8. Output: X0
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Algorithm 3 FA iteration

1. Inputs: n, Xt, β0, γ, cf, S, T
2. for i = 1 . . . n
3. for j = 1 . . . n

4. if fitness
(

ct
j

)
> fitness

(
ct

i
)

5. Compute ct+1
i by moving firefly i toward firefly j using (27)

6. Use the border reflection mechanism (28) to adjust ct+1
i

7. Evaluate ct+1
i

8. end if
9. end for
10. end for
11. Output: Xt+1

Let S and T be the M×N sized sensed and target image respectively and we assume
that the rigid transformation is given by the parameters (a, b, θ, s). The proposed reg-
istration procedure consists of the following steps. First, a contraction mechanism, for
example a scale transformation with supra-unitary factor, is applied. If we denote by sc the
contraction factor, the images S and T are transformed according to:

Sp(x, y)= S(h(x, y)) (33)

Tp(x, y)= T(h(x, y)) (34)

where 1 ≤ x ≤ M, 1 ≤ y ≤ N and

h(x, y)= sc ·
[

x
y

]
(35)

The main aim of the transforms (31) and (32) is to reduce the size of objects in the
processed images and hence the complexity of search.

The next step is to represent Sp and Tp using only the contour of the objects belonging
to the images. We denote by OSp and OTp the results of applying an edge detector to Sp and
Tp, respectively. Obviously, OSp is a perturbed version of Tp. We denote by (ba, bb, bθ, bs)
the parameters of the corresponding perturbation. Using straightforward computation,
we obtain:

a = sc · ba, b = sc · bb, θ = bθ, s = bs (36)

Consequently, to compute the parameters (a, b, θ, s) we first apply the Algorithm 1
to obtain an approximation of (ba, bb, bθ, bs), and then use Equation (34).

3.5. Monochrome Image Registration in Case of Scaling on Multiple Dimensions

The proposed methodology can be extended to the case of more general perturba-
tion models, in which each dimension is scaled with a specific stretching factor. The
transformation is given by:

S(x, y)= T(f(x, y)) (37)

where

f(x, y) =
[

a
b

]
+

[
sx 0
0 sy

]
· R ·

[
x
y

]
(38)

for each (x, y), 1 ≤ x ≤ M, 1 ≤ y ≤ N. The scale matrix s =

[
sx 0
0 sy

]
is such that

sx, sy > 0.
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The search space boundaries can be computed similarly to (10) and (11). If sx ∈ (0 , smaxx]
and sy ∈ (0 , smaxy

]
, by straightforward computation we obtain,

Da =
[
minxT− smaxx ·

√
2 ·maxS, maxxT + smaxx ·maxxS

]
(39)

Db =
[
minyT− smaxy · maxyS, maxyT + smaxy ·

√
2 ·maxS

]
(40)

Consequently, the proposed image alignment method aims to compute the parameters(
a, b, θ, sx, sy

)
such that the relations (37) and (38) hold, where(

a, b, θ, sx, sy
)
∈ D(S, T) = Da×Db× [−π, 0]× (0 , smaxx]× (0 , smaxy

]
(41)

For each candidate solution c =
(
ca, cb, cθ, csx, csy

)
, the fitness function measures the

similarity between the target image T and the image T̃,

T̃(x, y)= S
(
gc(x, y)

)
(42)

gc(x, y)= cRT ·
[

1
csx

0
0 1

csy

]
·
([

x
y

]
−
[

ca
cb

])
(43)

fitness(c) = Similarity(T̃, T) (44)

where cR = [
cos cθ −sin cθ
sin cθ cos cθ

].

The methodology described in Section 3.4 can be applied to align images perturbed
by (38) using the fitness function defined by (44).

4. Efficiency Measures

Let S be the sensed image and we denote by T the target. The images have the
same size, M × N. The accuracy of the registration method is measured through the
success rate and using the similarity between T and the result of applying the alignment
process on S, denoted by T̃. We evaluate the similarity between T and T̃ using two metrics
commonly used in image processing, signal-to-noise-ratio (SNR) and peak-signal-to-noise
ratio (PSNR), and two entropic measures, Shannon normalized mutual information defined
by (4) and Tsallis normalized mutual information given by (9). The values SNR

(
T, T̃

)
and

PSNR
(

T, T̃
)

are given by

SNR
(

T, T̃
)
= 10 ∗ log10

 ∑M
x=1 ∑N

y=1(T(x, y))2

∑M
x=1 ∑N

y=1

(
T(x, y)− T̃(x, y)

)2

 (45)

PSNR
(

T, T̃
)
= 10 ∗ log10

 max(T(x, y))2

1
M·N ∑M

x=1 ∑N
y=1

(
T(x, y)− T̃(x, y)

)2

 (46)

Note that the fitness function used to align pairs of images is also a similarity measure
computed between binary images, Dice coefficient (1).

