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Abstract: Non-insulation high-temperature superconducting coils provide a much lower risk of
burnout in fault/abnormal conditions, such as hot-spot quench and overcurrent. This study employs
an equivalent circuit grid model, coupled with magnetic field calculation and the E–J power law
of superconductors, to deeply and systematically investigate the overcurrent charging process in
a double-pancake non-insulation coil. An evident saturation of the magnetic field in the axial
direction of the coil was observed and verified by experiments. Experimentally, the entire process,
including the behavior of the magnetic field, was consistent with the numerical results. Based on
the verified model, two main points were addressed: (1) Transient current distribution inside the
coil during overcurrent charging was studied. Potential quenching risks were found to be at the
innermost and outermost turn near the electrodes, as well as the pancake-to-pancake connection part.
(2) Magnetic field saturation, which is a unique phenomenon in non-insulation superconducting coils
during overcurrent charging, was studied in detail and first quantitatively defined by a new concept
“converged load factor”. Its relationship with turn-to-turn resistivity was revealed.

Keywords: high-temperature superconductor; non-insulation coil; overcurrent; numerical modeling;
magnetic field saturation

1. Introduction

One of the advantages of non-insulation (NI) high-temperature superconducting
(HTS) coils is the capability to operate under the fault (typically overcurrent and hot-spot
quench) conditions with a much lower risk of burnout [1]. The high stability against fault
conditions [2,3] puts NI coils forward as a promising option for the large-scale application of
DC high-temperature superconducting magnets, such as in maglev trains [4], motors [5,6],
TOKAMAK systems [7], and high-field NMR [8]. Overcurrent conditions with an operating
current higher than the critical current sometimes occur and play an important role in
achieving a maximum field and in the elimination of screening currents [7].

Several studies have focused on the performance of NI–HTS coils operating under
overcurrent conditions. Experimentally, a saturation of the magnetic field was observed in
various overcurrent tests [7,9–11], and burnout [11] of both the innermost and outermost
turns close to the electrodes occurred [12]. Similar phenomena were also observed during
overcurrent tests of HTS coils with turn-to-turn metal insulation [13,14]. Numerically, the
partial element equivalent circuit (PEEC) [15] or equivalent circuit grid (ECG) [16], coupled
with a thermal model, which was proposed to numerically analyze the behaviors of NI
coils during overcurrent conditions, suggested that a considerable amount of Joule heat
is generated near the outer electrode, initiating the quench propagation and ascribing the
magnetic field saturation to a local decrease in critical current [17]. Overcurrent test results
in [18,19] also demonstrate the capability of NI coils to operate steadily in the saturated
phase without leading to thermally induced degradation.

To further investigate the evolution of current distributions, understand the more
quantitative characteristics during the transition to the magnetic-field saturation phase,
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and clarify the potential risks of NI coils during overcurrent excitation, this study adopted
an equivalent circuit grid model [15–17] coupled with a magnetic field the E–J power law
of superconductors, calculated by the method mentioned in [20], to realize a real-time
circuit-field simulation. In addition, a double pancake NI test coil was wound and charged
with exquisite excitation procedures to validate the model. The responses of both the
magnetic field and coil voltage were recorded and compared with the numerical results.
The main contributions of this paper are as follows: (1) Detailed current distributions inside
the coil during overcurrent charging are presented and discussed. Potential quenching
risks were found to be at the innermost and outermost turn near the electrodes, as well as
at the pancake-to-pancake connection part. (2) Magnetic field saturation, which is a unique
phenomenon in non-insulation superconducting coils during overcurrent charging, was
studied in detail and first quantitatively defined by a new concept “converged load factor”.
Its relationship with turn-to-turn resistivity was revealed.

2. Model Description
2.1. Double-Pancake ECG Model

The ECG model [16] in Figure 1 was adopted to calculate the distributions of both the
spiral and radial currents of a NI–DP coil. The number of total turns in one pancake was de-
fined as Nt. Each turn was equally divided into Ne arc elements. The total number of spiral
and radial elements for one pancake was defined as Ni = Nt × Ne and Nj = (Nt − 1) × Ne,
respectively. Each spiral element consists of its own inductance, its mutual inductance
with the other elements, and spiral resistance. The k-th spiral resistance Ri,k is composed of
the resistance of the HTS layer Rsc and that of the other metal layers Rmt, as illustrated in
Figure 2. Rj,k represents the k-th radial resistance.
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Considering that a DP coil is wound spirally with a single tape, the upper pancake is
reflectional rather than translationally symmetric [21] with respect to the lower pancake,
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which should be considered when numbering spiral elements and calculating the mutual
inductance between an arc element of the upper pancake and one of the lower pancakes.

