
electronics

Article

Integer-Only CNNs with 4 Bit Weights and Bit-Shift
Quantization Scales at Full-Precision Accuracy

Maarten Vandersteegen * , Kristof Van Beeck and Toon Goedemé

����������
�������

Citation: Vandersteegen, M.; Van

Beeck, K.; Goedemé, T. Integer-Only

CNNs with 4 Bit Weights and

Bit-Shift Quantization Scales at

Full-Precision Accuracy. Electronics

2021, 10, 2823. https://doi.org/

10.3390/electronics10222823

Academic Editor:Luis Gomes

Received: 31 October 2021

Accepted: 15 November 2021

Published: 17 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

KU Leuven, EAVISE-Jan Pieter De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium;
kristof.vanbeeck@kuleuven.be (K.V.B.); toon.goedeme@kuleuven.be (T.G.)
* Correspondence: maarten.vandersteegen@kuleuven.be; Tel.: +32-15-31-69-44

Abstract: Quantization of neural networks has been one of the most popular techniques to compress
models for embedded (IoT) hardware platforms with highly constrained latency, storage, memory-
bandwidth, and energy specifications. Limiting the number of bits per weight and activation has
been the main focus in the literature. To avoid major degradation of accuracy, common quantization
methods introduce additional scale factors to adapt the quantized values to the diverse data ranges,
present in full-precision (floating-point) neural networks. These scales are usually kept in high
precision, requiring the target compute engine to support a few high-precision multiplications, which
is not desirable due to the larger hardware cost. Little effort has yet been invested in trying to
avoid high-precision multipliers altogether, especially in combination with 4 bit weights. This work
proposes a new quantization scheme, based on power-of-two quantization scales, that works on-par
compared to uniform per-channel quantization with full-precision 32 bit quantization scales when
using only 4 bit weights. This is done through the addition of a low-precision lookup-table that
translates stored 4 bit weights into nonuniformly distributed 8 bit weights for internal computation.
All our quantized ImageNet CNNs achieved or even exceeded the Top-1 accuracy of their full-
precision counterparts, with ResNet18 exceeding its full-precision model by 0.35%. Our MobileNetV2
model achieved state-of-the-art performance with only a slight drop in accuracy of 0.51%.

Keywords: quantization; neural networks; nonuniform; power-of-two scales; low-cost hardware

1. Introduction

Quantization of neural networks dates back to the 1990s [1,2], where the discretization
of models was a necessity to make their implementation feasible on the available hard-
ware. More recently, neural networks became popular again because of the ImageNet
challenge [3] and the availability of powerful GPU hardware. This breakthrough started a
new area of research with hundreds of new potential applications. Today, neural networks
are found in various electronic devices such as smartphones, wearables, robots, self-driving
cars, smart sensors, and many others. The embedded electronic processors found in these
applications are often very limited in capabilities to make them affordable, compact, and
energy efficient in the case of battery-powered applications. Most neural networks are too
large and require too many computations to be implemented directly on such processors,
and therefore need to be compressed first. One of the most effective ways to reduce latency,
storage cost, memory-bandwidth, energy efficiency, and silicon area among popular com-
pression techniques such as model pruning [4] and network architecture search [5] is model
quantization [6]. The quantization of neural networks is a frequently visited research topic
with numerous publications that mostly focus on reducing the number of bits per weight
or activation as much as possible in order to achieve high compression rates [7–11].

The commonly accepted method to achieve low-precision quantization introduces
high-precision scale factors, and in some cases zero-points, to adapt the quantized values
to the diverse weight and activation ranges present in full-precision neural networks. This
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is done to avoid major degradation in accuracy. The downside of this approach is that
these high-precision quantization scales have to be computed at runtime as well in order
to make the math work. Because these high-precision multipliers handle the minority
of computations, their involvement is not considered a problem by most works. Their
required presence in hardware, however, increases silicon area, energy consumption, and
cost. In addition, neural network compute engines implemented on FPGAs may require
more expensive FPGAs, due to the limited number or lack of high-precision multipliers on
less expensive platforms. This is especially problematic when multiple compute cores are
used to increase parallelism.

Jain et al. [12] already proved that 8 bit models with per-layer quantization and power-
of-two scales can achieve full-precision accuracy or even better. Their experiments with 4 bit
weights and 8 bit activations, however, resulted in a significant degradation in accuracy
and even a complete failure for MobileNets. Using 4 bit weights, 8 bit activations, and per-
layer quantization with power-of-two scales, we prove that we can achieve full-precision
accuracy or even better for all models and near full-precision accuracy for MobileNetV2.
Moreover, we prove that our method performs on-par or even better compared to uniformly
per-channel quantized models that use full-precision quantization scales. Our proposed
compute engine is depicted in Figure 1b, next to a typical compute engine [6,13,14] with
high-precision scaling capability in Figure 1a. We propose to use a lookup-table to translate
4 bit weight addresses into 8 bit weights for internal computation. Since the LUT can hold
any number representable through 8 bit, different value combinations can be chosen to
match the underlying weight distribution within a specific convolution layer, compensating
the limited capabilities of the bit-shift scaling. A different set of LUT values is used for every
layer to best match the layer-specific data distribution. Note that a single LUT can be shared
among multiple parallel compute engines, allowing additional hardware simplification.

Reducing the number of bits per weight from eight to four is a wanted feature in
many cases because it reduces the storage cost by 50% and decreases the load-time of the
weights from external memory significantly, which results in faster computation. With
our method, 32 bit (integer) multipliers can be avoided, transforming the neural network
compute engine to simple, yet very effective hardware.

Our contributions can be summarized as follows:

• We present an extensive literature overview of uniform and nonuniform quantization
for fixed-point inference;

• A novel modification to a neural network compute engine is introduced to improve
the accuracy of models with 4 bit weights and 8 bit activations, in conjunction with
bit-shift-based scaling, through the aid of a lookup-table;

• A quantization-aware training method is proposed to optimize the models that need
to run on our proposed compute engine;

• We are the first to make a fair empirical comparison between the performance of
(uniform) quantized models with full-precision and power-of-two scales with either
per-layer or per-channel quantization using 4 bit weights;

• Our source code has been made publicly available https://gitlab.com/EAVISE/lut-
model-quantization (accessed on 16 November 2021).

The remainder of this paper is organized as follows: Section 2 presents an extensive
literature overview of quantization in greater detail, organized into different topics for
convenience. For each topic, we also highlight the choices we made for our own approach.
Our proposed method is explained in Section 3; our results are presented in Section 4;
conclusions are made in final Section 5.

https://gitlab.com/EAVISE/lut-model-quantization
https://gitlab.com/EAVISE/lut-model-quantization
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Figure 1. (a) Typical fixed-point compute engine of a convolutional layer; (b) our proposed fixed-
point compute engine with a single per-layer power-of-two scale (bit-shift) and a lookup-table to
translate 4 bit weights from storage to 8 bit weights for internal computation. The LUT is used to boost
the expressive power of the engine through nonuniform weight quantization, which compensates
the lack of high-precision scaling.

2. Related Work

Related work on neural network quantization algorithms can be divided in two
major categories: Post-Training Quantization (PTQ) and Quantization-Aware Training
(QAT). Post-training quantization algorithms quantize the weights and activations without
retraining the model. This is the fastest approach and usually results in near-floating-
point performance for 8 bit weights and activations and requires no training data during
quantization. Quantization-aware training is the way to resort to when the accuracy drop
between a PTQ-quantized model and its baseline is too large, which is for example the case
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when bit-widths lower than eight are used. In this literature review, QAT methods are the
main focus since our method belongs to this category.