Due to the fact that the proposed methodology is of stochastic type, one way to
evaluate its effectiveness is to compute the success rate, that is the percentage of runs
that led to the correct registration. From technical point of view, the result of applying
Algorithm 1 to the pair (S, T) is correct if the obtained image T̃ corresponds to an individual
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best such that fitness(best) = Dice
(

T, T̃
)
≥ τstop. Consequently, the success rate of the

algorithm is given by:

SR(T, S) =
NS
NR
· 100% (47)

where NS is the number of successful runs and NR is the total number of algorithm
executions.

To evaluate the accuracy of the proposed method, we compute the mean values of
the above-mentioned similarities. If we denote by T̃1, . . . , T̃NR the registered versions
computed by the algorithm and SIM ∈ {DICE, NMIS, NMIT

α, SNR, PSNR}, we obtain

MeanSIM(T, S) =
∑NR

i=1 SIM
(

T, T̃i

)
NR

(48)

The efficiency of the proposed method is experimentally evaluated by the runtime
function. If we denote by t1, . . . , tNR the execution times consumed by Algorithm 1 to
register the pair (S, T), the mean runtime value is computed by

MeanRT(T, S) =
∑NR

i=1 ti

NR
(49)

From theoretical point of view, computational complexity may be evaluated in several
ways. In our analysis we use the size of population (n) and maximum number of iterations
corresponding to FA (NMAX) and 2MES (MAX, MAX′, where MAX and MAX′ have the
same magnitude) to estimate the worst-case scenario. Since 2MES performs at most MAX
iterations, the initial population generation algorithm (Algorithm 2) has a complexity
of O(n*MAX). The complexity of Algorithm 1 is influenced by the k-means clustering
algorithm. Since in our method the number of clusters linearly depends on the population
size and the complexity of k-means is O(k*n*chromosome size), the resulting complexity of
the clustering algorithm is O(n2). The 2MES performs at most, MAX′ iterations and is called
inside a loop depending on k, which means the complexity of this loop is O(n*MAX′).
An iteration of FA algorithm (Algorithm 3) has a complexity of O(n2). Consequently,
the complexity of the proposed method is O(NMAX*n*MAX). Note that in most cases
n << MAX and NMAX and MAX have a similar magnitude, which leads to a quadratic
complexity depending on the number of iterations.

5. Experimental Results and Discussion

To derive conclusions regarding the quality of the proposed approach a long series
of test have been conducted on both binary and monochrome images. The results were
obtained using the following configuration: processor Intel Core i7-10870H up to 5.0 GHz,
16 GB RAM DDR4, SSD 512 GB, NVIDIA GeForce GTX 1650Ti 4 GB GDDR6.

5.1. Binary Image Registration

Our tests have been conducted on a set of 16 binary images representing signatures, all
having the same size 192× 192 pixels. The images, denoted by S1, . . . , S16, are perturbed by
the rigid transformation (10) and (11) with various perturbation parameters. The rotation
angle is between −π and 0, while the scale factor was set in [0.5, 1.5]. The translation
parameters are a ∈ [−40, 10] and b ∈ [40, 60]. The rigid transformation parameters
correspond to the working assumption that the perturbation process is totally reversible,
that is the object pixels are completely encoded in the sensed images.

The search space is computed using (19). Note that the intervals Da and Db are
significantly larger than [−35, 10] and [40, 60]. For instance, in case of S1, Da = [−402, 411]
and Db = [−258, 579], while a = −36 and b = 46.