The relationship between the spiral and radial currents of the DP ECG model can be
obtained according to Kirchhoff’s law at each circuit node. The governing equations are
the following Equation (1):

Ik − Ik+1 − Jk = 0 ; k ∈ [1, Ne]
Ik − Ik+1 + Jk−Ne − Jk = 0 ; k ∈ [Ne + 1, Nj]
Ik − Ik+1 + Jk−Ne = 0 ; k ∈ [Nj + 1, Ni − 1]
Ik + Jk−Ne = Iop ; k ∈ [Ni, Ni + 1]
Ik − Ik−1 + Jk−Ne = 0 ; k ∈ [Ni + 2, Ni + Ne]
Ik − Ik−1 + Jk−Ne − Jk−2Ne = 0 ; k ∈ [Ni + Ne + 1, Ni + Nj − 1]
Ik − Ik−1 − Jk−2Ne = 0 ; k ∈ [Ni + Nj, 2Ni]

(1)

where Ik, Jk, and Iop denote the current in the k-th spiral element, radial element, and power
supply, respectively.

The governing equations of each circuit loop derived from Kirchhoff’s voltage law are
the following Equation (2):

Ne+1
∑

p=2
Up − JkRj,k = 0 ; k = 1

Uk −Uk+Ne − Jk−1Rj,k−1 + JkRj,k = 0 ; k ∈
[
2, 2Nj − 1

]
2Ni
∑

p=2Ni−Ne

Up − JkRj,k = 0 ; k = 2Nj

(2)

where Uk denotes the voltage drop along the k-th spiral element, consisting of both the
inductive and resistive voltages, as shown by the following Equation (3):

Uk =
2Ni
∑

m=1
Mk,m

dIm
dt + IkRi,k (3)

where Mk,m represents the self-inductance of the k-th spiral element if k = m and the mutual
inductance between the k-th and m-th spiral elements if k 6= m. The self-inductance and
mutual inductance are calculated by integrating Neumann’s formula [22,23].

Equations (1)–(3) can be expressed in a matrix form (Equation (4)):{
A1 I + A2 J = b

B1
dI
dt + B2 I + B3 J = 0

(4)

where I = [I1 I2 . . . I2Ni]T and J = [J1 J2 . . . J2Nj]T.
For the aforementioned ECG model [16], A1 is always a non-singular square matrix,

and consequently, unlike the previously proposed method [16], the radial current vector J
is selected as the state variable, and the spiral current vector I can be derived, as shown by
Equation (5).

I = A−1
1 (b− A2 J) (5)

To solve the system of ordinary differential Equation (4), iterative methods includ-
ing the Runge–Kutta fourth-order method were adopted, and the calculation and post-
processing were conducted in MATLAB R2021b. The geometry of the coil in profiles of
current distribution [24,25] in the radial direction was enlarged for better illustration.
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2.2. Coupling of Magnetic Fields and the DP ECG Model

To calculate the field-dependent critical current effectively, a two-dimensional axisym-
metric model mentioned in [20] was used as Equation (6).

B(r, φ, z) = −µ0 Iφ
∂A(r,φ,z)

∂z r̂ + µ0 Iφ
1
r

∂(rA(r,φ,z))
∂r ẑ

= Bperr̂ + Bparẑ
(6)

The magnetic vector potentials A(r, φ, z) can be calculated by integrating the current
density multiplied by an integral kernel [20]. Numerically, only two linear transformations
are needed to obtain the parallel component Bpar and perpendicular component Bper of the
magnetic field by multiplying the current density with two pre-calculated constant matrices.
Therefore, the coupling of the magnetic field and the DP ECG model can be performed
within several milliseconds. The calculated parallel and perpendicular components of the
magnetic field Bpar and Bper are used to calculate the field-dependent critical current by
Equation (7) [26,27]:

Ic(B) = Ic0 ×
[

1 +

√
(kBpar)

2
+B2

per
Bc

]−α

(7)

where Ic0 = 167 A, k = 0.518, α = 0.74, and Bc = 106 mT. The parameters are obtained by
fitting the above elliptical function [26,27] with the measured data of a short sample under
an external parallel and perpendicular magnetic field.

