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Abstract: The rise in web and social media interactions has resulted in the efortless proliferation of
offensive language and hate speech. Such online harassment, insults, and attacks are commonly
termed cyberbullying. The sheer volume of user-generated content has made it challenging to
identify such illicit content. Machine learning has wide applications in text classification, and
researchers are shifting towards using deep neural networks in detecting cyberbullying due to the
several advantages they have over traditional machine learning algorithms. This paper proposes
a novel neural network framework with parameter optimization and an algorithmic comparative
study of eleven classification methods: four traditional machine learning and seven shallow neural
networks on two real world cyberbullying datasets. In addition, this paper also examines the
effect of feature extraction and word-embedding-techniques-based natural language processing on
algorithmic performance. Key observations from this study show that bidirectional neural networks
and attention models provide high classification results. Logistic Regression was observed to be the
best among the traditional machine learning classifiers used. Term Frequency-Inverse Document
Frequency (TF-IDF) demonstrates consistently high accuracies with traditional machine learning
techniques. Global Vectors (GloVe) perform better with neural network models. Bi-GRU and Bi-
LSTM worked best amongst the neural networks used. The extensive experiments performed on the
two datasets establish the importance of this work by comparing eleven classification methods and
seven feature extraction techniques. Our proposed shallow neural networks outperform existing
state-of-the-art approaches for cyberbullying detection, with accuracy and F1-scores as high as ~95%
and ~98%, respectively.

Keywords: cyberbullying; hate speech; offensive language; machine learning; neural networks; deep
learning; natural language processing

1. Introduction

Social media is an interactive tool that brings people together to share information.
The primary function of Online Social Networks (OSNs) is to allow people to communicate
virtually by using the internet. However, such technologies have also resulted in several
additional social issues, one of them being ‘cyberbullying.’ Although bullying has existed
in society before these technologies, the perceived protection of the online interfaces has
resulted in increased cyberbullying. Cyberbullying is commonly defined as an intentionally
violent or aggressive behaviour using electronic media carried out by an individual or
a group targeting a victim online [1]. This action involves repeated online insulting,
harassing, or attacking a target verbally [2]. Malicious social media users use sexist
remarks, offensive language, hate speech, toxic comments, and abusive language to target
victims. Such content torments social media users, adversely affecting their mental health,
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and demeaning the integrity of social networking platforms [3]. Manual flagging of such
illicit content online is neither feasible nor fruitful [4]. The need for an automated detection
mechanism for cyberbullying detection is evident.

Textual instances of cyberbullying, hate speech, and offensive language are primarily
identified by employing traditional machine learning classifiers. In a supervised learn-
ing scenario, preprocessed text input is used for training algorithms on a subset of the
dataset. This training set consists of data items and their labels (cyberbully or not) on
which the algorithm learns in a supervised fashion. The performance of the algorithm
is recognized by validation and testing of the algorithm on the remaining unseen data
of the dataset. The goal is to develop a classifier that performs equally well on training
and testing data without overfitting. Classification results evaluated by several metrics
such as accuracy, precision, recall, and F1-score demonstrate the efficacy of the classifiers.
Several traditional machine learning algorithms require explicit feature extraction from
input data. Natural Language Processing (NLP) has wide applications in this domain, as
researchers have employed several feature extraction techniques for textual content. Pri-
mary endeavors include supervised classification by using bag-of-words at character-level
representation [5–7] by various traditional machine learning algorithms, such as Random
Forest, Naïve Bayes, Linear Regression, Support Vector Machine (SVM), and XGBoost for
cyberbullying detection [8]. The bag-of-words approach extracts features of the dataset
by counting the occurrences of words within a document, disregarding the word order.
Some authors have proposed novel directions of extracting features from the respective
social media platforms pertaining to the data. Advancement in approaches have brought
a user-level detection mechanism where author profiling is used to check if a user has
been previously involved in any acts of cyberbullying [3,9]. Existing approaches have also
focused on the background information and user characteristics, such as their demographic
data for characterizing malicious users [10]. Deep learning techniques were employed to
overcome the limitations of traditional machine learning, eliminating the manual feature
extraction step and obtaining better results on large-scale datasets. Recurrent Neural Net-
works (RNNs) are among researchers’ primary choices for text classification [4,11] due to
their ability to mine the implicit semantic features in the text. It reduces the necessity of a
feature extraction operation by automatically extracting and optimizing the features. With
recent evolution, Text-based Convolutional Neural Networks (Text-CNNs) have come into
focus [12]. Although they are primarily employed in visual tasks, CNNs have displayed
tremendous performance in one-dimensional text classification [13,14]. The state-of-the-art
techniques for cyberbullying detection largely rely on RNNs, CNNs, and transformersdue
to their mproved accuracies than compared to traditional machine learning classifiers.

This paper provides a wide comparative study on various traditional machine learning
and deep learning algorithms. We experiment on two real-world datasets and compare the
performance of eleven classification algorithms. We examine the classification efficiencies
of XGBoost, SVM, Naive Bayes, and Logistic Regression under the traditional machine
learning category. We implement four types of feature extraction techniques for these
methods: count vectorization, Term Frequency-Inverse Document Frequency (TF-IDF)
word unigram, TF-IDF word bigram and trigram, and TF-IDF character bigram and trigram.
In the deep learning category, we propose a novel framework accommodating CNN, Long
Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (Bi-LSTM), Gated
Recurrent Unit (GRU), Bidirectional Gated Recurrent Unit (Bi-GRU), CNN-BiLSTM, and
Attention-BiLSTM. Since we propose single layer models for the above stated deep learning
algorithms, we, hereafter, refer to them as ‘shallow neural networks’ in this paper. It is to
be noted that these shallow neural networks are different from ‘shallow learning,’ which is
a subset of machine learning wherein predefined features are required. However, in the
proposed shallow neural networks, feature extraction is an automatic step carried out by
the neurons of the neural networks. The embedding techniques experimented with these
shallow neural networks include Global Vectors (GloVe), FastText, and Paragram. This
comparative study examines the performance of algorithms and their feature extraction
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techniques. The results are compared by using four evaluation metrics, namely accuracy,
precision, recall, and F1-score. The models employed in this study outperform several
state-of-the-art cyberbullying detection mechanisms. Section 4.3 of this paper, Baseline
Comparison, discusses the performance of models found in the literature along with the
results derived from this study.

The contributions of this paper are as follows:

1. We propose a novel architecture for cyberbullying detection that employs a bidi-
rectional GRU by using GloVe for text representation. The proposed mechanism
outperforms the existing baselines that employed Logistic Regression, CNN, and
Bidirectional Encoder Representations from Transformers (BERT).

2. We also propose a novel CNN-BiLSTM framework for the task which yields results
comparable to the existing baselines.

3. We provide a comparative study on the classification performance of four traditional
machine learning and seven neural-network-based algorithms.

4. We experiment with several feature extraction techniques and determine best-suited
approaches for feature extraction and text embedding for both traditional machine
learning and neural-network-based methods.

5. We establish the efficacy of shallow neural networks for cyberbullying classification,
thus moderating the need of complexly structures deep neural networks.

The rest of the paper is organized as follows: Section 2 explains the existing literature
and mechanisms developed for efficient cyberbullying detection. Section 3 describes the
methodology of the proposed work, the mathematical background of algorithms used, and
the novel framework to accommodate all neural network algorithms. Section 4 lists the
experimental results obtained and compares their performance; finally, Section 5 concludes
the contributions and future prospects.