Since the perturbation process is totally reversible, the fitness threshold τstop is set
close to the maximum value, one. In our test τstop = 0.9. The rest of the input parameters
are set as follows: n = 20, NMAX = 200, nr = 6, k0 = 4, ind = 4, β0 = γ =1, cf = 2,
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σ0 = [7, 7, 0.3, 0.3], ϑ = ϑ′ = 0.85, τES = 20, υ = 0.5, MAX = 800, σ′0 = [3, 3, 0.02, 0.02],
τ′ES = 10 and MAX′ = 200.

The experimentally established results regarding the accuracy and the efficiency of
Algorithm 1 are provided in Table 1. Note that the success rate is 100% for all pairs of
images, NR = 700 and the SNR values are computed for images having the gray levels in
{0, 1}. The computation is over when the maximum fitness value is at least 0.9.

Table 1. The results of applying Algorithm 1 in case of pairs of binary images.

Input MeanRT MeanDice MeanNI S MeanSNR MeanPSNR

S1 11.45 0.92 0.80 20.96 70.19
S2 10.82 0.92 0.82 18.19 72.99
S3 10.05 0.92 0.81 20.44 70.73
S4 7.56 0.92 0.82 13.76 77.47
S5 12.43 0.91 0.81 11.93 79.39
S6 9.38 0.92 0.81 12.33 78.99
S7 8.28 0.92 0.81 11.57 79.73
S8 7.95 0.92 0.81 11.61 79.69
S9 10.30 0.92 0.81 13.13 78.09
S10 9.06 0.92 0.81 12.31 78.88
S11 9.15 0.92 0.82 12.9 78.31
S12 8.11 0.92 0.81 11.70 79.46
S13 11.97 0.92 0.81 12.24 78.94
S14 7.68 0.92 0.82 13.48 77.74
S15 9.93 0.92 0.78 9.13 81.81
S16 9.25 0.92 0.82 12.86 78.34

5.2. Monochrome Image Registration

In case of more complex, monochrome images, the assumption that the perturbation
process is completely reversible is rather unrealistic. From the technical point of view, it
means that the search procedure cannot manage to compute an individual with fitness 1,
that is even when the rigid transformation parameters are correctly determined. Obviously,
in such cases the threshold τstop should be set on lower values and the evaluation of
accuracy should take into account the similarity between the aligned version of S and the
initial image with the missing parts instead of the target T.

Our tests were conducted on images belonging to the well-known Yale Face
Database [34,35], which contains 165 greyscale images of 15 individuals, 11 images per
subject/class. The results reported in Tables 2–4 refer to 30 images, two for each person,
while the images displayed in Figures 1–10 correspond to two classes.

First, we provide a report regarding the new method proposed in Section 3.4. Ex-
amples of target images, sensed ones and images obtained when the correct inverse rigid
transformation is applied are presented in Figure 1 (Subject 5, the first image, corresponding
to Row 5 in Tables 2–4) and Figure 2 respectively (Subject 14, the second image, correspond-
ing to Row 29 in Tables 2–4).
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The perturbation parameters are set as follows: the rotation angle is between−π and 0,
the scale factor was set in [0.5, 1.5], and the translation parameters are a ∈ [−130, 250] and
b ∈ [35, 420]. For instance, the target image displayed in Figure 1 suffered a perturbation
with the parameter vector [−40, 70,−π8 , 0.9], while the one provided in Figure 2 was
perturbed by the rigid transformation with [230, 370,− π
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Next, the Algorithm 1 is applied, where the inputs are the images computed by the
preprocessing step. The search space is computed using (19). In our test τstop ∈ [0.5, 0.6].
The rest of the input parameters are set as follows: n = 20, NMAX = 250, nr = 6, k0 = 4,
ind = 4, β0 = γ =1, cf = 2, σ0 = [12, 12, 0.3, 0.5], ϑ = ϑ′ = 0.85, τES = 20, υ = 0.3,
MAX = 800, σ′0 = [7, 7, 0.03, 0.05], τ′ES = 15 and MAX′ = 240.

The results obtained by the proposed registration methodology are depicted in
Figures 5 and 6.
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The accuracy and efficiency analysis are provided in Table 2. Note that the re-
sults concerning the similarity measures SIM ∈ {DICE, NMIS, NMIT

α, SNR, PSNR} are
computed by

RSIM(T̃) =
MeanSIM(T′, T)
MeanSIM(T̃, T′)

(50)

where T is the target, T̃ is the restored version computed by the proposed methodology,
and T’ is the version obtained when the correct inverse rigid transformation is applied. In
our tests, α = 1.3 Obviously, the ideal value of the ratios defined by (50) is 1. However,
possible larger values may be obtained, due to calculation and rounding errors.