The high nonlinearity of the E–J power law causes the resistance of spiral elements
to change drastically with respect to the ratio of I/Ic. The following model [28] shown by
Figure 2 and Equation (8), consisting of two parallel resistances, is used to calculate the
overall resistance of spiral elements based on the rule of mixtures [29]. The n-value was set
to be 21.

E0l
Rmt

(
Isc
Ic

)n
+ Isc = I (8)

where l denotes the length of a spiral element. Once the field-dependent critical current
Ic is obtained from Equation (7), the nonlinear Equation (8) can be solved by iterative
methods such as Newton’s method to obtain Isc (the current in the HTS layer), and the
overall resistance Ri can be calculated by Equation (9). Rsc =

E0l
Ic

(
Isc
Ic

)n−1

Ri =
RscRmt

Rsc+Rmt

(9)

In terms of overcurrent excitation, the presented model focused on the field–circuit
coupling and real-time update of the spiral resistance with time-varying conditions of
currents and magnetic fields.

The high nonlinearity of the E–J power law also makes the system of the odes in
Equation (4) difficult to converge, particularly when local I/Ic is approximately 1. It is
recommended that the larger the I/Ic ratio, the smaller the time step that should be used to
obtain converged solutions.

3. Experimental Setup and Procedure
3.1. Experimental Setup

The experimental DP coil was wound with a single piece of GdBCO tape, and the
specifications of the tape and coil are listed in Table 1.
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Table 1. Details of the tape and coil.

Tape Parameters Value

Manufacturer Shanghai Superconductor Technology Co.,
Ltd., Shanghai, China

Tape width/thickness 6 [mm]/185 [µm]
HTS layer width/thickness 4.75 [mm]/1 [µm]
Copper stabilizer thickness 40 [µm]

Hastelloy substrate thickness 50 [µm]

Coil Parameters Value

Total turns 35 × 2
Coil inner radius 5 [mm]

Distance between the upper pancake and the
lower pancake 3 [mm]

Total tape length 23.46 [m]
HTS leads length 0.38 [m] × 2
Self-inductance 815.45 [µH]

Characteristic resistance 27.725 [µΩ]
Calculated turn-to-turn contact resistivity (ρct) 6.47 [µΩ cm2]

Magnet constant 0.7 [mT/A]

The measured critical current of the coil was 114.6 A at 77 K according to the 1 µV/cm
criterion. A Hall sensor was fixed at 1.8 cm above the center of the DP coil along the z-axis,
as illustrated in Figure 3.
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Notably, there was a 0.38 m long tape extending from the outermost turn of each
pancake to attach to the DC source, preventing the heat generated in the copper terminals
from affecting the coil, and the voltage drop along the HTS leads should be considered,
particularly in overcurrent situations.

3.2. Experimental Procedure

The step-rising excitation method was adopted to measure the stabilized magnetic
flux density and voltage signal of the DP coil operating at currents of different amplitudes.

First, the DP coil was excited to 10 A, and when the voltage and magnetic field signals
were stabilized, the power supply current increased by 10 A at a rate of 0.278 A/s. When
the voltage was no longer stabilized at approximately 0 V, which indicated a clear index
loss occurring along the spiral HTS layer, the power supply current increased by 5 A
instead until it reached 150 A. Thereafter, the power supply current started to decrease
at 5705 s from 150 to 0 A at a rate of 1 A/s. When the coil was completely demagnetized,
normal charge (50.1 A) and sudden discharge tests (from 6400 to 7200 s) were conducted
to confirm whether the coil was degraded under the previous overcurrent test. Finally,
after confirming that the coil was normal, overcurrent excitation (120.3 A) and sudden
discharge tests (from 7200 to 8000 s) were performed to cross-validate the performance of
the coil under overcurrent conditions, with the test performed from 0 to 6400 s. The key
time points and corresponding power supply currents are listed in Table 2.