2. Related Work

Cyberbullying is classified as generalized abuse, largely towards appearance, interests,
intelligence, or previous posts of the recipients. Hate speech is differentiated from cyber-
bullying in being defined as abuse directed specifically towards a unique, non-controllable
attribute of a group of people, such as race, sexuality, and gender identity. Davidson
et al. [5] identified it as a derogatory language intended to humiliate or to insult the mem-
bers of the targeted group. In certain instances, people use terms not belonging to hate
speech but are offensive to specific groups. Warner and Hirschberg [15] suggest that some
African Americans use the term ‘nigga’ in their day-to-day language, and terms such as
‘hoe’ and ‘bitch’ are frequently used on social media. Such terms do not fall within the
boundaries of hate speech but are offensive to specific societal sections; hence, they are
categorized as offensive speech.

There is a considerable availability of real-world datasets in the present scenario such
as the Twitter dataset [10], the Chinese Sina Weibo dataset [13], and the Kaggle dataset [16]
for cyberbullying, hate speech, and offensive language detection. These labeled datasets
allow the use of machine learning and deep learning algorithms by aiding supervised and
semi-supervised training. Ample availability of annotated training data aids in building
efficient supervised frameworks. However, the task of online cyberbullying detection holds
certain limitations that have to be addressed. The drawbacks lie in the low availability of
positively labeled cyberbullying posts because the datasets available are highly imbalanced.
Wulczyn et al. [17] crowdsourced and aggregated a vast corpus of annotated Wikipedia
articles with over 100K items extracted from talk pages. Another annotated dataset was
presented by Warner and Hirschberg [15], collecting commonly used hate-speech terms
from Twitter. They identified that hate speech targets specific groups of a particular
ethnicity, race, caste, or creed and found that a correlation exists between hate speech and
stereotypical words.

Classification frameworks of cyberbullying posts primarily utilize Natural Language
Processing (NLP) methods [18]. Term Frequency-Inverse Document Frequency (TF-IDF)
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is an established method for extracting textual features from the data [19]. It measures a
word’s importance in a given document by using its frequency and inverse frequency count.
Several NLP techniques such as TF-IDF, Vector Space Model (VSM), Linear Discriminant
Analysis (LDA), and Latent Semantic Analysis (LSA) have been designed for such feature
extraction [20–22]. A Naïve Bayes approach was implemented by Kwok and Wang [23]
on a Twitter dataset comprising racist and non-racist comments, which demonstrated
average classification performance when using the unigram bag-of-words model for feature
extraction. A combined approach utilizing linguistics, n-grams, syntactic, and distributed
syntactic features was designed by Nobata et al. [7] for detecting online hate speech.
Yin et al. [24] proposed a supervised approach with TF-IDF for cyberbullying detection
that uses content, context, and sentiment as textual features. Warner and Hirschberg [15]
performed hate speech classification by using Support Vector Machines (SVM) linked
with word sense disambiguation and using a lexicon of stereotypical words as features.
A systematic review of existing research in this domain is compiled by Tokunaga [25],
discussing the cyberbullying typologies, detection frameworks, and potential directions.

With the advent of deep learning algorithms for cyberbullying detection, Recurrent
Neural Network (RNN) and Convolutional Neural Network (CNN) approaches have
primarily been employed. Themeli et al. [26] performed hate speech detection by employ-
ing traditional machine learning and deep neural network models. Their experimental
results demonstrate higher performance of Bag of Words (BoW) over GloVe and N-gram
graphs when combined with Logistic regression and a three-layered neural network. Bu
and Cho proposed a novel ensemble framework that uses two deep learning models for
knowledge transfer: a CNN for capturing character-level syntactic features of the text
and a Long-term Recurrent Convolutional Network (LRCN) for extracting semantic fea-
tures [2]. Agrawal and Awekar [27] experimented on deep learning models by domain
transferring the knowledge by using CNN, LSTM, Bi-LSTM, and Bi-LSTM with attention
using random, GloVe, and Sentiment-Specific Word Embedding (SSWE). Aroyehun and
Gelbukh [28] established the efficacy of deep neural networks by using seven different com-
binations of CNN, LSTM, and Bi-LSTM models and compared the results with traditional
machine learning algorithms for aggression detection, incorporating data augmentation,
and pseudo-labeling for the same. Mishra et al. [3] proposed a novel method of Twitter
user profiling for cyberbullying detection by using authors’ community-based data in
addition to textual information. Rawat et al. [9] also relied on user information for abusive
content detection by employing web scraping and exploratory data analysis to analyze
the characteristics of users involved in spreading hate speech by combining traditional
machine learning algorithms, sentiment analysis, and topic modeling for malicious user de-
tection. The offensive tweet detection model by Aglionby et al. [29] proposes a multi-layer
RNN and Gradient Boost Decision Tree (GBDT) classifier framework with a self-attention
mechanism that enhances text classification. Chen et al. [30] analyzed embedding methods
for words and sequences experimenting with word-level and sentence-level embedding
techniques. Chu et al. also explored deep learning models with word embeddings for
abuse detection [31] by developing an RNN with LSTM and two CNNs with word and
character-level embeddings. Anand and Eswari [32] developed an LSTM and a CNN
network and analyzed their effect in the presence and absence of GloVe embeddings for
cyberbullying detection. Badjatiya et al. [11] explored the performance of CNN and LSTM
with various text embedding models observing GDBT combined with LSTM as their best
performing model. Pavlopoulos et al. [33] established that their proposed RNN with atten-
tion mechanism outperforms Logistic Regression, a Multi-Layer Perceptron (MLP), and
a vanilla-CNN model for cyberbullying detection. Banerjee et al. [34] proposed a simple
convolutional network with GloVe embeddings performing better than RNN GloVe and
several traditional machine learning techniques. A Bi-LSTM network with an attention
mechanism was proposed by Agarwal et al. [35] in order to classify cyberbullying posts
using under sampling and class weighting for avoiding class imbalance in the dataset.
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3. Methodology

Online cyberbullying detection frameworks primarily rely on traditional machine
learning algorithms. However, these traditional machine learning algorithms pose a
disadvantage due to the inability to yield high accuracies on vast volumes of data for
supervised classification. Existing studies are advancing towards utilizing neural networks
that overcome this limitation and provide better results and robust mechanisms. This
section covers various popular traditional machine learning and shallow neural network
approaches. We discuss the proposed methodology of our classification frameworks and
the architectures of all the proposed networks.

3.1. Preprocessing and Feature Extraction

Algorithms for text classification cannot process raw data due to their inability to
understand high-level human language directly. The text undergoes conversion into vector
notation in order to be processed by classification algorithms. Prior to this step, raw textual
data undergoes several preprocessing steps, often referred to as data cleaning. Figure 1
illustrates the workflow of the proposed methodology. Input data are preprocessed by
removing empty rows, punctuation, special characters, numerical values, stopwords,
lowercasing text, tokenization, and stemming. In order to create vector notations of the
input text, we experiment with several methods. For traditional machine learning models,
we use four methods: Count Vectorization, TF-IDF word unigram, TF-IDF word bigram
and trigram, and TF-IDF character bigram and trigram. For the proposed shallow neural
networks, we use GloVe, FastText, and Paragram as the embedding representations. We
employ a stratified 5-fold cross validation technique that splits the dataset into five sets of
training and testing, preserving the class distribution of the original dataset in each split.
This technique is employed to obtain statistically grounded results by averaging results
from runs on individual splits of the original dataset.