This literature review is structured into several topics for clarity. First, the basic
principles of quantization and their impact on the target compute engine are introduced in
Section 2.1. Section 2.2 elaborates on modeling quantization behavior in order to simulate
the target hardware, and Section 2.3 discusses common techniques to relax the quantization
constraints (e.g., symmetric versus asymmetric quantization, per-layer versus per-channel
quantization, and uniform versus nonuniform quantization). Section 2.4 elaborates on
data types and different estimation techniques for the quantizer parameters. Section 2.5
describes the quantization of nonparametric layers such pooling layers, elementwise adders
and concatenation, and finally, the importance of the initialization of QAT is highlighted in
Section 2.6.

2.1. Quantization Principles

The basic principles of quantization in neural networks and their impact on the
compute engine are introduced in this section using the most simple, but widely used
uniform symmetric quantization scheme. In Section 2.3, other more complex schemes are
discussed as well.

2.1.1. Uniform Symmetric Quantization

In a uniform symmetric quantization scheme, a floating-point vector or tensor x
within a quantized neural network is approximated by a signed b bit integer vector q and
a high-precision scale factor s:

x ≈ sq (1)

It is called symmetric because the number of discrete values is symmetrically dis-
tributed around zero. Scale factor s is used to regulate the distance between the discrete
steps of q. A small value of s results in smaller steps and, thus, higher precision, but
decreases the minimum and maximum value that can be represented with b bits. A higher
value of s results in a higher minimum and maximum, but sacrifices precision in turn.
Using this scheme, a trade-off between range and precision can be selected that is suited
for a specific part within a neural network. Usually, each layer obtains its own scale factor
since differences in the distribution range between layers can be large.

The bulk of the computations in the convolution and fully connected layers is per-
formed by a multiply-accumulate engine, given by Equation (2).

y = o +
N

∑ w� a (2)

This engine calculates an output value y from a weight vector w, activation vec-
tor a, and bias or offset value o. A typical quantized or integer version of Equation (2)
can be created by replacing all floating-point values with the quantization scheme from
Equation (1):

(syyq) = (sooq) +
N

∑(swwq)� (saaq) (3)

yq =
sooq

sy
+

swsa

sy

N

∑ wq � aq (4)

Separate scales sw, sa, and so are assigned to integer weights wq, integer activations
aq, and integer bias oq, respectively, to give more flexibility to the quantization process. In
practice, the value of so is not that critical since the number of bits for the bias is typically
high (32 bit signed integer). Jacob et al. [13] therefore proposed to set so = swsa, which
further simplifies the integer kernel to:



Electronics 2021, 10, 2823 5 of 25

yq = S

(
oq +

N

∑ wq � aq

)
s.t. S =

swsa

sy
(5)

A typical example would be 8 bit weights and activations and a 32 bit bias. In this case,
the engine would accumulate the multiplication result in a wide accumulator of typically
32 bit and would add the bias to the result. Then, a requantization step is applied, which
involves the following consecutive operations: a single high-precision scale operation with
scale factor S, a round operation (optional), a clipping operation that saturates the result,
typically in the range [−128, 127], and finally, a type conversion that casts the result back to
8 bit. Results from the compute engine are written back to memory in order to be used as
the input for the next layer. Besides the high-precision scale operation with S, the whole
engine would only require 8 bit multipliers and 32 bit accumulators. Section 2.4.1 discusses
in more detail how S is typically represented in hardware.

2.1.2. Activation Functions

In neural network graphs, nonlinearities are often placed directly after a linear layer,
such as a convolution or fully connected layer. It would be wasteful if the linear layer
would write its result back to memory, to later fetch it again to apply the nonlinearity.
Many compute engines are therefore equipped with a unit that can execute a nonlinearity
before applying the requantization step. The requantization step can in fact already model
functions such as the ReLU or ReLU6, by simply setting the lower clipping bound to zero
and, in the special case of ReLU6, lowering the upper bound as well. These functions
can therefore be executed with virtually no overhead. Figure 2a gives an overview of a
fixed-point convolutional engine with built-in activation function support. Moving the
activation function into the compute engine is also referred to as the fusion of the activation
function. In case an activation function is not supported by the compute engine, it needs to
be executed separately, resulting in additional load/storage overhead.

2.1.3. Folding Batch Norm Layers

Batch normalization layers [15] are very popular in convolutional networks because
they drastically speedup the training process and push the model to higher accuracies.
During inference, however, they are nothing more than additional overhead, and therefore,
their parameters are usually folded into the preceding convolution layer as an optimiza-
tion step, prior to quantization. The folding process simply rescales the weights of the
convolution and modifies its bias as given by Equations (6) and (7).

w f old =
γw√
σ2 + ε

(6)

o f old =
(o− µ)√

σ2 + ε
γ + β (7)

µ, σ, w, and o are the running mean, running standard deviation, original weights,
and bias, respectively. γ and β represent the trained parameters of the batch normalization
layer.

2.2. Simulating Quantization

To test what the accuracy of a quantized neural network would be on a fixed-point
processing device, quantization frameworks can simulate the behavior of the device in a
floating-point environment. As such, there is no need to port the model to the physical
device each time a test needs to be conducted. A simulation of a quantized device is also
required with QAT: it allows a training framework to simulate the quantization behavior
during training to allow the weights to adapt to the discrete sample space.

The common approach for simulating a quantized device is by inserting so-called
fake quantization nodes throughout the full-precision network graph. These nodes are
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called fake because they simulate the quantization behavior of the target hardware using
full-precision floating-point values rather than actually quantizing the model.

Figure 2b gives a typical simulated version of the compute engine from Figure 2a,
where Q f represents a fake quantization node. The precision of 32 bit integer operations
is usually comparable to that of floating-points, which is why fake quantization nodes
are omitted at the bias-add operation in Figure 2b, to save memory and computational
overhead during training. If lower precision accumulators are used (e.g., 16 bit or less),
the simulated scheme in Figure 2c is preferred. Note that a fake quantization node before
the activation function is also omitted because this simulation assumes that the activation
function will be fused into the preceding convolution on the target device. If the activation
function needs to be executed separately, an additional Q f is likely needed before the
activation function.

Section 2.2.1 discusses the internals of a fake quantizer.

(a) (b) (c)

Figure 2. (a) Fixed-point compute engine of a convolutional layer; (b) simulated fixed-point compute engine with 32 bit
accumulator and bias; (c) simulated compute engine with 16 bit (or less) accumulator and bias. The dashed line indicates
that these fake quantization nodes share the same scale factor.

2.2.1. Fake Quantizer

A fake quantizer or quantization node has a quantization step and a dequantization step:

Q f (x) = D(Q(x)) (8)

Q is a quantization operator that will project the floating point values in x to discrete
values. D is a dequantization operator that will revert the quantized values back to floating-
point values within the same value range as input x.

Equations (9) and (10) give a typical example of a uniform symmetric quantization
and dequantization function, respectively, which simulate the quantization scheme from
Equation (1). Equation (11) combines both equations together.

Q(x, s, b) = clamp
(

round
(x

s

)
,−2b−1, 2b−1 − 1

)
(9)

D(q) = sq (10)

Q f (x, s, b) = s clamp
(

round
(x

s

)
,−2b−1, 2b−1 − 1

)
(11)
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The round operator rounds input values to integer values, and clamp saturates the
data to simulate the upper and lower limits of a signed fixed-point representation. The
number of bits is defined by b, and s is the scale factor. The dequantization operation
simply multiplies the quantized integer values with the scale factor. If for example b = 8
and x ∈ [−10, 10], then it would make sense to set s = 10

128 . Q f will be:

Q f

(
x, s =

10
128

, b = 8
)
=

10
128

clamp
(

round
(

128
10
· x
)

,−128, 127
)

(12)

The output of Q f (x, s = 10
128 , b = 8) will be floating-point numbers, but their values

are restricted to 256 discrete levels symmetrically distributed around 0. Values outside
[−10, 10) are saturated within [−10, 10) through the clamp operator. Scale factor s is a
quantizer parameter that needs to be determined as a function of x. Its value needs to be
chosen carefully since it will determine the balance between precision and range. Proper
selection of s is discussed in Section 2.4.2.