Table 2. Time points and power supply current.

Time [s] Iop [A] Time [s] Iop [A]

56 10 3504 110.2
380 20.2 3665 115
689 30.3 3904 120.3
968 40.2 4564 125.1
1226 50.1 4908 130.2
1494 60.2 5161 135
1730 70.1 5343 140.1
2020 75.2 5493 145.1
2283 80 5624 150
2515 85.1 5705 150
2751 90.1 6222 0
2978 95.2 6657 50.1
3153 100 7239 0
3346 105.1 7450 120.3

4. Results and Verification of Numerical Model

The experimental data and the numerical results are shown and compared in Figure 4,
where Bexp, Bsim, Iop, Uexp, and Usim denote the experimental magnetic field flux density,
simulated magnetic field flux density, current of power supply, experimental coil voltage,
and simulated coil voltage, respectively. Usim denotes the sum of the voltage drops of each
spiral element in the DP–ECG model as defined in Equation (10).

Usim =
2Ni
∑

k=1

(
2Ni
∑

m=1
Mk,m

dIm
dt + IkRi,k

)
(10)
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4.1. Behavior of Magnetic Flux Density during the Overcurrent Charging Process

In terms of the magnetic field, the calculated results are consistent with the experi-
mental results, as shown in Figure 4.

From 0 to 2000 s, the NI–DP coil was charged to 10.0, 20.2, 30.3, 40.2, 50.1, 60.2, and
70.1 A, and at every stage, the DC source was maintained for a few seconds to record
the stabilized magnetic field flux density and voltage signals. The ratio of the stabilized
center magnetic field flux density to the power supply current remained at approximately
0.7 mT/A, which can be described as the linear increase process [17,19]. The voltage’s
responses to the increase in the operating current by 10 A at a rate of 0.278 A/s were almost
identical, and the terminal voltage dropped to nearly zero when the operating current
stabilized at each stage. It is clear that the current only flowed along the spiral HTS layer
path and the resistance of the HTS layer was almost null when the steady operating current
was far below the critical current.

As shown in Figure 4, starting from 2000 s, the power supply current increased from
70.1 A, with an amplitude of 5 A each time at a rate of 0.278 A/s. The magnetic field flux
density no longer corresponded linearly to the stabilized operating current but reached
a plateau. The maximum center magnetic field flux density that the NI–DP coil could
generate was approximately 55 mT, and the average current flowing along the spiral path
was 78.6 A, which was estimated by the magnet constant 0.7 mT/A. The overloaded input
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current flowed along the radial path [30], which provided no significant contribution to the
magnetic field but resulted in a terminal voltage rise and Joule heat.

It was observed that the Joule heat led to no irreversible quenching during the entire
test, mainly attributed to the equivalent contact resistivity, which was found to be as low
as 6.47 µΩ·cm2, and the small amount of generated heat could be dissipated quickly in an
LN2 bath.

The NI–DP coil exhibited great stability during the overcurrent test from 0 to 6400 s.
The subsequent normal charge and sudden discharge test from 6400 to 7200 s indicated that
the coil was not degraded during the previous overcurrent test, as the DP coil maintained
the same capability of generating a saturated magnetic field and the coil voltage dropped
to nearly zero with the power supply current stabilized at 50.1 A, which was much lower
than the critical current of the coil.

The final test from 7200 to 8000 s exhibited similar performance to the NI–DP coil
in an overcurrent state, and the maximum center magnetic field flux density stabilized
at approximately 55 mT, which was consistent with the previous test from 0 to 6400 s.
The overloaded current caused the terminal voltage to stabilize at 3.3 mV, as the power
supply current remained at 120.3 A.

4.2. Voltage Drop in HTS Leads

As shown in Figure 4, the simulated magnetic field exhibited acceptable consistency
with experimental results throughout the entire test process, whereas the calculated coil
voltage exhibited a clear inconsistency from 4564 to 5800 s, during which the magnetic field
remained saturated and relatively stable even as the power supply current increased further,
but the coil voltage increased more dramatically, compared with the calculated results.