Figure 1. Workflow of the proposed framework.

Count Vectorization: This is a simple statistical method for generating embedded
vectors of input text [36]. We use the frequency of the occurrence of a term in a document
in order to generate its embedding vector. A matrix is created for the entire document set
where rows contain each document and columns represent each word. The cells contain
the values of occurrence frequency of a term in a document. We use this matrix as the
feature representation for training the traditional machine learning algorithms.
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TF-IDF: Term Frequency-Inverse Document Frequency (TF-IDF) [37] is a statistical
approach that uses the occurrences of words as a measure for extracting textual features. A
word’s importance is directly proportional to its frequency in the document and inversely
proportional to its frequency in the entire document set. For a term wi in a document xj,
where its occurrence is ni,j in xj, we calculate the term-frequency, TFi,j, given by Equation (1).

TFi,j =
ni,j

∑k nk,j
(1)

Here, ∑k nk,j denotes the sum of occurrences of a term wi in the entire document set.
Next, we compute the inverse document frequency (IDF) by taking the logarithm of the
total number of documents divided by the number of documents with the term wi as in
Equation (2).

IDFi = log

(
|D|∣∣{j : wi ∈ xj

}∣∣+ 1

)
(2)

Here, |D| denotes the total number of documents, and
∣∣{j : wi ∈ xj

}∣∣ is the number
of documents with the term wi. Once we obtain the individual TF and IDF values, we
compute the required TF-IDF of the term wi, given by Equation (3).

(TF− IDF)wi
= TFi,j × IDFi (3)

We use TF-IDF with word unigram, word bigram and trigram, and character bigram
and trigram. Here, unigram means a single word, such as ‘dog,’ ‘girl,’ and ‘book’. Bigram
(for instance, ‘grey house’) and trigram (for instance, ‘within walking distance’) are the
combinations of two and three words, respectively. The character bigram (‘flavor’: ‘fl,’
‘la,’ ‘av,’ ‘vo,’ and ‘or’) and trigram (‘flavor’: ‘fla,’ ‘lav,’ ‘avo,’ and ‘vor’), similarly, are the
combinations of two and three characters, respectively.

GloVe: Global Vectors (GloVe) [38] for word representations is an unsupervised tech-
nique for deriving word embeddings from text input. We utilize an A × A term-based
co-occurrence matrix to obtain representations. The cooccurrence matrix is used to examine
the semantic relationship between terms. For instance, high cosine similarity is demon-
strated between words such as ‘queen’ and ‘king’ or ‘mother’ and ‘woman.’ The technique
learns from a large Wikipedia and Gigaword corpus in an unsupervised fashion. For a
word i with its vector representation wi, the objective function is denoted by Equation (4):

f
(
wi − wj, w̃k

)
=

Pik
Pjk

(4)

where i and k are words with a similar context, and Pik is the probability of them occurring
together. We use these co-occurrence probabilities as features by capturing both statistics
and the context of the words.

FastText: Introduced by Facebook’s AI Research Lab (FAIR), FastText [39,40] is a
skip-gram-based model [41] for enhanced word representations. The effectiveness of
this technique lies in its consideration of the morphology of words in a language. Other
embedding techniques denote each word as a distinct vector. In contrast, FastText is
specially designed to handle words of the same root using character n-grams. Naturally, it
contains the sub word information for every word by dividing each word into a bag of its
n-gram combinations. For example, for a word ‘language’ with n as 3, the bag of character
n-grams will contain ‘la,’ ‘lan,’ ‘ang,’ ‘ngu,’ ‘gua,’ ‘uag,’ ‘age,’ and ‘ge’. FastText enables
understanding the context of unknown words by breaking them into smaller forms and
matching the similarities with those within its training corpus.

Paragram: Paragram [42] is another word representation technique designed to capture
better contextual similarities. It uses the ParaPhrase DataBase (PPDB) and performs fine-
tuning [43], counter-fitting [44], and attract-repel [45] in order to inject synonym and
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antonym features as a vectorization constraint. The technique is comparatively robust due
to better contextual understanding.

3.2. Traditional Machine Learning Approaches

We employed four popular machine learning approaches for cyberbullying detection:
XGBoost, Naïve Bayes, SVM, and Logistic Regression. After the preprocessing and feature
extraction phases, the vectorized text was input to these classifiers in order to evaluate
their performance.

XGBoost: Extreme Gradient Boosting (XGBoost) [46] is a Gradient Boosting Decision
Tree (GBDT) enhancement. The algorithm employs multiple decision trees with low
accuracy (weak learners) and combines them to provide higher accuracy. The trees are built
in stages, and the residuals or errors of prior models from previous stages inform the next
stage of trees by using gradient descent. That is standard gradient boosting. Building on top
of gradient boosting principle, XGBoost incorporates several other optimizations such as
parallelized implementation, tree pruning, hardware optimization, regularization, sparsity
awareness, cross validation, and weighted quantile sketch to render its performance more
efficient and effective.

The algorithm advances in the direction of the tree, which minimizes the objective
function. For a document D = {(xi, yi)||D| = n, xi ∈ Rm, yi ∈ R} with n samples and m
eigenvalues, where xi denotes a sample and yi denotes its category, the predictions are
calculated by using Equation (5):

ŷi = θ(xi) =
N

∑
n=1

fn(xi) (5)

where fn(xi) is the error value between true and predicted classes. The solution of the above
objective function is calculated by using maximum likelihood estimation as discussed by
Chen and Guestrin [47].

Naïve Bayes: Naïve Bayes (NB) algorithm [48] is used for probabilistic classification. It
is widely used for various practical applications due to its efficiency in reducing computa-
tional costs. It is a scalable algorithm applicable to large-sized datasets, also resulting in
high classification accuracies. Its principally assumes that a feature in a category is inde-
pendent of its presence in another category. The probability of a document D pertaining to
a class C is given by Equation (6).

P(C|D) =
P
(

Dj
∣∣C)P(C)

P
(

Dj
) =

P
(

Dj
∣∣C)P(C)

P
(

Dj
∣∣C)P(C) + P

(
Dj
∣∣C)P(C) (6)

In order to predict that a data point x′ with features
(
a′i . . . a′d

)
belongs to a particular

category, the prediction θ(x′) is given by Equation (7).

θ
(

x′
)
= argmaxyi∈CP(yi)

d

∏
j=1

P(a′j|yi) (7)

SVM: Support Vector Machine (SVM) [49] is a supervised algorithm that uses the
separation margin between data points of classes as a classification criterion. The original m-
dimensional feature space is reduced to a user-defined dimensional space. Support vectors
are then determined to optimize the margin distance among data points of different cate-
gories. The algorithm automatically determines these support vectors found nearest to the
separating margins (hyperplanes). Equation (8) defines a linear SVM optimization equation:

α∗ = maximizeα

l

∑
i=1

αi −
1
2

l

∑
i=1

l

∑
j=1

yiyjαiαj
(

xixj
)

(8)
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subject to the constraints
l

∑
i=1

yiαi = 0

0 ≤ αi ≤ C, i = 1 . . . l
(9)

where αi denotes the term weight, and C represents the model’s error and relative impor-
tance. In order to predict that a data point x′ belongs to a particular category, the prediction
θ(x′) is given by Equation (10):

θ
(

x′
)
= sign

(
l

∑
i=1

αiyi(xi, x′) + b

)
= sign

((
w∗, x′

)
+ b
)

(10)

where, w∗ = ∑l
i=1 αiyixi.