The success rate of the proposed method is 100% for all the tested images, NR = 200
and the SNR values are computed for images having the gray levels in {0, . . . , 255}.

In order to analyze the registration capabilities of the proposed method, we experimen-
tally compared it against two of the most commonly used align procedures in case of rigid
transformation, namely one plus one evolutionary optimizer (EO) [21] and principal axes
transform (PAT) [22]. Note that the function EO was tested with 100 different parameter
settings per pair of images to establish the best alignment from the similarity ratio point of
view (48), where SIM = NMIS. The registered images using PAT method are displayed in
Figures 7 and 8, while the results produced by EO are depicted in Figures 9 and 10.
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Table 2. The numerical results obtained by applying the proposed method.

Image Sample MeanRT RSNR RNMI S RNMI T
α

1 15.18996 0.84451 0.894946 0.976625
2 25.75912 0.930205 0.937661 0.987729
3 6.962834 0.758679 0.886308 0.968475
4 9.199112 0.818103 0.925562 0.980803
5 22.92094 0.984206 0.917182 0.982447
6 42.07603 0.755114 0.842885 0.960883
7 8.606454 0.942232 0.976699 0.993051
8 11.65704 0.973177 0.937504 0.983867
9 9.163015 0.860562 0.87384 0.974975
10 6.517512 0.87036 0.891611 0.980161
11 22.92636 0.820037 0.877844 0.973008
12 119.43 0.868211 0.917424 0.98466
13 18.72345 0.854931 0.95913 0.985814
14 16.16662 0.862684 0.962872 0.989826
15 39.514 0.961756 0.989651 0.995074
16 15.48423 0.947686 0.862359 0.973975
17 15.81341 0.965514 0.927276 0.983535
18 10.27014 0.955042 0.95205 0.98956
19 7.552746 0.864762 0.929975 0.971995
20 15.21946 0.902882 0.915916 0.976381
21 146.5344 0.845977 0.916805 0.985143
22 7.954541 0.728434 0.869876 0.964251
23 9.146519 0.861626 0.951103 0.986323
24 43.52619 0.904423 0.958607 0.984734
25 11.13669 0.816302 0.909504 0.966766
26 22.70944 0.87423 0.901217 0.97484
27 183.8919 0.924976 0.868897 0.97005
28 39.18939 0.791453 0.868468 0.961354
29 66.53452 0.875232 0.933425 0.975518
30 9.454251 0.968032 0.973915 0.992451

The numerical results are reported in Tables 3 and 4.
Note that PAT image alignment method has a widely known problem that in some

cases produces results rotated 180 degrees along principal axes. In practice, this leads
to some results being rotated upside-down. PAT stops at computing the aligned image
and does not go further into analyzing if it is rotated or not, from a visual point of view.
Some research [36] aims to correct such results by automatically assessing which of the
two possible rotations represents the correct image. In case of images rotated to the left
with large angles, PAT and EO may fail to provide the correct alignment. In such cases, the
ratios values are significantly smaller than one. In case of PAT registration, the run time
values vary between 4 and 6 s, while EO method consumes significantly more time due to
the need to establish the appropriate input parameters.
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Table 3. The numerical results obtained by applying the PAT method.

Image Sample RSNR RNMI S RNMI T
α

1 0.803293 0.813467 0.933241
2 0.934574 0.886884 0.945906
3 0.295791 0.353257 0.696968
4 0.766659 0.843343 0.878612
5 0.905875 0.695198 0.943975
6 0.274874 0.372685 0.772999
7 0.840301 0.910059 0.950973
8 0.713365 0.527111 0.828832
9 0.626797 0.698461 0.841559
10 0.285219 0.351083 0.700893
11 0.251774 0.359619 0.739244
12 0.390197 0.418968 0.747504
13 0.80874 0.875054 0.925707
14 0.827627 0.892607 0.947912
15 0.366202 0.384068 0.732574
16 0.70648 0.550786 0.854011
17 0.68848 0.59478 0.841351
18 0.323253 0.393144 0.735975
19 0.34627 0.402099 0.734227
20 0.453927 0.423102 0.731206
21 0.191922 0.32247 0.810919
22 0.825042 0.910628 0.951726
23 0.851394 0.909486 0.949252
24 0.354395 0.424461 0.712203
25 0.27167 0.362291 0.697021
26 0.625461 0.788012 0.889674
27 0.406182 0.387472 0.767243
28 0.398996 0.443341 0.734644
29 0.337342 0.427012 0.748608
30 0.358785 0.423641 0.721053
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Table 4. The numerical results obtained by applying the EO method.