Equation (11) describes a fake quantizer in the forward pass. If the simulation of
quantization is needed during QAT, Q f must be able to propagate gradients during the
backward pass. The local gradient of a round function is, however, zero almost everywhere,
which makes gradient descent based on round operators and, hence, on fake quantization
nodes impossible. The common solution to this problem is the Straight Through Estimator
(STE) [16] principle, which simply bypasses the round operator in the backward pass,
treating it as an identity function:

∂ round(x)
∂x

= 1 (13)

Figure 3a,b illustrates the transfer function of an identity function and a round func-
tion, respectively, with their corresponding derivatives, while Figure 3c depicts a round
function using the STE principle. Using the STE, the local gradient of the fake quantizer
(Equation (11)) w.r.t. input x becomes:

∂Q f (x, s, b)
∂x

=

{
1 if− 2b−1 ≤ round

( x
s
)
≤ 2b−1 − 1

0 otherwise
(14)

(a) (b) (c)

Figure 3. At the top, transfer functions of an identity function (a) and a round function (b) with their
respective derivatives at the bottom. A round function with the STE in the backward pass is depicted
in (c).

Some works argue that the STE produces suboptimal results because it uses an estimate
rather than the true gradient. An alternative solution proposes to approximate the round
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operator with a linear combination of several sigmoid functions to obtain a staircase-like
transfer function [17]. Another work [18] proposed alpha blending, a technique that linearly
combines the original data x with quantized data Q f (x, s, b) through a blending factor α in
the forward pass:

Q f inal(x, s, b, α) = αQ f (x, s, b) + (1− α)x (15)

Q f (x, s, b) blocks the gradient in the backward pass, while term (1− α)x propagates
it, which results in true gradient calculation. During training, α is gradually increased from
0 to 1. This alternative solution, however, has limited added value with respect to accuracy.
In addition, the constantly increasing α makes it impractical to use quantizer scales that are
learned through backpropagation, which rules out the modern way of estimating the scale
factor with QAT. We therefore chose to use the well-proven STE within our work instead.

2.2.2. Folding Batch Normalization Layers and Simulation

As mentioned in Section 2.1.3, batch normalization layers are folded prior to quanti-
zation, which is commonly called static folding. With QAT, however, other options exist.
Krishnamoorthi et al. [14] argued that the effect of batch normalization is still useful during
the QAT process, but at the same time, they wanted to avoid them during inference on
the target. They solved this by applying the folding process (Equations (6) and (7)) before
each forward pass, but using the training batch statistics µB and σB to compute the folded
weights and bias rather than the running statistics µ and σ. In this way, they preserved
the batch normalization effect during QAT and, at the same time, simulated the folding
process to prepare the model for future folding. Halfway during the QAT process, batch
normalization layers are folded using the running statistics µ and σ. To calculate µB and σB,
however, each preceding convolution must be forwarded a second time, which generates
additional compute overhead during training. Some works [6,19] argued that fine-tuning
with batch statistics is unnecessary and even harmful to the final accuracy with 4 bit
weights. We confirmed the same behavior and found that applying the folding process
with running statistics in every forward pass, as suggested by Li et al. [19], works slightly
better compared to permanent folding prior to training, as proposed by Nagel et al. [6]. We
therefore adopted the proposal from Li et al. [19] for all our experiments.

2.3. Relaxation of Quantization Constraints

In addition to the uniform symmetric quantizer, more complex quantization schemes
have also been proposed in literature. Many of these schemes have a direct impact on
the design of the compute engine and, therefore, require a good understanding. In this
section, we discuss popular schemes including the uniform asymmetric quantization in
Section 2.3.1, the per-channel quantization in Section 2.3.2, various nonuniform quantiza-
tions in Section 2.3.3, and mixed precision in Section 2.3.4.

2.3.1. Asymmetric Quantization

Equation (1) describes a so-called symmetric quantization scheme since it distributes
the quantization levels equally around zero, assuming q has a signed integer data type. In
case the input data are not symmetrically distributed around zero, a significant portion of
the quantization bins might be unused when relying on a symmetric scheme. Therefore,
many works prefer an asymmetric scheme, which adds a zero-point z to the equation:

x ≈ s(q− z) (16)

In practice, both q and z are unsigned integer types since z can nudge the distribution
to the desired place. A fake quantizer that supports this scheme usually becomes:

Q f (x, s, z, b) = s
[
clamp

(
round

(x
s

)
+ z, 0, 2b − 1

)
− z
]

(17)



Electronics 2021, 10, 2823 9 of 25

Although the asymmetric design offers superior properties compared to the symmetric
design [6,14], it comes with an additional cost at inference time when both weights and acti-
vations use this scheme. Equation (21) shows the computations such a multiply-accumulate
engine needs to make. Note that the zero-point for the bias is usually omitted [13]:

sy(yq − zy) = sooq +
N

∑ sw(wq − zw)� sa(aq − za) (18)

yq − zy = S

(
oq +

N

∑(wq − zw)� (aq − za)

)
s.t. S =

swsa

sy
; so = swsa (19)

yq = zy + S

(
oq +

N

∑ wq � aq − za

N

∑ wq − zw

N

∑ aq + Nzwza

)
(20)

yq = S

(
O +

N

∑ wq � aq − zw

N

∑ aq

)
s.t. O =

zy

S
+ oq − za

N

∑ wq + Nzwza (21)

Since a few terms in Equation (20) are constant, these terms can be absorbed within
a new bias O. Compared to Equation (5), the asymmetric engine Equation (21) needs
to compute an additional term −zw ∑N aq since it relies on runtime data. Although the
computational cost does not increase much, it introduces additional complexity within the
accelerator engine. For this reason, recent works [6] and deployment tools such as Tensor-
Flow Lite use asymmetric quantization for their activations and symmetric quantization
for the weights, which eliminates the calculation of the additional term at runtime.

Asymmetric quantizers support any given zero shift in their underlying data dis-
tribution in an optimal way. However, a symmetric quantizer with an unsigned integer
data type could also be used in case the data solely contain positive values, which is for
example the case with the ReLU or ReLU6 activation data. The quantization grid can then
be optimally distributed without the need for an asymmetric quantizer. A symmetric fake
quantizer for unsigned data could be defined as:

Q f (x, s, b) = s clamp
(

round
(x

s

)
, 0, 2b − 1

)
(22)

Our proposed method solely uses symmetric quantizers for the activations with
signed and unsigned data types since this works sufficiently well for 8 bit and eliminates
additional complexity in estimating the zero-points.

2.3.2. Per-Channel Quantization

Until now, we only considered a single scale factor (and zero-point) for a whole
weight or feature-map tensor. This is commonly referred to as per-layer, per-axis, or scalar
quantization. Many works [6,14,20,21] have also experimented with separate quantizer
parameters for each tensor channel, which is referred to as per-channel quantization. As
asymmetric quantization is to symmetric quantization, per-channel quantization is another
relaxation technique to better adapt to the different data distributions found in full-precision
neural networks. This is particularly useful when the dynamic range within a single data
tensor is large, which is often the case for networks with depthwise convolutions (e.g.,
MobileNets). Goncharenko et al. [21] reported a large difference in per-layer (scalar mode)
and per-channel mode (vector mode) for MobileNetv2 and MNasNet. In practice, per-
channel quantization is only applied for weights and not for activations because it would
otherwise make the compute engine impractical to implement [6,14].

Nonetheless, per-channel quantization for the weights requires special considera-
tions in hardware: a separate scale and optional zero-point need to be handled for each
individual channel, which is not supported by all hardware accelerators. For this reason,
Nagel et al. [22] proposed Cross-Layer Equalization (CLE), a per-channel weight-rescaling
technique that is applied on the floating-point model, prior to quantization. CLE equalizes
the weight tensors across their channel dimensions, achieving per-channel quantization
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performance with PTQ. Nagel et al. [6] later discovered that CLE can also be used to
initialize QAT, leading to better results.