The main discrepancy in the terminal voltage from 4564 to 5800 s occurred when the
power supply current exceeds 120.3 A, while there were no marked fluctuations in the
magnetic field. The extra voltage drop could be attributed to the HTS leads extending from
the outermost turn of each pancake, as depicted in Figure 3, because the operating current
flowing in the HTS leads was as large as the power supply current and had no significant
contribution to the magnetic field but was capable of generating a considerable voltage
drop along the voltage measuring path.

The model depicted in Figure 2 was used to numerically verify the presented ratioci-
nation. The extra voltage drop along the HTS leads Ul can be estimated using the following
Equation (11):

Ul(t) = 2
∫ lds

0 E0(
Isc(t)
Ic(l)

)
n
dl ≈ 2E0 × lds × ( Isc(t)

Iceq
)

n
(11)

where lds denotes the length of a single HTS lead, which is 0.38 m, and E0 is the critical
electric field (1 µV/cm and n = 21).

As the magnetic field remained almost stable from 4564 to 5800 s, it is reasonable
to adopt a time-independent and approximated critical current of the entire HTS leads,
denoted as Iceq. Isc(t) is the current flowing along the HTS layer of the leads with respect to
Iop(t), which can be calculated by solving the non-linear Equation (8). Figure 5 shows that
with Iceq equal to 107.5 A, the extra voltage can be explained.
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5. Transient Behavior during Overcurrent Charging

Both the magnetic field and coil voltage results exhibited good consistency with the
experimental results from our analysis. Thus, this model can be used to investigate the
mechanism of the transition from the normal charging condition to the overcurrent charging
condition of the magnetic field and the detailed current distributions inside the coil.

5.1. Analysis of the Transition Process to Saturation of Magnetic Field

The experimental and computed results in Figure 6a from 6400 to 8000 s were selected
to compare the difference in the performance of the NI–DP coil between normal excitation
and overcurrent excitation. The term Usim is decomposed into the resistive component Ur
and inductive component Um, which are calculated using Equations (12) and (13), respectively.

Ur =
2Ni
∑

k=1
IkRi,k (12)

Um =
2Ni
∑

k=1

(
2Ni
∑

m=1
Mk,m

dIm
dt

)
(13)
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As shown in Figure 6a, the resistive voltage Ur was nearly zero before the power
supply current exceeded 86.14 A at 7390 s for the first time and during the sudden discharge
process. At 7390 s, as shown in Figure 6b, Ur started increasing rapidly, and the magnetic
field began to saturate, whereas Um decreased gradually to zero at 7420 s, even with a
ramped-up power supply.

Thus, from the perspective of voltage signals, the simulated results suggested that
as the spiral current increased, the increased index resistance of the spiral path, in turn,
drove the ascending rate of the spiral current down, which was reflected in the decreasing
inductive voltage and, consequently, the saturation of the magnetic field (from 7390 to 7420 s).

5.2. Current Distributions Inside the Coil

The profiles of the spiral current, load factor I/Ic, and radial current density at 6800,
7390, and 7600 s are illustrated in Figure 7.
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It was observed that the spiral current was almost evenly distributed along the spi-
ral HTS layer path and was close to the power supply current maintained at 50.1 A at
6800 s, while the radial current density was rather small. In contrast, the radial current
density was much larger when Iop was maintained at 120.3 A at 7600 s, as depicted in
Figure 7(a1,a3,c1,c3).

At 7390 s, when the power supply current reached 86.15 A and the magnetic field
started to saturate, the overall index resistance was sufficiently large to initiate saturation
even when none of the local load factors I/Ic exceeded 0.85, as shown in Figure 7(b2).

As shown in Figure 7(c1,c3), the highest spiral current and radial current density were
both distributed in the outermost turn near the electrodes and innermost turn near the



Electronics 2021, 10, 2789 12 of 15

port where the spiral current flowed to the other pancake during the overcurrent state.
A similar phenomenon was observed in [15] during charging without overcurrent.

The largest local load factors (>1) were located near the current input and output parts
of the innermost and outermost turns, as depicted in Figure 7(c2). This caused considerable
spiral resistance, impeding the operating current flowing along the spiral path but making
it flow along the radial path to the middle turns. This implied that both the innermost
and outermost turns of each pancake near the ports where the power supply current
was input and output were the most vulnerable areas when NI–DP coils operated under
overcurrent conditions with bad cooling conditions or when the power supply current
increased further.