Image Sample RSNR RNMI S RNMI T
α

1 0.903736 1.028168 0.974588
2 0.59826 0.587583 0.829827
3 0.873805 1.011028 0.96525
4 0.881405 1.014717 0.967766
5 0.897092 1.039772 0.998585
6 0.327235 0.378149 0.699523
7 0.90252 1.030184 0.971119
8 0.961939 1.008078 0.976823
9 0.864434 1.013726 0.969337
10 0.518422 0.609677 0.861264
11 0.943244 1.027409 0.986622
12 0.33708 0.391352 0.7305
13 0.906637 1.011259 0.947328
14 0.997361 1.02143 0.959039
15 0.393484 0.435851 0.763053
16 0.907502 0.984902 0.965526
17 0.933475 1.002838 0.968684
18 0.247642 0.467926 0.840874
19 0.264723 0.436541 0.776755
20 0.781181 0.764776 0.911667
21 0.078978 0.30698 0.533648
22 0.917598 1.01558 0.961737
23 0.979704 1.030573 0.961777
24 0.318206 0.406862 0.601202
25 0.258663 0.367588 0.584295
26 0.258663 0.367588 0.584295
27 0.390247 0.407812 0.8087
28 0.391523 0.462968 0.745298
29 0.344073 0.496078 0.822182
30 0.886935 0.986715 0.955883

The results experimentally derived from a long series of tests lead to the conclusion
that the proposed method outperforms PAT and EO from both accuracy points of view,
informational and quantitative.

5.3. Monochrome Image Registration in Case of Scaling on Multiple Dimensions

The methodology introduced in Section 3.5 has been applied on images belonging to
Yale Face Database perturbed according to (36). The results are as follows.

Examples of target images, sensed ones and images obtained when the correct inverse
rigid transformation is applied are presented in Figure 11 (Subject 4, corresponding to
Row 4 in Tables 5–7) and Figure 12 respectively (Subject 10, corresponding to Row 10 in
Tables 5–7).
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Figure 12. An image of Subject 10: (a) target image; (b) sensed image and (c) correctly restored image. Figure 12. An image of Subject 10: (a) target image; (b) sensed image and (c) correctly restored image.

The perturbation parameters are set as follows: the rotation angle is between −π and
0, the scale factors were set in [0.5, 1.5], and the translation parameters are a ∈ [−190, 245]
and b ∈ [35, 400]. The target image displayed in Figure 11 suffered a perturbation with the
parameter vector [−50, 130,−π5 , 1, 1.4], while the one provided in Figure 12 was perturbed
by the rigid transformation with [−40, 220,−π3 , 1.37, 1.1].

The corresponding versions of scaled and binarized images displayed in Figures 11 and 12
are depicted in Figures 13 and 14. The scaling factor used for this step is two.

Electronics 2021, 10, 2606 20 of 26 
 

 

The perturbation parameters are set as follows: the rotation angle is between −π 
and 0, the scale factors were set in 0.5, 1.5 , and the translation parameters are a ∈−190, 245  and b ∈ 35, 400 . The target image displayed in Figure 11 suffered a 
perturbation with the parameter vector −50, 130, − , 1,1.4 , while the one provided in 

Figure 12 was perturbed by the rigid transformation with −40, 220, − , 1.37,1.1 . 
The corresponding versions of scaled and binarized images displayed in Figure 11 and 

Figure 12 are depicted in Figures 13 and 14. The scaling factor used for this step is two. 

  
(a) (b) 

Figure 13. Scaled and binarized images for Subject 4: (a) target; (b) sensed. 

  
(a) (b) 

Figure 14. Scaled and binarized images for Subject 10: (a) target; (b) sensed. 

Next, the Algorithm 1 is applied, the input parameters being the same as those 
reported in §5.2. The results obtained by the proposed registration methodology are 
depicted in Figures 15 and 16. 