Since we stress the simplicity of the hardware in this article, we chose to use per-layer
quantization in our proposed method in conjunction with cross-layer equalization for
models sensitive to quantization such as MobileNets.

2.3.3. Nonuniform Quantization

Linear or uniform refers to evenly distributed quantization levels among a given
range. Uniform quantization schemes are usually preferred because of their simplicity and
straightforward hardware implementation. Weight and activation data, however, tend
to be nonuniformly distributed, as depicted in Figure 4. Several articles [10,17,20,23–25]
proposed using quantization schemes with nonuniformly distributed quantization levels
that more or less follow the expected distributions. Because weights tend to follow bell-
shaped distributions, a more efficient precision/range balance can be achieved if more
quantization levels are located close to the center and less levels are located further out-
wards, which results in higher accuracy. Proposed techniques in the literature include 1D
K-means clustering of the weight/activation data, where the K cluster centers represent
the quantization levels [20,26], cumulative histograms to create a mapping function that
distributes the weights [20], and many more.

Figure 4. Activation and weight distribution of the second layer of GoogleNet (image from [27]).

Some works chose nonuniform schemes in a way that they can be realized very
efficiently in hardware. One of the most popular schemes is the powers-of-two scheme,
since this scheme has the potential to replace all multiplications with shift operations, which
are faster and more energy efficient. Zhou et al. [25] proposed a training scheme where
they incrementally replaced floating-point weights with powers-of-two weights during the
QAT procedure. Li et al. [24] proposed to use a sum of two powers-of-two terms, which
has some advantages over regular power-of-two distributions. Zang et al. [10] proposed
LQ-Nets with a convolution engine that merely relies on bitwise operators, such as xnor
and popcount, which can be executed very efficiently. Their engine supports a nonuniform
quantization level distribution that can be trained and has a similar degree of freedom
as the sum of power-of-two values. Faraone et al. [23] proposed to use a Reconfigurable
Constant Coefficient Multiplier (RCCM) instead of bulky DSP multipliers in their FPGA
implementation. RCCMs multiply numbers merely by shift and addition operations. They
proposed a method to estimate the RCCM design based on an RCCM supported coefficient
set that matches the distribution of the data as close as possible.

Covel et al. [20] proposed a lookup-table-based compute engine where all multiplica-
tions are omitted by implementing a double-indexed table that stores the multiplications
results, calculated offline, between weights and activations. An additional lookup-table
was used to translate the accumulated lookup results back to an activation index as the
input for the next layer. Although very efficient, large tables are needed, which require a
significant loading time between every network layer.

Our method was inspired by the additional accuracy gain that could be achieved
through nonuniform quantization, since we relied on less expressive power-of-two quanti-
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zation scales. Lookup-table approaches seemed the most interesting, given that they can
represent any value, compared to the limited number of steps representable through (sums
of) power-of-two values.

2.3.4. Mixed Precision

Most works consider homogeneous quantization, which means that all weight or all
activations across a model share the same bit-widths. Several recent works [28–31] explored
the quantization of heterogeneous models, where each weight tensor in a layer can have
its own bit-width, also commonly referred to as mixed-precision models. Assigning low
bit-widths to layers that are less sensitive to quantization can increase compression and
bandwidth efficiency even further. Moreover, a fine-grained trade-off can be selected
between model accuracy and model compression by choosing the right configuration. The
major challenge for mixed-precision quantization algorithms is to determine the bit-width
configuration for an entire model. Several works [28–30] designed a sensitivity metric that
represents the sensitivity to quantization for a given layer. A bit-width, proportional to
this metric, is then assigned to that layer. Cai et al. [31] solved the selection of the right
mixed-precision model through differential NAS.

Although mixed precision has many great advantages, it requires specialized hardware
to support it. In this work, we did not consider using mixed precision; however, our
method is suited to be used in combination with mixed precision, which can be explored in
future work.

2.4. Quantizer Parameters

This section describes the different data types that are used in practice to represent
quantizer parameters (Section 2.4.1) and how these parameter are estimated in the PTQ
and QAT algorithms (Section 2.4.2).

2.4.1. Quantizer Parameter Data Types

The (simulated) data type of quantizer parameters such as scale factors and zero-points
matters, since they influence the requirements of the target hardware. If, for example, s
would be a full-precision floating-point number during simulation, the accelerator would
also need to support scaling operations in full-precision. Since floating-point operations in
integer-based accelerators are usually not preferred, other solutions have been proposed
in the literature for scale factors: dynamic fixed-point integers [13], which are 32 bit or
16 bit fixed-point integers plus a shift operation to enlarge their dynamic range, and
powers-of-two values [12]. Zero-points are less critical and in practice represented through
integers with the same bit-width as their integer data q. Dynamic fixed-point integers are
mostly used for scale factors since they closely resemble the dynamics and precision of
floating-point numbers, which allows simulators to just represent them in floating-points.
Power-of-two (POT) scale factors, according to Jain et al. [13], can be simulated with:

sPOT = 2ceil(log2(s)) (23)

s is a full-precision scale factor; sPOT is the power-of-two scale factor; ceil is a ceiling
operator that rounds upwards. In this work, we preferred to use these power-of-two scale
factors because they can be executed with a single bit-shift operation.

2.4.2. Quantizer Parameter Estimation

We found different techniques to estimate the quantizer parameters in both the PTQ
and QAT frameworks. More traditional works estimate these parameters using simple
data statistics, such as observed minimum and maximum data values [13,14,19], and use
them as lower and upper bounds of the quantization grid, respectively. This approach
is however sensitive to outliers and tends to overestimate the range, resulting in large
quantization errors, especially for bit-widths smaller than eight. To overcome this issue,
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many PTQ algorithms minimize some distance function D between the full-precision data
and the quantized data:

arg min
s,z

D
(

x, Q f (x, s, z)
)

(24)

Different metrics for D include the Kullback–Leibler divergence between both distri-
butions [12,32] and the mean-squared error [18,33]. Modern QAT methods make quantizer
parameters trainable and optimize them together with the weights [6,9,12,21,24,34,35].
Using the chain rule and the STE, the gradient w.r.t. the scale factor can be calculated. For
the uniform symmetric quantizer, this will be:

∂

∂s

[
s clamp

(
round

(x
s

)
, n, p

)]
=


round

( x
s
)
− x

s if n ≤ round
( x

s
)
≤ p

n if round
( x

s
)
< n

p if round
( x

s
)
> p

(25)

n = −2b−1 and p = 2b−1 − 1 for signed and n = 0 and p = 2b − 1 for unsigned data.
Some works define s = 1 and z = 0 [11,36,37], which completely eliminates scaling

on the target device. The consequence, however, is that all layers have to learn quantized
values that lie more or less within the same range, which works since these authors trained
their models from scratch. Training from scratch with quantizers is, however, less preferable
since it takes much longer to train and sometimes results in less accurate models.