Logistic Regression: Logistic Regression (LR) [50] is another statistical algorithm that
works on predicting probabilities rather than classes. The logistic function is used to form a
hyperplane in order to classify data points in the given classes. Textual features are input to
the algorithm employed to generate forecasts about a data point belonging to a particular
class. The function is given by Equation (11) where the positive class is determined by
hθ(x) ≥ 0.5, y = 1, and the negative class is determined by hθ(x) ≤ 0.5, y = 0.

hθ(x) =
1

1 + e−xiθ
(11)

Here, θ is the parameter (weight) on an input variable x parameterizing the space of
linear functions mapping from X to Y.

3.3. Neural Network Approaches

The elimination of manual feature extraction has made neural networks extremely
popular in the research community. Neurons within the network are responsible for
automatically extracting essential features that help to differentiate content belonging to
different classes. The need of neural networks arises due to large dataset sizes that most
of the traditional machine learning algorithms fail to accommodate. Additionally, neural
networks offer robustness and higher classification results. We compare the following
architectures of popular neural networks for cyberbullying classification: CNN, LSTM, Bi-
LSTM, GRU, Bi-GRU, CNN-BiLSTM, and Attention-BiLSTM. To execute our approach, we
design a novel framework accommodating each of these models, depicted by Figures 2–5.
The methodology and architectures of these models are discussed below.

Figure 2. Architectural representation of proposed CNN framework.
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Figure 3. Architectural representation of framework for using LSTM, Bi-LSTM, GRU, and Bi-GRU.

Figure 4. Architectural representation of CNN-BiLSTM framework.

Figure 5. Architectural representation of Attention-BiLSTM framework.

CNN: After demonstrating extreme efficiency in image classification tasks, convolu-
tional neural networks [51] are widely adopted for text classification. We develop Text-CNN
with a single hidden layer and employ it for cyberbullying detection. A convolution opera-
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tion ∗ on functions f and g is performed by reversing and shifting one of these functions
as described by Equation (12).

( f ∗ g)(t) =
∞∫
−∞

f (τ)g(t− τ)dτ (12)

A representation of the proposed architecture incorporation of a CNN is shown in
Figure 2. The model takes in preprocessed 30-dimensional text input and performs the
respective embedding by using GloVe, FastText, and Paragram with 300-dimensional
word vectors for each of them. The embedded text passes through a one-dimensional
convolutional layer with a kernel that moves over the convolutions with a filter size of
three and stride of one. The information is then passed through a max-pooling layer that
outputs the max value from each resulting data matrix. The ReLU activation function is
used after, which the input is fed to a series of fully connected layers. A dense layer of
dimension 50 sends the information through a dropout layer of probability 0.25 to a final
dense layer. The dimension of the recurrent dense layer is set to two, which is equal to the
number of classes. Predictions are generated by using a softmax function that outputs the
labels for each item in the dataset.

LSTM: Long Short-Term Memory networks (LSTMs) [52] are a special type of Recur-
rent Neural Networks (RNNs) that are more advantageous compared to RNNs in terms
of information retention. LSTMs overcome the problem of vanishing gradient descent
encountered in traditional RNNs [53]. LSTMs are highly preferred for tasks such as text
classification and predictive modeling due to their extensive memory capacity. Such a net-
work selectively decides what information is necessary to be transferred to further neurons
and which data can be forgotten or omitted. These networks employ backpropagation and
a gated mechanism. A basic LSTM network consists of an input (it), output (ot), and a
forget gate ( ft), represented by Equations (13)–(15).

it = σ(Wi·[ht−1, xt] + bi) (13)

ft = σ
(

W f ·[ht−1, xt] + b f

)
(14)

ot = σ(Wo·[ht−1, xt] + bo) (15)

Here, xt denotes an input text, h is used to represent the state of the input where ht is
called current state, and ht−1 denotes the previous state. W and b are the weights and bias
for each gate, respectively. Here, σ denotes the activation function used, which is ReLU in
the case of the proposed model.

Bi-LSTM: Bidirectional LSTM (Bi-LSTM) [54] is a robust mechanism used to enhance
backpropagation in LSTM networks. While the information in an LSTM travels unidi-
rectionally, Bi-LSTM allows data to move in both forward and backward directions. A
Bi-LSTM processes inputs both reverse and serially. Architecturally, it is simply combining
two LSTMs but in opposite directions. This allows the network to remember information
from past to future by using the forward layer and future to past layer by using the back-
ward LSTM layer. For a given sequence of inputs xt−1, xt, xt+1, . . . , xn, the output from

the forward layer
→
h is calculated, whereas for a reverse sequence, xn, xn−1, xn−2, . . . , xt−1,

the output
←
h is calculated through the backward layer where h = ot ∗ tanh(Ct) and where

Ct is a vector produced by the activation function. The output of the Bi-LSTM network is
denoted by Equation (16):

YT = yt−1, yt, . . . , yt+n (16)

where yt = σ (
→
h ,
←
h ), and σ is a concatenation operation.

GRU: Gated Recurrent Units (GRUs) [55] are also a type of RNN with a gated mecha-
nism designed to deal with the vanishing and exploding gradient problem. These provide
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more testing accuracies than traditional RNNs because of the ability to remember long-term
dependencies. GRUs are a more straightforward and dynamic version of LSTM networks
specifically designed for updating or resetting information in their memory cells. The
network constitutes an update gate that combines input and a forget gate present in LSTMs.
Additionally, there is a reset gate for refreshing the memory contents. These are lightweight
and have fewer parameters than LSTMs. For an input vector xt at time t with vector,
parameter, and matrices such as b, W and U, respectively, the update gate and reset gate
are given by Equations (17) and (18):

zt = σg(Wzxt + Uzht−1 + bz) (17)

rt = σg(Wrxt + Urht−1 + br) (18)

where ht is defined by Equation (19) with � as the Hadamard product.

ht = (1− zt)� ht−1 + zt � ĥt (19)

ĥt = ∅h(Whxt + Uh(rt � hht−1) + bh) (20)

σg and ∅h are the activation function and hyperbolic tangent, respectively.
Bi-GRU: A bidirectional GRU [54] is a dual-layered structure similar to a Bi-LSTM

with forward and backward neural networks. The idea of this structure is to transfer entire
contextual information from the input to the output layer. Similarly to a bidirectional
LSTM, in a Bi-GRU, the input information travels through a neural network in the forward
direction and a neural network in the backward direction. The outputs from both these
forward and backward layers are fused to provide the final output. An architectural
representation for classification using LSTM, Bi-LSTM, GRU, and Bi-GRU is displayed in
Figure 3. In order to use a specific model at a time, the outputs from the embedding matrix
are fed to the supposed neural network model and then sent to the series of fully connected
layers. The parameters of fully connected layers stay the same as in the CNN for all models
proposed in this work.

CNN-BiLSTM: We propose a combination network constituting a convolutional and
a BiLSTM layer, illustrated in Figure 4. The input text, after undergoing embedding, is
initially fed to a BiLSTM layer of size 100. Features from this layer further undergo convo-
lution operation by using a one-dimensional convolutional layer with a ReLU activation.
Outputs are processed under max-pooling operation and passed on to the series of fully
connected layers. This combination allows us to use the retentive power of LSTMs and
feature extraction capability of CNNs, thus forming a more robust classifier.