 
Figure 15. The restored image—Subject 4. 

Figure 13. Scaled and binarized images for Subject 4: (a) target; (b) sensed.

Electronics 2021, 10, 2606 20 of 26 
 

 

The perturbation parameters are set as follows: the rotation angle is between −π 
and 0, the scale factors were set in 0.5, 1.5 , and the translation parameters are a ∈−190, 245  and b ∈ 35, 400 . The target image displayed in Figure 11 suffered a 
perturbation with the parameter vector −50, 130, − , 1,1.4 , while the one provided in 

Figure 12 was perturbed by the rigid transformation with −40, 220, − , 1.37,1.1 . 
The corresponding versions of scaled and binarized images displayed in Figure 11 and 

Figure 12 are depicted in Figures 13 and 14. The scaling factor used for this step is two. 

  
(a) (b) 

Figure 13. Scaled and binarized images for Subject 4: (a) target; (b) sensed. 

  
(a) (b) 

Figure 14. Scaled and binarized images for Subject 10: (a) target; (b) sensed. 

Next, the Algorithm 1 is applied, the input parameters being the same as those 
reported in §5.2. The results obtained by the proposed registration methodology are 
depicted in Figures 15 and 16. 

 
Figure 15. The restored image—Subject 4. 

Figure 14. Scaled and binarized images for Subject 10: (a) target; (b) sensed.

Next, the Algorithm 1 is applied, the input parameters being the same as those
reported in Section 5.2. The results obtained by the proposed registration methodology are
depicted in Figures 15 and 16.



Electronics 2021, 10, 2606 20 of 25

Electronics 2021, 10, 2606 20 of 26 
 

 

The perturbation parameters are set as follows: the rotation angle is between −π 
and 0, the scale factors were set in 0.5, 1.5 , and the translation parameters are a ∈−190, 245  and b ∈ 35, 400 . The target image displayed in Figure 11 suffered a 
perturbation with the parameter vector −50, 130, − , 1,1.4 , while the one provided in 

Figure 12 was perturbed by the rigid transformation with −40, 220, − , 1.37,1.1 . 
The corresponding versions of scaled and binarized images displayed in Figure 11 and 

Figure 12 are depicted in Figures 13 and 14. The scaling factor used for this step is two. 

  
(a) (b) 

Figure 13. Scaled and binarized images for Subject 4: (a) target; (b) sensed. 

  
(a) (b) 

Figure 14. Scaled and binarized images for Subject 10: (a) target; (b) sensed. 

Next, the Algorithm 1 is applied, the input parameters being the same as those 
reported in §5.2. The results obtained by the proposed registration methodology are 
depicted in Figures 15 and 16. 

 
Figure 15. The restored image—Subject 4. Figure 15. The restored image—Subject 4.

Electronics 2021, 10, 2606 21 of 26 
 

 

 
Figure 16. The restored image—Subject 10. 

The accuracy and efficiency analysis are provided in Table 5. The results concerning 
the similarity measures SIM ∈ DICE, NMI , NMI , SNR, PSNR  are computed by (40). The 
success rate of the proposed method is 100% for all the tested images, NR = 50 and the 
SNR values are computed for images having the gray levels in 0, … , 255 . 

Table 5. The numerical results obtained by applying the proposed method. 

Image Sample MeanRT RSNR   
1 35.69 0.8391769 0.8791036 0.9670912 
2 27.24 1.0049894 0.9447487 0.9942313 
3 27.25 0.710606 0.8697491 0.9563255 
4 45.82 0.8996928 0.9099942 0.9773764 
5 21.8 0.8481722 0.868552 0.9696185 
6 23.99 0.8540515 0.8962932 0.9770259 
7 53.96 1.0575077 0.9456953 0.9982119 
8 27.22 0.9761596 0.9007155 0.9778646 
9 20.56 0.8486036 0.8658771 0.9687854 