As mentioned in Section 2.4.1, we preferred power-of-two scales. We optimized the
scales through backpropagation as proposed by Jain et al. [12]. In the forward pass, the
power-of-two scale is calculated with Equation (23). In the backward pass, the STE is used
for the ceil function so ∂ ceil(x)

∂x = 1, and slog = log2 s is treated as a training parameter rather
than s itself. The latter enables training in the log2 domain, which increases the numerical
stability and provides better convergence. The gradient w.r.t. slog of Equation (23) is:

∂

∂slog

[
2ceil(slog)

]
= 2ceil(slog) ln 2 (26)

2.5. Quantizing Other Layers

Sections 2.1 and 2.2 discuss the internals of a fixed-point compute engine and how
to simulate it, respectively. In this section, we discuss how other common layers, such as
elementwise adders or concatenation layers, need to be handled in hardware in order to
correctly deal with scale factors and zero-points:

Max pooling: This layer does not need special handling because it only has a single
input branch and does not alter these input values numerically;

Average pooling: The average of multiple integers is not necessarily an integer, which
requires inserting a fake quantization node at the output. In practice, average pooling
is often executed through a depthwise convolution layer without bias and with weights
w = 1/K2J where K is the kernel size of the average pool layer and J is an all-ones tensor.
This way, the convolution compute engine can be reused for average pool operations, and
quantization simulation happens in the same way as for the convolution engine;

Elementwise add: If a scale or zero-point of both input branches of the adder do not
match exactly, the quantization grids will be different and the addition will be incorrect.
Krishnamoorthi et al. [14] placed a fake quantizer node at both input branches and one at the
output. Their hardware implementation used a scale operation at both input branches and
a round operator at the output. Jain et al. [12] had a slightly different approach. They forced
the fake quantizer nodes at both input branches to share the same quantizer parameters, as
depicted in Figure 5a by the dashed line. This way, the hardware implementation, shown
in Figure 5b, only needs a requantization step at the output. In case a ReLU activation
function directly follows the elementwise adder, which is for instance the case with ResNet,
this function can be fused into the elementwise add operation through the clipping function
from the requantization step;
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Concatenation: The input branches of a concatenation function likely do not share
the same scale or zero-point. Just as elementwise addition, the quantization parameters
of the input branches need to be shared. This can be done in simulation by inserting fake
quantization nodes on every input branch with shared parameters or by using a single
fake quantization node at the output, which has the same effect (Figure 5c). The hardware
implementation is shown in Figure 5d.

(a) (b) (c) (d)

Figure 5. Fake quantized elementwise add (a), its implementation in hardware (b), fake quantized
concat (c), and its implementation in hardware (d). The figures assume a uniform symmetric
quantization scheme (only scale factors) for the sake of simplicity.

2.6. QAT Initialization

The superior performance of QAT over PTQ is significantly influenced by proper
initialization of the QAT process. It is known that initializing QAT with pretrained
floating-point weights gives better results compared to training a quantized model from
scratch [12–14]. The proper initialization of the quantizer parameters is however equally
important, which is why QAT algorithms first perform PTQ to give the quantizer parame-
ters a meaningful starting point. Nagel et al. [6] experimented with different initialization
techniques for uniform QAT. They concluded that the mean-squared-error-based estima-
tion of the quantization parameters is favorable compared to min-max-based estimation,
though the advantage becomes small towards the end of the training. Other techniques to
nudge the weights or biases prior to training such as AdaRound [38] or bias-correction [22]
seem not to be beneficial, with the exception of Cross-Layer Equalization (CLE) [22] which,
according to their experiments, is required in order to successfully train MobileNets with
4 bit weights.

In addition to PTQ initialization, QAT-trained models with higher bit-widths are
also used to initialize QAT trainings with lower bit-widths, in which case the bit-width
is progressively reduced in multiple training stages. Commonly known as progressive
quantization, this strategy has proven to work well and gives a small boost to the final
accuracy. Progressive quantization can also mean that parts of the network are quantized
progressively rather that the whole network at once. Zhuang et al. [7] proposed to first
quantize the weights and leave the activations in full-precision, followed by quantizing
both the weights and activations in a second stage. Park et al. [9] exploited this idea even
further and proposed PROFIT, a technique to identify layers that cause more instability
during QAT than others in MobileNets. By freezing the most unstable layers (mainly
depthwise convolutions) in a consecutive training stage, that stage would be trained more
smoothly, resulting in better performance. Progressive freezing, by Park et al. [9], was
performed in three stages: (1) all layers were trained; (2) 2/3 of the layers were trained;
finally, (3) 1/3 of the layers were trained. Each training stage was initialized with the
weights from the previous training stage.

We applied CLE for all our MobileNetV2 experiments and used PROFIT in some
experiments to further close the gap between quantized and full-precision models.
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3. Materials and Methods

As discussed in our related work, most methods rely on high-precision scaling to cope
with the different dynamic data ranges, present in full-precision neural networks. High-
precision scaling requires additional high-precision multipliers, which require larger silicon
area and more energy and, in case FPGAs are used, leads to more expensive platforms. We
propose a novel method that avoids high-precision scales in fixed-point compute engines
by using power-of-two scales, which can be applied through a single bit-shift. Jain et al. [12]
already proved that quantized models with 8 bit weights and power-of-two quantization
scales can achieve full-precision accuracy or even better. Although much harder, we prove
that we can achieve full-precision accuracy with 4 bit weights and power-of-two scales.
Our method was inspired by the superior performance of nonuniform quantizers over
uniform quantizers, but does not require complex hardware.

The difference between a typical compute engine and our proposed engine is depicted
in Figure 1a,b, respectively. Our compute engine relies on bit-shift-based scaling with a
single scale per layer, and we propose to use a lookup-table to translate 4 bit weights into
8 bit weights for internal computation. The lookup-table allows the compute engine to have
nonuniform properties, boosting its expressiveness significantly. Since the LUT can hold
any number representable through eight bits, different value combinations can be chosen
to match the underlying weight distribution within a specific convolution layer. A different
set of LUT values is used for every layer to best match the layer-specific data distribution.
Note that a single LUT can be shared among multiple parallel compute engines, allowing
an additional hardware simplification.

Section 3.1 presents our quantization scheme, the design changes to the compute
engine, and the fake quantizer that we propose to simulate our design. Section 3.2 discusses
the proposed optimization algorithm to estimate the 8 bit lookup-table values for each
layer, and Section 3.3 describes the initialization method of both lookup-table values and
power-of-two scales, used prior to training.

3.1. Lookup-Table Quantizer

Our quantization scheme can be expressed by Equation (27), where a floating-point
vector x is approximated by a power-of-two scale factor s, multiplied by the output of LUT
function L. L simply returns the integer values from LUT content v ∈ [−2b−1... 2b−1 − 1]K,
which correspond to quantized values q (the lookup addresses). Here, K is the number of
values in the LUT and b is the number of bits to represent them.

x ≈ sL(q, v) s.t. s =
2l

2b−1 (27)

If, for example, q contains 4 bit addresses, the LUT will contain K = 16 values,
each with b bits (typical b = 8). Because v is a set of discrete b bit values rather than
floating-point values, we used the power-of-two scale factor s to increase the dynamic
range of the scheme, where l ∈ Z is the amount of left-shifting. Figure 6 illustrates this
scheme graphically.

LUT b-bits

address

Figure 6. Our quantization scheme, which calculates a value x by translating a lookup-address qk into a b bit value vk and
bit-shifts the results by l places.
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Although this quantization scheme is symmetric (since it lacks a zero-point), it has
asymmetric properties since the LUT values can be distributed in an asymmetric way if
needed. If Equation (27) is used to quantize the weights within a b bit multiply-accumulate
engine with uniform symmetric activations, we obtain:

syyq = sooq +
N

∑ saaq � swL(wq, v) (28)

yq = S

(
oq +

N

∑ aq � L(wq, v)

)
s.t. S =

sasw

sy
(29)

Here, aq and L(wq, v) represent activation and weight vectors, respectively. Scale
factors sy, sa, and sw are all power-of-two scale factors that can be merged into a single
power-of-two scale factor S. The engine in Equation (29) only requires N LUT operations, N
b bit multiply-accumulate operations, a bias add operation, and a single bit-shift operation
to calculate the output.

A fake quantization node of the quantization scheme from Equation (27) is presented
in Equation (30):

Q f (x, s, v) = s proj
(x

s
, v
)

(30)

Here, projection function proj(x, v) maps input x onto the value in v that lies closest
to x and s is the power-of-two scale factor.