Attention-BiLSTM: Another model that we propose combines a Bi-LSTM network with
a hierarchical attention model. As suggested by the name, the attention model [56] pays
special attention to words possessing higher importance in the document. In the proposed
architecture represented in Figure 5, information processed through the Bi-LSTM network
is passed through an attention layer with multiple neurons and then to the fully connected
layers. The mechanism encodes only selective valuable information by understanding
the context and enhancing the final output. This allows the model to run successfully on
sufficiently large input texts. We adopt the self-attention mechanism proposed by Vaswani
et al. [56]. The model assigns non-zero weights to all input items. We employ scaled dot
product as the similarity function. The attention value for a given query Q is calculated by
using key-value pairs as source by obtaining the similarities between each key K and the
query. This is mathematically represented by Equation (21). A softmax function is used to
normalize the weights in order to calculate the final attention provided by Equation (22),
where dk is the key dimension.

Attention(Query, Source) =
tx

∑
i=1

Similarity(Query, Keyi)×Valuei (21)
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Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (22)

3.4. Implementation Details

The implementation for all experiments is carried out using Python 3 on Google Colab
with a RAM of 13.53 GB. For the preprocessing tasks, we employed RegexTokenizer for
word tokenization, Porter Stemmer for stemming, and WordNet Lemmatizer. As discussed
above, the embedding dimension is set to 300. The meta-parameters and hyperparameters
in the shallow neural networks such as the input dimension, size of recurrent dense layers,
dropout, and activation function are chosen upon several experimentation to yield the
best possible results. A dense layer of 50 units provided the lowest loss value and highest
accuracies in all experiments. The consequent dense layer is of size two depending on the
number of classes in the datasets. A dropout value of 0.25 reduced overfitting considerably.
The meta-parameters specific to each neural network such as the kernel size, stride in
the CNN network, and the sizes of the LSTM, Bi-LSTM, GRU, and Bi-GRU networks
are also decided upon trial-and-error experimentation with several values among their
individual ranges. We employed the Adam optimizer and binary cross entropy for the
models. Training is executed on a batch size of 64 instances for five epochs each.

4. Experimental Result Analysis

In this section, we describe the datasets used and report the experiment results. The
results are evaluated using four metrics: accuracy, precision, recall, and F1-scores. We
graphically compare the performance of all algorithms used on two real-world datasets.
The baseline comparison with existing literature is provided in Section 4.3.

4.1. Datasets

Wikipedia Attack Dataset: This corpus was crowdsourced by Wulczyn et al. [17] in
2017 using Wikipedia articles. The dataset consists of discussion comments in the En-
glish language extracted from the ‘talk page’ of Wikipedia websites. The comments are
extracted by accessing the revision history of Wikipedia pages to obtain all interactions,
including removed comments. The collected corpus is cleaned by removing HTML content
and keeping plain text only. The dataset is strapped out of all bot messages, and only
human-made comments were retained. The dataset version that we use consists of 115,864
user comments with 13,590 cyberbullying text and 102,274 non-cyber bullying comments.
Figure 6 illustrates the word clouds for attack and non-attack classes for this dataset.

Figure 6. Word clouds of Wikipedia Attack dataset: (a) Attack and (b) Non-Attack.

Wikipedia Web Toxicity Dataset: Another corpus of comments is proposed by Wulczyn
et al. [17] from Wikipedia collected from ‘article talk namespace.’ It is a binary labeled
corpus with 159,689 comments containing 15,365 toxic and 144,324 non-toxic comments.
The scraping procedure of the dataset is the same as the Wikipedia Attack dataset using the
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revision history of article pages. The discussion comments are collected, and administrative
and bot comments are removed to constitute the final corpus. Figure 7 illustrates the word
clouds for toxic and non-toxic classes for this dataset.

Figure 7. Word clouds of Wikipedia Web Toxicity dataset: (a) Toxic and (b) Non-Toxic.

4.2. Result Analysis

We evaluate and compare the results of all classifiers used on two datasets. Table 1
illustrates the experimental results of traditional machine learning algorithms by using four
feature extraction approaches. The results on XGBoost, Naïve Bayes, SVM, and Logistic
Regression are graphically represented in Figures 8 and 9. Table 2 illustrates the results
of the proposed shallow neural networks and their performance comparison is shown
in Figures 10 and 11. While accuracy is the simplest and most intuitive metric of model
performance, it is not suitable for unbalanced datasets. The precision and recall as well as
F1-score (which is the harmonic mean of precision and recall) have also been reported, and
their performances are also over 90% for the majority of cases.

Table 1. Results of four traditional machine learning models with four feature extraction techniques on two datasets.

Feature
Extraction ML Algorithms

Wikipedia Attack Dataset Wikipedia Web Toxicity

A P R F1 A P R F1

Count
Vectorization

XG Boost 94.43 99.55 95.36 97.14 94.19 99.14 94.35 97.21
Naïve Bayes 95.44 99.73 96.27 96.92 95.62 98.48 96.9 98.14

SVM 93.8 96.78 96.6 96.24 95.55 98.65 97.82 97.88
Logistic

Regression 94.55 98.34 96.11 96.79 96.49 99.39 97.55 97.73

TFIDF Word
unigram

XG Boost 95.23 99.51 95.6 97.86 94.33 99.95 94.46 96.82
Naïve Bayes 91.34 93.12 90.67 95.42 92.57 97.56 92.89 96.36

SVM 95.02 98.94 96.41 98.12 96.29 99.93 97.59 98.77
Logistic

Regression 95.11 99.09 95.27 97.18 95.91 99.33 96.43 98.55

TFIDF
Word bigram and

trigram

XG Boost 93.26 98.71 92.93 96.79 92.38 96.46 91.74 96.12
Naïve Bayes 89.11 92.12 89.25 94.77 91.81 98.12 90.91 95.54

SVM 93.58 98.52 94.51 96.31 95.32 100 95.64 97.97
Logistic

Regression 91.6 94.55 91.76 96.13 93.24 97.17 92.93 96.82

TFIDF
Char bigram and

trigram

XG Boost 93.87 99.97 94.22 96.86 95 99.74 94.62 97.8
Naïve Bayes 91.24 99.9 90.91 96.05 92.07 99.8 92.91 96.64

SVM 81.01 98.92 69.05 81.24 96.21 99.35 97.34 98.32
Logistic

Regression 95.16 99.52 95.29 97.13 96.13 99.46 96.45 98.15
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Figure 8. Performance comparison of traditional machine learning techniques on Wikipedia Attack dataset.

Figure 9. Performance comparison of traditional machine learning on Wikipedia Web Toxicity dataset.

For the Wikipedia Attack Dataset, we observed that SVM achieves the highest F1-
score of 98.12% using TF-IDF word unigram, followed by XG Boost providing 97.14%
and Logistic Regression providing 97.13% F1-scores with Count Vectorization and TF-IDF
character bigram and trigram, respectively. XG Boost and Logistic Regression appear
to perform better than Naïve Bayes on this dataset despite Naïve Bayes achieving the
highest accuracy of 95.44% when using Count Vectorization. SVM demonstrates a lower
performance on this dataset, especially with TFIDF character bigram and trigram.