10 21.53 0.8431612 0.9251221 0.9780587 
11 75.75 0.835015 0.8970438 0.9761927 
12 89.93 0.8777121 0.8855052 0.9764733 
13 43.54 0.8481775 0.9400461 0.9807903 
14 55.53 0.8474774 0.9339562 0.9808082 
15 188.34 0.8447351 0.906971 0.9555983 
16 30.75 0.9905118 0.9202732 0.9832426 
17 33.46 0.9655297 0.9767484 0.9851373 
18 25.11 0.9837781 0.8992968 0.9727791 
19 74.3 0.8561947 0.8659747 0.9607904 
20 22.9 0.9264967 0.9124475 0.9794836 
21 42.61 0.9677068 0.9124945 0.98168 
22 20.47 0.7639291 0.8679323 0.9587384 
23 31.92 0.7656339 0.8963442 0.9636461 
24 128.13 0.7554826 0.869641 0.9579413 
25 22.67 0.9521066 0.9514185 0.9883335 
26 33.69 0.8187833 0.8784768 0.9676486 
27 45.90 0.9023568 0.8995164 0.971906 
28 41.43 0.8171742 0.9056656 0.9725819 
29 40.83 0.7700865 0.9248933 0.972424 
30 27.3 0.8174908 0.8947007 0.9685286 

Note that PAT and EO algorithms lead to similar results as those reported in §5.2. 
(Figures 17–20). They fail to correctly perform the alignment from the rotation point of 
view, when the rotation angle is close to −180°. PAT may also misalign images in case of 

Figure 16. The restored image—Subject 10.

Table 5. The numerical results obtained by applying the proposed method.

Image Sample MeanRT RSNR RNMI S RNMI T
α

1 35.69 0.8391769 0.8791036 0.9670912
2 27.24 1.0049894 0.9447487 0.9942313
3 27.25 0.710606 0.8697491 0.9563255
4 45.82 0.8996928 0.9099942 0.9773764
5 21.8 0.8481722 0.868552 0.9696185
6 23.99 0.8540515 0.8962932 0.9770259
7 53.96 1.0575077 0.9456953 0.9982119
8 27.22 0.9761596 0.9007155 0.9778646
9 20.56 0.8486036 0.8658771 0.9687854
10 21.53 0.8431612 0.9251221 0.9780587
11 75.75 0.835015 0.8970438 0.9761927
12 89.93 0.8777121 0.8855052 0.9764733
13 43.54 0.8481775 0.9400461 0.9807903
14 55.53 0.8474774 0.9339562 0.9808082
15 188.34 0.8447351 0.906971 0.9555983
16 30.75 0.9905118 0.9202732 0.9832426
17 33.46 0.9655297 0.9767484 0.9851373
18 25.11 0.9837781 0.8992968 0.9727791
19 74.3 0.8561947 0.8659747 0.9607904
20 22.9 0.9264967 0.9124475 0.9794836
21 42.61 0.9677068 0.9124945 0.98168
22 20.47 0.7639291 0.8679323 0.9587384
23 31.92 0.7656339 0.8963442 0.9636461
24 128.13 0.7554826 0.869641 0.9579413
25 22.67 0.9521066 0.9514185 0.9883335
26 33.69 0.8187833 0.8784768 0.9676486
27 45.90 0.9023568 0.8995164 0.971906
28 41.43 0.8171742 0.9056656 0.9725819
29 40.83 0.7700865 0.9248933 0.972424
30 27.3 0.8174908 0.8947007 0.9685286



Electronics 2021, 10, 2606 21 of 25

The accuracy and efficiency analysis are provided in Table 5. The results concerning
the similarity measures SIM ∈ {DICE, NMIS, NMIT

α, SNR, PSNR} are computed by (40).
The success rate of the proposed method is 100% for all the tested images, NR = 50 and
the SNR values are computed for images having the gray levels in {0, . . . , 255}.

Note that PAT and EO algorithms lead to similar results as those reported in Section 5.2.
(Figures 17–20). They fail to correctly perform the alignment from the rotation point of
view, when the rotation angle is close to −180◦. PAT may also misalign images in case of
large magnitude distortions, mainly because the computation of the PAT solution involves
arbitrary unitary matrices. Moreover, there are images with the same principal directions
set and PAT cannot distinguish between them [37].
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Table 6. The numerical results obtained by applying the PAT method.