In the backward pass, the Straight-Through Estimator (STE) principle is applied,
which means that the projection function behaves as an identity function, as shown by
Equation (31):

∂ proj(x, v)
∂x

= 1 (31)

Each weight tensor within a neural network has its own s and v parameter set, which
needs to be optimized. First, we used a PTQ algorithm to determine the initial values of
both s and v. Second, during QAT, s remains constant, and v is further optimized together
with the weights.

Section 3.2 explains the algorithm to optimize v in both the PTQ and QAT stages, and
Section 3.3 describes the steps taken during our PTQ stage, which initializes both s and v.

3.2. Optimizing LUT Values v

Our algorithm for optimizing v is based on minimizing the quantization error between
the floating-point data x = [x1, x2, . . . , xN ] and its quantized result Q f (x, s, v) by optimizing
the LUT vector v, as shown by Equation (32):

v← argmin
v

∥∥∥x−Q f (x, s, v)
∥∥∥2

2
(32)

We solve Equation (32) through an iterative algorithm, where a single iteration is
described by Algorithm 1. First, the algorithm selects a subset of values z from scaled
input data y that contain only the values of y that are nearest to LUT value vk. Second, the
mean value of z is calculated and used as the new LUT value after saturating it within
interval [−2b−1, 2b−1 − 1] through a clamp operator, which simulates the upper and the
lower bounds of the LUT. Note that this is the same as applying a single step of a K-means
clustering algorithm, with the addition of the clamp operator. These steps are repeated for
all values in v.

The range limitation through the clamp operator is controlled by scale factor s. Figure 7
illustrates the outcome of Algorithm 1 when iteratively applied for two different values
of s, on one of the weight tensors from MobileNetV2. A smaller value of s results in more
densely positioned quantization levels and excludes more outliers.

v is limited in range, but the updates to v are still performed in full-precision. To
ensure that v can be represented exactly through b bit integers, rounding is applied after
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some time of training when the values in v tend to be stabilized. Once rounded, the
optimization process of v is stopped, and training continues with fixed LUT values. This
can be seen in Algorithm 2, which summarizes the full algorithm that quantizes x and only
optimizes v when Boolean flag enable_optimization is true. During QAT, Algorithm 2 is
called once every forward pass.

We kept the update process of v in full-precision for the following two reasons:
(1) direct rounding during optimization causes the optimization process to stall early
when the updates become small, and (2) constant integer updates cause instability to the
training process.

The criterion that determines when to set enable_optimization to false is explained in
Section 3.2.1.

Algorithm 1: Optimize the LUT values.
Input: Floating-point data x = [x1, x2, . . . xN ], scale factor s, and LUT values

v = [v1, v2, . . . vK] where v1 < v2 < · · · < vk
Output: Updated LUT values v = [v1, v2, . . . vK]
Procedure:
y = x/s
for k = 1 to K do

t− ←
{
−∞ if k = 1
vk −

vk−vk−1
2 otherwise

t+ ←
{

∞ if k = N
vk +

vk+1−vk
2 otherwise

z← {yi ∈ y|t− < yi ≤ t+}
z← mean(z)
vk ← clamp

(
z,−2b−1, 2b−1 − 1

)
end

Algorithm 2: Quantize data during training/testing and optimize LUT values v.
Input: Floating-point data x = [x1, x2, . . . xN ], scale factor s, and LUT values

v = [v1, v2, . . . vK]
Output: fake quantized data q = [q1, q2, . . . qN ] and updated LUT values v
Procedure: // Run once in every forward pass

q← s proj
( x

s , v
)
// Apply fake quantization

if enable_optimization then
v← Algorithm 1(x, s, v)

else
v← round(v) // round v and stop optimizing

end
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Figure 7. Real and quantized (16 bins) distributions of a weight tensor from MobileNetV2, generated using Algorithm 1.
On the left, a few quantization bins are assigned to outliers due to the larger scale factor s. On the right, a smaller s results
in a more compact quantized distribution because of the clamp operator.

3.2.1. Stopping Optimization of the LUT Values

Each weight layer has its own LUT vector v within a model. During training, when a
LUT vector v is stabilized, it is rounded and its optimization procedure is stopped, which
we call freezing (setting enable_optimization to false). We considered a vector stabilized when
the following criteria are met:

round(v) = round(vsmooth) (33)

where vsmooth is a smoothed version of v calculated by an EMA filter with a high decay
(0.999). We start checking all LUT vectors after the first 1000 training iterations every
50 cycles. We only froze one LUT vector at a time. In case the criteria are met for multiple
v, the vector with the smallest round error ‖v− round(v)‖2 is preferred.

3.3. Initialization

Both scale factor s and LUT values v are initialized prior to training using our PTQ as
the initialization method. Our initialization method, summarized in Algorithm 3, starts
with uniformly distributed LUT values v and a power-of-two scale factor determined from
the maximum value of x. It then optimizes v through Algorithm 2 for that specific scale
factor followed by calculating the mean-squared error ε between quantized data q and
x. This is repeated for five smaller power-of-two values of s. Optimal scale factor ŝ and
LUT vector v̂ that produced the lowest ε are selected as the final initialization values for
training. Note that our PTQ does not yet round the values in v.

Algorithm 3 is applied for all weight tensors. Batch normalization layers are folded
prior to quantization as discussed in Section 2.2.2. We did not quantize bias parameters in
our experiments since we assumed 32 bit integer bias parameters and accumulators.

3.4. Quantizing Feature-Map Data

For quantizing feature-map data or activations, 8 bit quantization with power-of-two
quantization scales was used. This was implemented through the symmetric uniform
quantizer from Jain et al. [12] with learnable power-of-two scales. Their hyperparameter
settings and scale freezing technique for optimizing the scales were adopted as well. Note
that we deliberately did not choose to use asymmetric quantizers for feature-map data.
Although this is possible, it introduces additional zero-points that need optimization, which
complicates the training process. In addition, we empirically discovered that the added
value is virtually nothing at 8 bit compared to a mix of signed and unsigned symmetric
quantizers at the right locations. Throughout the model, quantizers are inserted at the
inputs, activation functions, and other nonparametric layers such as elementwise adders,
concatenations and average pooling layers. This is done to achieve correct integer-only
inference simulation, as discussed in Section 2.5.
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Algorithm 3: Initialization of LUT values v and scale factor s.
Input: Floating-point data x = [x1, x2, . . . xN ]
Output: Optimal scale factor ŝ and LUT values v̂ = [v1, v2, . . . vK]
Procedure:
ε̂← ∞
ŝ← s← 2l

2b−1 s.t. l = ceil(log2 max |x|)
for i = 1 to 5 do

v = [v1, v2, . . . vK] with uniformly distributed values in range [−2b−1, 2b−1 − 1]
for j = 1 to 100 do

q, v← Algorithm 2(x, s, v) // Optimization enabled
end
ε← ‖x− q‖2

2
if ε < ε̂ then

ε̂← ε ŝ← s v̂← v
end
s← s/2

end

4. Results

To evaluate the performance of our LUT-based method, we conducted several experi-
ments on CNN-based image classifier models and an object detection model. Section 4.1
compares the PTQ and QAT performance of our proposed method against other uniform
quantizers with both full-precision and power-of-two quantization scales in both per-layer
and per-channel mode. Section 4.2 compares our results against results from other state-of-
the-art works for five different image classifier models. Section 4.3 presents the results of
our method, tested on an object detector model. Section 4.4 presents a small study on the
added value of optimizing the LUT values during QAT. Section 4.5 discusses additional
tools to further improve the accuracy of MobileNetV2. Finally, in Section 4.6, we present
the simulated inference speed of a few CNN models with both 8 and 4 bit weights on an
FPGA platform.