For the Wikipedia Web Toxicity dataset, the highest F1-score of 98.77% is displayed by
SVM with TFIDF word unigram embeddings. SVM with 98.32% F1-score follows it using
TFIDF character bigram and trigram. Naïve Bayes using Count Vectorization follows it
with 98.14% score. Overall, Logistic Regression demonstrates high results with all types of
feature extraction techniques. SVM follows it, which is followed by XG Boost and then Naïve
Bayes. However, when compared against the proposed shallow neural networks, traditional
machine learning is observed to have lower scores and demonstrated inconsistency.
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Table 2. Results of seven shallow neural networks with three embedding techniques on two datasets.

Feature
Extraction

DL Algorithms Wikipedia Attack Dataset Wikipedia Web Toxicity

A P R F1 A P R F1

GloVe

CNN 95.6 98.43 96.69 97.16 96.53 99.33 97.56 98.69
LSTM 95.08 98.53 96.85 97.61 96.44 99.14 97.24 98.34
GRU 95.46 99.19 96.17 97.16 96.24 98.99 97.28 98.42

Bi-LSTM 96.88 98.29 97.01 98.1 95.99 98.94 97.48 98.05
Bi-GRU 96.98 99.22 96.74 98.56 96.01 99.45 96.8 98.63

CNN-BiLSTM 95.36 98.88 96.84 98.03 96.74 99.63 96.78 98.07
Att-BiLSTM 95.4 98.45 96.91 97.88 96.84 98.5 97.84 98.06

FastText

CNN 94.94 98.21 96.54 97.6 96.36 99.19 97.87 97.88
LSTM 95.34 99.22 96.82 97.25 96.57 99.64 96.72 98.37
GRU 95.8 98.72 96.72 98.23 95.93 98.42 97.17 98.55

Bi-LSTM 95.93 98.81 96.58 98.15 96.51 99.18 97.34 98.07
Bi-GRU 95.5 99.37 96.06 97.68 96.45 98.12 96.61 98.58

CNN-BiLSTM 95.1 98.72 96.06 97.05 96.1 99.71 97.23 98.2
Att-BiLSTM 95.01 99.12 96.51 97.81 96.6 99.18 97.06 98.65

Paragram

CNN 95.25 98.2 97.36 97.36 96.31 99.41 97.06 98.61
LSTM 95.32 98.28 96.51 98.01 96.18 99.09 96.82 97.81
GRU 95.78 98.03 97.39 97.48 96.58 98.92 96.83 98.22

Bi-LSTM 95.12 99.17 96.74 97.95 95.87 99.41 96.63 98.46
Bi-GRU 95.88 98.66 97.6 97.82 96.65 99.92 97.27 98.43

CNN-BiLSTM 94.94 97.76 96.63 97.64 96.53 99.35 97.31 98.34
Att-BiLSTM 95.12 98.21 96.73 98.03 96.77 98.91 97.72 98.49

Figure 10. Performance comparison of seven shallow neural networks on Wikipedia Attack dataset.

By observing the performance of shallow neural networks, the majority of results
are over 95% considering all evaluation measures. Moreover, these figures are higher
than those reported for traditional machine learning models (see Section 4.3, Baseline
Comparison). For the Wikipedia Attack dataset, Bi-GRU with GloVe embeddings is the
best performing model with 98.56% F1-score and 96.98% accuracy. We observed that
GloVe embeddings offered a higher and more consistent rate in better classification than
Paragram and FastText. Although the other two embedding methods have also performed
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well, GloVe is simply the winner. Amongst the proposed shallow neural networks, Bi-
LSTM and Bi-GRU models performed better than the rest. For the Wikipedia Web Toxicity
Dataset, Bi-LSTM models have demonstrated great performance. The highest goes to
98.69% F1-score with GloVe embeddings followed by 98.65 with Attention-BiLSTM using
FastText and then 98.61% with CNN using Paragram. On this dataset, the best performing
models are CNN-BiLSTM, Attention-BiLSTM, and BiGRU. The results over 95% are quite
similar; thus, we assume that the proposed framework allows all the above models to
perform classification with high accuracies.

Figure 11. Performance comparison of seven shallow neural networks on Wikipedia Web Toxicity dataset.

Summarizing the results, all common metrics indicate good performance. Accuracy is
well over 90% for the proposed shallow neural networks and just over 80% for all traditional
machine learning models across all datasets. The neural network approaches demonstrate
better performance than traditional machine learning algorithms. With only a single
hidden layer, each neural network architecture provides high performance. The CNN-
BiLSTM combination framework is equally capable as other proposed shallow networks.
Additionally, the parametric settings of the network, neuron count, size of fully connected
dense layers, and dropout probabilities, which have been decided upon experimentation,
yield optimum results. The proposed architecture is observed to work well with all the
neural networks utilized. We summarize the key observations as follows:

1. Neural networks demonstrated higher performance than state-of-the-art traditional
machine learning algorithms due to their robustness and capability to handle large
datasets.

2. Count Vectorization, although being an old statistical technique, manages to consis-
tently provide good results.

3. Across all preprocessing steps, Logistic Regression displayed the highest average
performance amongst all machine learning techniques used, followed by SVM, XG
Boost, and Naïve Bayes in the said order.

4. GloVe embeddings resulted in a maximum number of high outputs than FastText
and Paragram, although similar results were achieved by the other two methods in a
similar fashion.

5. F1-measures convey high performance through all neural network models. By observ-
ing the accuracy scores, we conclude that RNN networks such as GRU, Bi-GRU, and
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Bi-LSTM offered highest performance. Attention mechanism is also close to achieving
results similar to these.

4.3. Baseline Comparison

In order to validate the efficacy of our work, we performed a baseline comparison
with recent state-of-the-art techniques for cyberbully detection. The comparison of results
on two datasets is provided in Table 3. The techniques used for comparison have been
re-implemented in accordance with the environment settings mentioned in the existing
studies. Bourgonje et al. [57] performed attack detection by using Bayes, Bayes Expectation
Maximization, C4.5 Decision Trees, Multivariate Logistic Regression, Maximum Entropy,
and Winnow2 on the Wikipedia dataset [17]. Logistic Regression and Bayes Expectation
Maximum obtained 80.90% and 82.70% accuracies on the Wikipedia Attack dataset. Both
these methods obtained 80.42% and 82.10% accuracies on the Wikipedia Web Toxicity
dataset. The highest performance was obtained by their Bayes implementation on the
Wikipedia Attack dataset with 83.11% accuracy and on Wikipedia Web Toxicity dataset
with 82.19% accuracy. Agrawal and Awekar [27] used CNN, LSTM, Bi-LSTM, and Att-
BiLSTM on the Wikipedia dataset, achieving highest accuracies of 92.91% and 93.52%
with their CNN model. Bodapati et al. [58] achieved accuracy scores of 95.34% and
95.69% on Wikipedia Attack and Wikipedia Web Toxicity datasets, respectively, when using
Bidirectional Encoder Representations from Transformers (BERT).

Table 3. Baseline comparison on Wikipedia Attack and Wikipedia Web Toxicity datasets.