This deduction may provide a reasonable explanation for the overcurrent tests of NI
coils [11], and even coils with turn-to-turn metal insulation [13], which reported burnout
of the innermost and outermost turns near the electrodes—that is, irreversible quench-
ing was initiated at both the innermost and outermost turns close to current terminals,
owing to excessive overcurrent excitation, and thereafter propagated to the middle turns.
The ratiocination was different from the analysis in [18], which indicates that quench-
ing occurs from the exterior to the interior turns. Therefore, more emphasis should be
placed on the protection of turns close to electrodes and joints between pancakes in the
application of HTS magnets consisting of multiple DP coils, especially for the magnets in
conduction-cooled conditions.

In addition, the critical current of the coil, 114.6 A, determined by the 1 µV/cm criteria,
seriously overestimated the maximum spiral operating current because the main voltage
drop was located along small pieces of HTS tape in the boundary turns, while most of the
middle turns remained in a subcritical state according to the 1 µV/cm criteria. Therefore, it
is more reasonable to evaluate the spiral current-carrying capacity from the perspective of
the magnetic field [15,19].

5.3. Converged Load Factor for NI Coils

The non-uniform distribution of the magnetic field resulted in a non-uniform local
critical current. Therefore, a non-uniform spiral current distribution was observed when the
NI–DP coil operated under overcurrent conditions, as depicted in Figure 7(c1). However,
most of the local load factors I/Ic inside the coil converged at approximately 0.97, as depicted
in Figure 7(c2) The convergence of load factors during overcurrent indicated that most of
the spiral elements inside the coil reached their own maximum current-carrying capacity.

Thus, a concept defined as the converged load factor (CLF), which is the maximum
load factor in the coil at the saturation state, was proposed to reflect an overall quasi-
equilibrium mechanism between the index loss and contact resistivity existing in NI
coils when operating at a reasonable overcurrent state, at which the NI coil reached its
maximum potential to generate a stable magnetic field without heat accumulation and
thermal degradation in an LN2 bath.

Figure 8 shows the simulated CLFs and saturated magnetic flux density of the NI–DP
coils with respect to the contact resistivity. The simulated results demonstrate that for a
given NI coil, the CLF can be lower than 1 with low contact resistivity. The high thermal
stability of NI coils with low contact resistivity was at the expense of the time-consuming
charging delay and also generated a lower saturated magnetic field, which underuses the
full potential of HTS tapes [15].
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6. Conclusions

An ECG model coupled with magnetic field calculation and E–J power law of su-
perconductors was adopted to further investigate the behavior of NI–DP coils during
overcurrent charging. Experimentally, the entire process of magnetic-field saturation was
consistent with the simulated results both in the magnetic flux density and voltage. The
analysis of coil voltage signals and current distributions revealed the evolution of an overall
quasi-equilibrium between the index loss and contact resistivity inside the coil, which drove
the NI coil into a saturated state of the magnetic flux density in the coil’s axial direction.

The potential risk of irreversible quenching at both the innermost and outermost
turns was also found to provide a possible explanation for the near-electrode burnout
reports of NI coils during overcurrent excitations. Therefore, it is essential to strengthen
the protection of the boundary turns of NI pancakes in HTS magnets, particularly under
conduction cooling conditions.

A concept defined as the converged load factor (CLF), which is the maximum load
factor in the coil at the saturation state, was proposed to quantitatively characterize the
spiral-current-carrying capacity of NI coils during overcurrent conditions. The typical CLF
values of NI coils with a turn-to-turn resistivity ranging from 6.47 to 6470 µΩ·cm2, which
covers the range of typical NI coils, were calculated to be from 0.95 to 1.30. Although the
CLF value was limited to around 1, the thermal stability of NI coils allowed the operation at
a load factor evidently higher than insulated coils, which were unstable with the operation
current close to their critical current in a real application system. From the viewpoint of
achieving a higher magnetic field, turn-to-turn resistivity of NI coils as large as several
thousands of µΩ·cm2 of was recommended, however, with compromised thermal stability
and suggested to be applied in static conditions with lower risk of quenching.

In the future, the long-term operation of NI coils in overcurrent conditions and the
detailed mechanism/transient behavior of the overcurrent during the elimination process
of screening current should be studied.
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