Image Sample RSNR RNMI S RNMI T
α

1 0.680357 0.671915 0.898062
2 0.730196 0.781502 0.860837
3 0.285552 0.34946 0.698664
4 0.702941 0.735872 0.912137
5 0.711288 0.669223 0.899995
6 0.28627 0.385159 0.772776
7 0.838095 0.948066 0.938333
8 0.786246 0.566011 0.860282
9 0.758941 0.755668 0.881690
10 0.282757 0.313553 0.656165
11 0.296401 0.372948 0.780554
12 0.410922 0.342484 0.622750
13 0.688558 0.739424 0.887327
14 0.388074 0.394377 0.731979
15 0.360452 0.378628 0.719361
16 0.858977 0.805554 0.941650
17 1.259501 1.187413 0.928381
18 0.37637 0.398532 0.784592
19 0.376674 0.371983 0.715186
20 0.472115 0.401741 0.744438
21 0.179625 0.315711 0.787056
22 0.850959 0.895747 0.940529
23 0.718642 0.834565 0.934975
24 0.335531 0.403226 0.699645
25 0.300216 0.348445 0.690366
26 0.354087 0.385384 0.759621
27 0.41668 0.373188 0.773804
28 0.391013 0.436276 0.727903
29 0.346801 0.431099 0.770062
30 0.510231 0.517476 0.729654
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Table 7. The numerical results obtained by applying the EO method.

Image Sample RSNR RNMI S RNMI T
α

1 0.4840495 0.4851264 0.8291119
2 0.4560961 0.4942083 0.7928845
3 0.3180729 0.3866996 0.6517158
4 0.4961064 0.5416556 0.8193649
5 0.5940445 0.6214704 0.8908949
6 0.327612 0.3990796 0.7584589
7 0.5973359 0.6846458 0.8605331
8 0.8603518 0.7446469 0.9115472
9 0.5386513 0.5527723 0.8304493
10 0.1334781 0.1532915 0.2963478
11 0.4044389 0.4726133 0.8341134
12 0.2202632 0.1408288 0.167821
13 0.5098196 0.5599219 0.8161328
14 0.4358168 0.4987585 0.7843876
15 0.2878739 0.3921859 0.6948516
16 0.9984082 0.8356535 0.9701007
17 1.2488698 0.9357247 0.9713906
18 0.2557719 0.4326906 0.7551308
19 0.1200548 0.1649643 0.2182064
20 0.4760754 0.4876099 0.8062592
21 0.0116494 0.315598 0.5602149
22 0.5250537 0.5773189 0.8285102
23 0.4817668 0.5860995 0.8326726
24 0.2945408 0.4187963 0.6699495
25 0.3147539 0.385577 0.6504573
26 0.4207969 0.4808988 0.8230934
27 0.1889474 0.2075459 0.4060359
28 0.4167164 0.4874189 0.7887366
29 0.3523738 0.4888901 0.8267513
30 0.2477579 0.3808104 0.4784807

6. Conclusions

The work reported in this paper focuses on developing a novel and comprehensive
methodology for image registration. The primary algorithm introduced in Section 3.3
addresses the problem of binary images, while its extended version deals with more
complex, monochrome images. Note that the proposed approach could be further extended
to colored images, the problem of representing the objects by their contour being solved
either directly, using contour following algorithms or edge detectors, or after an additional
procedure that computes the grey level versions of the inputs.

The main advantages of the proposed methodology are the comprehensiveness, due
to the way we compute the search space, and the effectiveness, mainly due to the properties
of the memetic firefly algorithm—ES approach, the embedded clustering procedure and
the two mechanisms implemented to alleviate the risk of premature convergence.

The experimental results were derived based on very large number of tests and using
various accuracy and efficiency measures. Both information-based similarity functions
and quantitative measures, as for instance SNR and PSNR, were used to evaluate the
effectiveness of our method and to compare it against two of the most commonly used
align procedures in case of rigid transformation, EO algorithm and PAT method.

In case of binary images, the success rate is 100%, i.e., the target images are always
identified by applying the inverse rigid transform on their corresponding sensed images,
where the parameter vectors are computed by Algorithm 1. The recorded runtime values
proved that the method is also efficient, especially being given its stochastic properties. The
general methodology dealing with monochrome images also proved effective and efficient.
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Moreover, unlike PAT registration or EO, the proposed approach manages to correctly
reverse the perturbation for all tested pair of images.

We conclude that the results are encouraging and entail future work toward extending
this approach to more complex perturbation models as well as more advanced bio-inspired
optimizations and evolutionary algorithms.
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