Dataset Method A P R F1

Wikipedia Attack
Dataset

Bourgonje et al. [57] (Logistic Regression) 80.90 79.36 80.97 79.74
Bourgonje et al. [57] (Bayes Exp. Max) 82.70 81.33 82.83 81.36

Bourgonje et al. [57] (Bayes) 83.11 81.78 83.14 81.58
Agrawal and Awekar [27] (CNN) 92.91 92.09 83.78 88.63

Bodapati et al. [58] (BERT) 95.34 92.61 93.57 95.70
Our Approach (Bi-GRU with GloVe) 96.98 99.22 96.74 98.56

Wikipedia Web
Toxicity Dataset

Bourgonje et al. [57] (Logistic Regression) 80.42 78.91 80.46 79.23
Bourgonje et al. [57] (Bayes Exp. Max) 82.10 80.60 81.87 80.57

Bourgonje et al. [57] (Bayes) 82.19 80.68 82.01 80.60
Agrawal and Awekar [27] (CNN) 93.52 92.79 88.67 91.56

Bodapati et al. [58] (BERT) 95.69 92.71 95.11 96.82
Our Approach (Bi-GRU with GloVe) 96.01 99.45 96.8 98.63

As observed by Table 3, the results obtained by our proposed methods have outper-
formed the existing approaches on these datasets. On the Wikipedia Attack dataset, our
proposed model, Bi-GRU with GloVe embedding technique, achieves 96.98% accuracy and
98.56% F1-score, which is higher than the existing methods. On the Wikipedia Web Toxicity
Dataset, the results achieved by Bi-GRU with GloVe embeddings outperformed the existing
baselines with 96.01% accuracy and 98.63% F1-score. The achieved results are ~2–3% higher
than the state-of-the-art methods in terms of F1 measure. This indicates that the proposed
framework is also capable of handling class imbalances in the datasets. The evaluation met-
rics detailed in Table 3 validate the efficiency of our proposed methods. In addition, most
of our proposed models outperformed the existing state of the-art, as observable in Table 2.
It is notable that the proposed single layer neural network displays higher classification
efficiency than the existing CNN and BERT deep models. For the Wikipedia Attack Dataset,
the precision, recall and F1 measures achieved from all our shallow neural networks are
higher than the existing methods [27,35,57,58]. For the Wikipedia Web Toxicity dataset,
all the results achieved using neural network methods are exceptionally higher than the
existing ones.
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5. Conclusions and Future Prospects

With the expansion in the online space, cyberbullying has emerged as a ubiquitous
problem having dire consequences on people and society. This research focuses on investi-
gating several dimensions of cyberbullying detection. We explored eleven classification
techniques, including traditional machine learning and shallow neural networks. In ad-
dition, we have also used seven types of feature extraction and embedding techniques.
The results are established by performing experiments on two real-world datasets. We
propose a novel neural network framework, establishing optimum network settings, dense,
and dropout layer sizes. The framework accommodates various classifiers and achieves
high results overall, outperforming several baselines. We provided a comparative study
discussing the performance of all the methods utilized. The results are compared on a
scale of four evaluation metrics in order to establish the concreteness of this study. The
usefulness of this study lies in identifying robust mechanisms for online cyberbullying
detection. Additionally, the proposal of shallow neural networks moderates the need
of complex deep neural networks, thus economizing resources. We observe that neural
networks highly outperform traditional machine learning algorithms. We establish that
bidirectional neural networks perform better in all scenarios. The attention mechanism is
also observed to perform exceptionally well. We observe that traditional machine learning
algorithms such as SVM, Naïve Bayes, XGBoost, and Logistic Regression provide lower
results compared to the shallow neural networks. Overall, we suggest using bidirectional
RNNs and attention-based models for further advances in cyberbullying detection. This
study paves a way towards developing better mechanisms to fight this online ailment.

Author Contributions: Conceptualization, G.B., B.N. and M.P.; methodology, A.A., C.R. and M.P.;
software, A.A. and C.R.; validation, C.R., G.B. and M.P.; formal analysis, G.B. and M.P.; investigation,
C.R. and B.N.; resources, C.R. and A.A.; data curation, C.R. and A.A.; writing—original draft prepa-
ration, C.R.; writing—review and editing, C.R., A.A., B.N. and M.P.; visualization, C.R.; supervision,
M.P.; project administration, G.B. and B.N.; funding acquisition, M.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moreno, M.A. Cyberbullying. JAMA Pediatrics 2014, 168, 500. [CrossRef] [PubMed]
2. Bu, S.J.; Cho, S.B. A hybrid deep learning system of CNN and LRCN to detect cyberbullying from SNS comments. In Proceedings

of the International Conference on Hybrid Artificial Intelligence Systems, Oviedo, Spain, 20–22 June 2018; Springer: Cham,
Switzerland, 2018; pp. 561–572. [CrossRef]

3. Mishra, P.; del Tredici, M.; Yannakoudakis, H.; Shutova, E. Author Profiling for Abuse Detection. In Proceedings of the 27th
International Conference on Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 1088–1098.

4. Pavlopoulos, J.; Malakasiotis, P.; Bakagianni, J.; Androutsopoulos, I. Improved Abusive Comment Moderation with User
Embeddings. In Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism, Copenhagen,
Denmark, 2 May 2017. [CrossRef]

5. Davidson, T.; Warmsley, D.; Macy, M.; Weber, I. Automated hate speech detection and the problem of offensive language. In
Proceedings of the International AAAI Conference on Web and Social Media, Montreal, QC, Canada, 15–18 May 2017.

6. Djuric, N.; Zhou, J.; Morris, R.; Grbovic, M.; Radosavljevic, V.; Bhamidipati, N. Hate Speech Detection with Comment Embeddings.
In Proceedings of the WWW 15 Companion: Proceedings of the 24th International Conference on World Wide Web, Florence,
Italy, 18–22 May 2015. [CrossRef]

7. Nobata, C.; Tetreault, J.; Thomas, A.; Mehdad, Y.; Chang, Y. Abusive Language Detection in Online User Content. In Proceedings
of the 25th International Conference on World Wide Web, Montreal, QC, Canada, 11–15 April 2016. [CrossRef]

8. Muneer, A.; Fati, S.M. A Comparative Analysis of Machine Learning Techniques for Cyberbullying Detection on Twitter. Futur.
Internet 2020, 12, 187. [CrossRef]

http://doi.org/10.1001/jamapediatrics.2013.3343
http://www.ncbi.nlm.nih.gov/pubmed/24791741
http://doi.org/10.1007/978-3-319-92639-1_47
http://doi.org/10.18653/v1/w17-4209
http://doi.org/10.1145/2740908.2742760
http://doi.org/10.1145/2872427.2883062
http://doi.org/10.3390/fi12110187


Electronics 2021, 10, 2810 19 of 20

9. Rawat, C.; Sarkar, A.; Singh, S.; Alvarado, R.; Rasberry, L. Automatic Detection of Online Abuse and Analysis of Problematic
Users in Wikipedia. In Proceedings of the 2019 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville,
VA, USA, 26 April 2019. [CrossRef]

10. Waseem, Z.; Hovy, D. Hateful Symbols or Hateful People? Predictive Features for Hate Speech Detection on Twitter. In
Proceedings of the NAACL Student Research Workshop, San Diego, CA, USA, 13–15 June 2016. [CrossRef]

11. Badjatiya, P.; Gupta, S.; Gupta, M.; Varma, V. Deep Learning for Hate Speech Detection in Tweets. In Proceedings of the 26th
International Conference on World Wide Web Companion—WWW ’17 Companion, Perth, Australia, 3–7 April 2017. [CrossRef]

12. Kim, Y. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, Doha, Qatar, 25–29 October 2014. [CrossRef]

13. Lu, N.; Wu, G.; Zhang, Z.; Zheng, Y.; Ren, Y.; Choo, K.R. Cyberbullying detection in social media text based on character-level
convolutional neural network with shortcuts. Concurr. Comput. Pr. Exp. 2020, 32, e5627. [CrossRef]

14. Zhang, X.; Tong, J.; Vishwamitra, N.; Whittaker, E.; Mazer, J.P.; Kowalski, R.; Hu, H.; Luo, F.; Macbeth, J.; Dillon, E. Cyberbullying
Detection with a Pronunciation Based Convolutional Neural Network. In Proceedings of the 2016 15th IEEE International
Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, USA, 18–20 December 2016. [CrossRef]

15. Warner, W.; Hirschberg, J. Detecting hate speech on the world wide web. In Proceedings of the LSM’12 Proceedings of the Second
Workshop on Language in Social Media, Montreal, QC, Canada, 7 June 2012.