4.1. Comparison to Different Quantizers

In this first set of experiments, we compared our proposed nonuniform weight quanti-
zation method against uniform quantization methods with the POT scale and float scale
in both the per-layer and per-channel configurations. Table 1 lists the Top-1 ImageNet
accuracies of quantized ResNet18 [39] and MobileNetV2 [40] with 4 bit weights and 8 bit
activations. We included both QAT’s and PTQ’s results, where the PTQ models were used
to initialize the QAT models. Note that all these results were produced using the same
framework for a fair comparison.

Table 1 shows that our method achieved the highest scores for both models, even
slightly outperforming per-channel quantized models with full-precision scales. The
advantage of the lookup-table clearly made the difference: our method can be used as a
worthy alternative for uniform quantizers with both per-layer and per-channel quantization
with floating-point scales. We also noticed that uniform quantization with POT scales
in both per-layer and per-channel quantization did not completely recover the baseline
accuracy of ResNet18, while our method did with a safe margin of +0.35%, which proves
the superiority of our method for POT scales.

It is known that the accuracy of QAT models can exceed the accuracy of their full-
precision counterparts [6,12,14], which can also be seen with our method. This phenomenon
can be explained by the additional training cycles of QAT and the regularization effect of
the quantization noise during QAT.
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Table 1. ImageNet Top-1 results using different quantizers with 4 bit weights and 8 bit activations. The first number
represents the relative accuracy or difference between the quantized model and the full-precision model, while the second
number in parenthesis represents the absolute accuracy.

Model (FP32 Accuracy) ResNet18 (69.76) MobileNetV2 (71.88)
PTQ QAT PTQ QAT

Float scale per-layer −50.18 (19.58) +0.08 (69.84) −67.11 (4.77) −1.51 (70.37)
Float scale per-channel −15.85 (53.91) +0.23 (69.99) −64.96 (6.92) −0.97 (70.91)

POT scale per-layer −60.14 (9.62) −0.27 (69.49) −71.05 (0.83) −1.73 (70.15)
POT scale per-channel −31.75 (38.01) −0.08 (69.68) −69.87 (6.34) −1.66 (70.22)

POT scale per-layer + LUT (ours) −12.51 (57.25) +0.35 (70.11) −55.95 (15.93) −0.92 (70.96)

Although per-channel quantization with POT-scales was never attempted by
Jain et al. [12], their per-layer results were consistent with ours. Per-channel quanti-
zation with POT scales has, to the best of our knowledge, never been tried in the literature
before. Our procedure for uniform per-channel quantization with POT scales adopted the
gradual freezing method of Jain et al. [12] to freeze the POT scales once stabilized, but
applied it on a per-channel level. Instead of allowing a single POT scale to be frozen every
50 training iterations, we allowed up to 400 per-channel scales to be frozen, using the same
stabilization criteria from Jain et al. [12].

For MobileNetV2, however, no quantizer succeeded in recovering the full-precision
accuracy, because it is very sensitive to quantization due to the depthwise separable convo-
lutions. Although CLE [22] was applied prior to quantization to improve MobileNetV2’s
QAT accuracy in all our experiments, as suggested by Nagel et al. [6], a drop in accuracy
of approximately one percent still existed. In Section 4.5, we further analyze the effect of
CLE on POT-scale-based quantizers in more detail, and we discuss what can be done in
addition to further improve the results of MobileNetV2.

Both models were trained for 20 epochs on ImageNet, with standard preprocessing,
data augmentation, and batch sizes of 256 and 128 for ResNet18 and MobileNetV2, respec-
tively. We used the Adam optimizer to optimize both weights and quantization scales
with its default parameters. For the weights, learning rates of 1× 10−5 and 3× 10−5 were
used for ResNet18 and MobileNetV2, respectively, with a cosine learning rate decay that
reduced the learning rate to zero at the end of the training. The quantization scales had
a learning rate of 1× 10−2 that quickly decayed in a step-based fashion, as suggested by
Jain et al. [12] for their POT scale quantizer. We discovered that this learning rate schedule
worked better for both POT-scale and float-scale models compared to the same learning
rate schedule as used for the weights. Note that other best practices to train our POT-scale
models, including gradual freezing of the scales once stabilized, were also adopted from
Jain et al. [12], for our experiments that optimize POT scales.

The PTQ methods for the uniform models used mean-squared error estimation to
initialize both weight and activation scales, as suggested by Nagel et al. [6]. Note that all
experiments used symmetric quantizers for the activations.

4.2. Comparison to the State-of-the-Art

In this section, we compare our method against results from other state-of-the-art
methods for a number of different models. The selection criteria used to select works to
compare to were twofold: first, mainly QAT methods and, second, works that reported
results with 4 bit weights and 8 bit activations. Table 2 presents the Top-1 ImageNet
accuracies of ResNet18 [39], ResNet50 [39], MobileNetV2 [40], VGG16 [41] without batch
normalization, and InceptionV3 [42]. The accuracies of the full-precision models among the
related works slightly differed and are therefore listed separately (32/32) in addition to the
accuracies of the quantized models with 4 bit weights and 8 bit activations (4/8). In addition
to the results of our method (Ours LUT), we also present our own results of uniform
quantization with POT scales (Ours uniform), to highlight the added value of our LUT.
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Results from the other works were directly taken from their papers. AB [18], QAT1 [14],
and QAT2 [6] are all QAT methods that use per-channel quantization with full-precision
quantization scales, where AB and QAT2 also experimented with per-layer quantization.
TQT [12] is a QAT method that uses POT scales with per-layer quantization, and PWLQ [43]
is a PTQ method that uses multiple uniform quantizers to obtain nonuniform quantization.

We can conclude that all models using our method achieved and even exceeded full-
precision model accuracy with a safe margin, with the exception of MobileNetV2. Although
the latter model was not fully recovered, we still achieved the highest accuracy compared
to other methods. Nagel et al. [6] achieved a slightly higher accuracy on ResNet50 and
InceptionV3 using per-channel quantization with float scales, but comparable to ours.

For ResNet50, VGG16, and InceptionV3, we used a learning rate 3× 10−6 and their
standard respective preprocessing and data augmentation. All other hyperparameters
were as described in the previous Section 4.1. InceptionV3 was fine-tuned without auxiliary
loss, as suggested by Jaint et al. [12].

In Table 3, we also present the ImageNet results of uniform quantized models with
power-of-two scales and 8 bit weights instead of 4 bit weights, to further put our 4/8 results
into perspective. Overall, these results were slightly higher compared to our results from
Table 2, which was however to be expected. Similar training conditions were used as with
our 4/8 experiments.

Table 2. Top-1 ImageNet accuracies of different works. The first value represents the relative accuracy or difference between
the quantized model and the full-precision model, while the second number in parenthesis represents the absolute accuracy.
Columns Per-Ch and POT scale indicate whether per-channel quantization or POT scales were used, respectively.