16. Reynolds, K.; Kontostathis, A.; Edwards, L. Using Machine Learning to Detect Cyberbullying. In Proceedings of the 2011 10th
International Conference on Machine Learning and Applications and Workshops, Honolulu, HI, USA, 18–21 December 2011;
Volume 2. [CrossRef]

17. Wulczyn, E.; Thain, N.; Dixon, L. Ex Machina. In Proceedings of the 26th International Conference on World Wide Web, Perth,
Australia, 3–7 April 2017. [CrossRef]

18. Schmidt, A.; Wiegand, M. A Survey on Hate Speech Detection using Natural Language Processing. In Proceedings of the Fifth
International Workshop on Natural Language Processing for Social Media, Valencia, Spain, 3 April 2017. [CrossRef]

19. Qaiser, S.; Ali, R. Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents. Int. J. Comput. Appl. 2018, 181,
25–29. [CrossRef]

20. Allahyari, M.; Pouriyeh, S.; Assefi, M.; Safaei, S.; Trippe, E.D.; Gutierrez, J.B.; Kochut, K. A brief survey of text mining:
Classification, clustering and extraction techniques. arXiv 2017, arXiv:1707.02919.

21. Shah, F.P.; Patel, V. A review on feature selection and feature extraction for text classification. In Proceedings of the 2016
International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 23–25
March 2016. [CrossRef]

22. Dzisevic, R.; Sesok, D. Text Classification using Different Feature Extraction Approaches. In Proceedings of the 2019 Open
Conference of Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 25 April 2019. [CrossRef]

23. Kwok, I.; Wang, Y. Locate the hate: Detecting tweets against blacks. In Proceedings of the Twenty-Seventh AAAI Conference on
Artificial Intelligence, Bellevue, WA, USA, 14 July 2013.

24. Yin, D.; Xue, Z.; Hong, L.; Davison, B.D.; Kontostathis, A.; Edwards, L. Detection of Harassment on Web 2.0. In Proceedings of
the Content Analysis in the WEB, Madrid, Spain, 21 April 2009; Volume 2.

25. Tokunaga, R.S. Following you home from school: A critical review and synthesis of research on cyberbullying victimization.
Comput. Hum. Behav. 2010, 26, 277–287. [CrossRef]

26. Themeli, C.; Giannakopoulos, G.; Pittaras, N. A study of text representations in Hate Speech Detection. arXiv 2021,
arXiv:2102.04521.

27. Agrawal, S.; Awekar, A. Deep Learning for Detecting Cyberbullying Across Multiple Social Media Platforms. In Advances in
Information Retrieval; Springer: Cham, Switzerland, 2018; Volume 10772. [CrossRef]

28. Aroyehun, S.T.; Gelbukh, A. Aggression Detection in Social Media: Using Deep Neural Networks, Data Augmentation, and
Pseudo Labeling. In Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying, Santa Fe, NM, USA, 25
August 2018.

29. Aglionby, G.; Davis, C.; Mishra, P.; Caines, A.; Yannakoudakis, H.; Rei, M.; Shutova, E.; Buttery, P. CAMsterdam at SemEval-
2019 Task 6: Neural and graph-based feature extraction for the identification of offensive tweets. In Proceedings of the 13th
International Workshop on Semantic Evaluation, Minneapolis, MN, USA, 6–7 June 2019. [CrossRef]

30. Chen, H.; McKeever, S.; Delany, S.J. The use of deep learning distributed representations in the identification of abusive text. In
Proceedings of the International AAAI Conference on Web and Social Media, Münich, Germany, 11–14 June 2019.

31. Chu, T.; Jue, K.; Wang, M. Comment Abuse Classification with Deep Learning. Glob. J. Comput. Sci. Technol. 2012, 12.
32. Anand, M.; Eswari, R. Classification of Abusive Comments in Social Media using Deep Learning. In Proceedings of the 2019

3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 27–29 March 2019.
[CrossRef]

33. Pavlopoulos, J.; Malakasiotis, P.; Androutsopoulos, I. Deep Learning for User Comment Moderation. In Proceedings of the First
Workshop on Abusive Language Online, Vancouver, BC, Canada, 4 August 2017. [CrossRef]

34. Banerjee, V.; Telavane, J.; Gaikwad, P.; Vartak, P. Detection of Cyberbullying Using Deep Neural Network. In Proceedings of the
2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16
March 2019. [CrossRef]

http://doi.org/10.1109/SIEDS.2019.8735592
http://doi.org/10.18653/v1/n16-2013
http://doi.org/10.1145/3041021.3054223
http://doi.org/10.3115/v1/d14-1181
http://doi.org/10.1002/cpe.5627
http://doi.org/10.1109/ICMLA.2016.71
http://doi.org/10.1109/ICMLA.2011.152
http://doi.org/10.1145/3038912.3052591
http://doi.org/10.18653/v1/w17-1101
http://doi.org/10.5120/ijca2018917395
http://doi.org/10.1109/WiSPNET.2016.7566545
http://doi.org/10.1109/eStream.2019.8732167
http://doi.org/10.1016/j.chb.2009.11.014
http://doi.org/10.1007/978-3-319-76941-7_11
http://doi.org/10.18653/v1/s19-2100
http://doi.org/10.1109/ICCMC.2019.8819734
http://doi.org/10.18653/v1/w17-3004
http://doi.org/10.1109/ICACCS.2019.8728378


Electronics 2021, 10, 2810 20 of 20

35. Agarwal, A.; Chivukula, A.S.; Bhuyan, M.H.; Jan, T.; Narayan, B.; Prasad, M. Identification and Classification of Cyberbullying
Posts: A Recurrent Neural Network Approach Using Under-Sampling and Class Weighting. In Information Processing and
Management of Uncertainty in Knowledge-Based Systems; Springer: New York, NY, USA, 2020; Volume 1333.

36. Salton, G.; Wong, A.; Yang, C.S. A vector space model for automatic indexing. Commun. ACM 1975, 18, 613–620. [CrossRef]
37. Shi, C.Y.; Xu, C.J.; Yang, X.J. Study of TFIDF algorithm. J. Comput. Appl. 2009, 29, 167–170.
38. Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014. [CrossRef]
39. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching Word Vectors with Subword Information. Trans. Assoc. Comput.

Linguist. 2017, 5, 135–146. [CrossRef]
40. Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T. Bag of tricks for efficient text classification. In Proceedings of the 15th Con-ference

of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, 3–7 April 2017; Volume 2. [CrossRef]
41. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781v3.
42. Wieting, J.; Bansal, M.; Gimpel, K.; Livescu, K. From Paraphrase Database to Compositional Paraphrase Model and Back. Trans.

Assoc. Comput. Linguist. 2015, 3, 345–358. [CrossRef]
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