Method w/a Per-Ch POT Scale ResNet18 ResNet50 MobileNetV2 VGG16 InceptionV3

AB [18]
32/32 / 75.20 / / /

4/8 no no / −1.40 (73.80) / / /
4/8 yes no / −0.90 (74.30) / / /

PWLQ [43] 32/32 / 76.13 71.88 / 77.49
4/8 yes no / −0.51 (75.62) −2.68 (69.22) / −1.04 (76.45)

TQT [12] 32/32 / 75.20 / 70.90 78.00
4/8 no yes / −0.80 (74.40) / +0.60 (71.50) −1.60 (76.4)

QAT1 [14] 32/32 / 75.20 71.90 / 78.00
4/8 yes no / −2.00 (73.2) −9.90 (62.00) / −2.00 (76.00)

QAT2 [6]
32/32 69.76 76.07 71.72 / 77.40

4/8 no no +0.08 (69.76) −0.18 (75.89) −1.55 (70.17) / +0.44 (77.84)
4/8 yes no +0.33 (70.01) +0.45 (76.52) −1.24 (70.48) / +0.72 (78.12)

32/32 69.76 76.13 71.88 71.59 77.34
Ours uniform 4/8 no yes −0.27 (69.49) −0.11 (76.02) −1.73 (70.15) +0.09 (71.68) +0.23 (77.57)

Ours LUT 4/8 no yes +0.35 (70.11) +0.18 (76.31) −0.92 (70.96) +0.28 (71.87) +0.39 (77.73)

Table 3. Top-1 ImageNet accuracies of uniform quantized models with 8 bit weights and 8 bit
activations using POT scales.

w/a ResNet18 ResNet50 MobileNetV2 VGG16 InceptionV3

32/32 69.76 76.13 71.88 71.59 77.34
8/8 +0.74 (70.50) +0.54 (76.67) +0.00 (71.88) +0.37 (71.96) +0.99 (78.33)

4.3. Object Detection

We also tested our method on the Tiny YOLOV2 [44] object detector. Table 4 presents
the mean-average-precision results of Tiny YOLOV2 on the MS COCO dataset with 4 bit
weights and 8 bit activations. The model was quantized with per-layer POT scales, both
with and without our LUT method. We can conclude that also for this object detector, our
method improved the final QAT result compared to uniform quantization. We trained the
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model for approximately 27 epochs with a learning rate of 1× 10−6 and a batch size of 32.
An input resolution of 416 × 416 pixels was used with the standard data augmentation of
YOLO, leaving out model rescaling during QAT.

Table 4. Detection results on MS COCO in mean average precision (IoU 0.5) with 4 bit weights and
8 bit activations.

Model (FP32 Accuracy) Tiny YOLOV2 (22.51)
PTQ QAT

POT scale per-layer −17.50 (5.01) +0.1 (22.61)
POT scale per-layer + LUT (ours) −20.80 (1.71) +0.94 (23.45)

4.4. Effect of Optimizing LUT Values during QAT

To study the added value of the optimization (Section 3.2) and progressive freezing
(Section 3.2.1) of the lookup-table values during QAT, we conducted a small ablation
study, presented by Table 5. The first two columns present the Top-1 accuracy of ResNet18
and MobileNetV2, while Columns 3 and 4 indicate whether optimization of the LUTs
and progressive freezing were enabled, respectively. We can conclude that enabling the
optimization of all LUTs during the whole QAT procedure without progressive freezing was
not beneficial; it even resulted in a reduced accuracy compared to fixed LUT values during
QAT. However, enabling optimization during the initial phase of QAT by progressively
stopping and rounding the LUT values when stabilized resulted in the best final accuracy.

The results of the first row were obtained by applying our PTQ algorithm first, fol-
lowed by rounding the lookup-table values and finally running QAT with constant lookup-
table values. For the results of the second row, the LUT values were never rounded, and
their optimization was enabled until the end of the training.

Table 5. Study on the added value to the Top-1 accuracy of optimizing the LUT values during QAT and the effect of
progressive freezing. Experiments were conducted with 4 bit weights and 8 bit activations.

ResNet18 (69.76) MobileNetV2 (71.88) Optimize LUT during QAT Progressive Freezing

+0.31 (70.07) −1.07 (70.81)
−0.11 (69.65) −2.39 (69.49) X
+0.35 (70.11) −0.92 (70.96) X X

4.5. Improving Results for MobileNetV2

This section presents an ablation study on the effect of the CLE [22] and PROFIT [9]
methods on MobileNetV2, quantized with our method. Table 6 indicates that CLE increased
the QAT accuracy by 0.24%. Since CLE was applied prior to quantization and did not need
additional training, we applied it to all our other MobileNetV2 experiments.

As explained in Section 2.6, PROFIT is a technique to improve models with depthwise
convolutions, such as MobileNets. In contrast to CLE, PROFIT requires two additional
training stages on top of the standard QAT procedure. Our first PROFIT stage trained with
1/3 of the layer weights frozen, while the second stage trained with 2/3 of the layer weights
frozen, where both stages trained for 20 epochs each (60 epochs in total, including initial
QAT). With PROFIT, we could further increase the accuracy by another 0.41% to arrive
at a final relative accuracy of −0.51%. During each PROFIT stage, we kept our quantizer
parameters s and v frozen and used the same learning rate and learning rate schedule as
used in the initial QAT, but with a ramp-up schedule at the start.
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Table 6. Ablation study of the CLE [22] and PROFIT [9] methods on quantized MobileNetV2 with
our quantization method. PROFIT Stage 1 is a second round of training where 1/3 of the layers
have frozen weights, and PROFIT Stage 2 is a third round of training where 2/3 of the layers have
frozen weights.

MobileNetV2 (71.88) CLE PROFIT Stage 1 PROFIT Stage 2

−1.16 (70.72)
−0.92 (70.96) X
−0.67 (71.21) X X
−0.51 (71.37) X X X

4.6. Speed Improvements

As already mentioned in the Introduction, reducing the number of bits per weight
from eight to four not only reduces the storage cost by 50%, it also increases the memory-
bandwidth efficiency, resulting in faster inference. Table 7 presents simulation results in
frames-per-second (FPS) of models with 8 bit weights and 4 bit weights on an Intel Arria
10 FPGA with 1024 MAC cores. For models with large weight tensors such as VGG16,
performance boosts of up to 55% can be achieved, while for more sparse models such as
MobileNetV2, the speed improvement was rather small. Simulations were performed using
the nearbAi estimator software https://www.easics.com/deep-learning-fpga (accessed on
16 November 2021), which models the inference behavior of the nearbAi neural network
accelerator IP core. A 32 bit-wide memory bus was used for the storage of weights and
feature-maps in external RAM with a clock frequency of 230 MHz. A clock frequency of
200 MHz was used for the compute engine.

Table 7. Simulated speeds of models with 8 bit weights and 4 bit weights for an Intel Arria 10 FPGA
with 1024 multiply-accumulate DSP cores and a 32 bit-wide bus to external RAM memory. Values
are in Frames Per Second (FPS).

VGG16 ResNet50 MobileNetV2

8/8 4.2 14.9 37.2
4/8 (+55%) 6.5 (+28%) 19.1 (+9%) 40.5

5. Conclusions

In this work, we highlighted the benefits of power-of-two quantization scales in
quantized CNNs: scaling can be applied through a bitwise shift and does not require
expensive high-precision multipliers. We showed that, with 4 bit weights, however, these
quantized models are typically less accurate compared to models with high-precision
scales, which is mainly caused by the less expressive power-of-two scale. Most of the
models with bit-shift scales therefore did not recover the full-precision model accuracy. To
solve this problem, we proposed to add a lookup-table to the compute engine that could
translate 4 bit weight addresses into 8 bit nonuniformly distributed weights for internal
computation, which greatly improved the overall expressiveness of the compute engine.
We also noted that a single lookup-table could be shared among multiple parallel compute
cores, further simplifying the overall design.

Through experiments, we proved that our method is capable of achieving the same
accuracy as per-channel quantized models with full-precision scales, while only using
a single power-of-two scale for a whole layer and a low-precision lookup-table. This
allowed us to recover or even exceed the full-precision accuracy of various CNN models
and achieve state-of-the-art results for the hard-to-quantize MobileNetV2. Reducing the
number of bits per weight from eight to four also allowed us to reduce the model size by
50% and improved the bandwidth efficiency, resulting in increased inference speeds on an
FPGA platform of up to 55%.

https://www.easics.com/deep-learning-fpga
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In future work, our method can be used easily in mixed-precision computation, where
each weight tensor in a layer can have its own bit-width, to achieve a more fine-grained
trade-off between model compression and model accuracy. Models with a mix of 2 bit, 4 bit,
and 8 bit weights could be constructed and executed on our proposed compute engine
without any modification. A 2 bit layer could be configured by simply using only four
entries of the LUT, while an 8 bit layer could be configured through a simple bypass of
the LUT.
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