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Abstract: Various research approaches to COVID-19 are currently being developed by machine
learning (ML) techniques and edge computing, either in the sense of identifying virus molecules
or in anticipating the risk analysis of the spread of COVID-19. Consequently, these orientations
are elaborating datasets that derive either from WHO, through the respective website and research
portals, or from data generated in real-time from the healthcare system. The implementation of data
analysis, modelling and prediction processing is performed through multiple algorithmic techniques.
The lack of these techniques to generate predictions with accuracy motivates us to proceed with
this research study, which elaborates an existing machine learning technique and achieves valuable
forecasts by modification. More specifically, this study modifies the Levenberg–Marquardt algorithm,
which is commonly beneficial for approaching solutions to nonlinear least squares problems, endorses
the acquisition of data driven from IoT devices and analyses these data via cloud computing to
generate foresight about the progress of the outbreak in real-time environments. Hence, we enhance
the optimization of the trend line that interprets these data. Therefore, we introduce this framework
in conjunction with a novel encryption process that we are proposing for the datasets and the
implementation of mortality predictions.

Keywords: urban; antiviral; post-COVID-19; spatial distancing; machine learning; sustainable

1. Introduction

Promoting the early detection of an outbreak is paramount for the sustainable devel-
opment of antiviral urban ecosystems. A prerequisite is to build an antiviral intelligent city
framework in a multigenerational urban environment relative to the post-COVID-19 era.
Humanitarian efforts in the pandemic’s framework deployed novel technological solutions
based on the Internet of Things (IoT), machine learning, cloud computing and artificial
intelligence (AI). Through our research study, we aim to contribute knowledge-based solu-
tions for the direct control of the exponential promotion of cumulative infectious cases and
the cumulative amount of mortality due to COVID-19. We propose an innovative system
that could accurately forecast the progress of a virus spread and inform governments to
align their policies against the outbreak in real-time. The main objective is to elaborate
on the aspects that could construct a sustainable and effective strategy against disease
outbreaks and an intelligent urban ecosystem based on technological initiatives.

The novel severe acute respiratory syndrome coronavirus 2, temporarily named
SARS-CoV-2 and permanently renamed by WHO on 11 February 2020 as Corona Virus
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Disease 2019 ‘COVID-19’, caused enormous adverse consequences worldwide. To control
spread, countries aligned their policies according to spatial distancing among citizens.
However, various technological innovations and response initiatives have been developed
to handle the unprecedented situation. It is paramount to establish a reference framework
to contribute to effective defences against viruses and reliable urban ecosystems. Therefore,
a multigenerational framework will be a significant step in improving digitalization and
responding to post-COVID 19 antiviral society [1]. Fundamental mathematics is paramount
to understanding the pandemic’s progress, as we can interpret and forecast cumulative
infectious cases [2]. The development of machine learning techniques to predict the current
situation or future outbreaks in conjunction with cloud computing will benefit the timely
assessment of the epidemiological portrait. We first interpret the data from cumulative
infectious cases and deaths due to COVID-19 and compare their trends. Then, we evaluate
the three constructed models, linear, exponential and polynomial, by using R-squared to
determine which model best fits. We propose improving the best fit predictive model by
using the implementation of machine learning techniques. Real-time data will be driven
for evaluation from the cloud repository, which will secure the datasets with the proposed
fragmentation scheme [3,4]. The objective is to accurately predict the curve’s progress
for governments to implement their policy reform from an early stage of the outbreak.
We also apply hypothesis testing regarding Italy’s monthly mortality rate. We analyse
the cumulative infected cases compared to the daily rate of patients derived from the
Polymerase Chain Reaction (PCR) tests during the pandemic’s second wave.

COVID-19, an extremely contagious disease, was first reported in the Wuhan, Hubei
Province, China, and affected a vast percentage of the world’s population. After thirteen
months, WHO reported that 95,623,389 people have been infected, and 2,042,644 deaths
occurred due to the pandemic. The inversely proportional fact of the vast number of infec-
tious cases associated with the limited interval of time interprets the cumulative infectious
cases as exponential due to the curve’s rapid increment. Fatality rates statistically prove
that mortality occurs mainly in older adults and patients who suffer from chronic diseases
with a weakened immune system. Thus, the lack of vaccination has led governments to
implement national lockdown rules in order to restrict the spread as much as possible and
to respond to healthcare needs. Communities are also taking technological innovation
initiatives to deter the pandemic’s waves. Edge computing could contribute several novel
ideas to thwart the spread. The development of machine learning, in conjunction with
Cloud Computing, is of paramount importance. For instance, the projected alert for the
future increase in new infectious cases in the community is a real weapon against the
invisible enemy. We can tailor quarantine policies and restrictions accordingly.

The interpretation of cumulative infectious case data through fundamental math-
ematics includes linear, exponential and polynomial regression models. By generating
R-squared by Microsoft Excel, we conclude that sixth-degree polynomial goodness of fit
assesses numeric measures accurately as the discrepancy between observed values and
the values expected under the model is limited. We calculated the coefficients through the
least squares method in order to reduce the variance between the values generated from
the sixth-degree polynomial that interprets data and the initial dataset. Therefore, we can
forecast the outbreak’s progress by expanding the curve. In addition to that, we can derive
the inflexion points by using the second differentiation of the function. They can predict
the cavity of the curve and, thus, forecast the increment or decrement of the cases.

Using data driven from a cloud repository called “Our World in Data” [5], our objective
is to develop a novel forecasting model based on fundamental mathematics that can
interpret daily reports in real-time. In conjunction with cloud computing, machine learning
deployment enables data procurement from a real-time data repository to predict the virus’s
course. Accurate predictions of infected cases from the virus will allow governments to
adjust their policies because the system will inform them about the maximum number
of patients, the number of total infected citizens and the expected period during which
the pandemic will last. The mathematical framework will be informed daily, and the
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polynomial function will be recomputed. The goal is to have an up-to-date curve for
accurate forecasts.

One of the most effective cryptographic methods that enable secure data exchange is
fragmentation [6,7]. During the COVID-19 period, reliability in data acquisition infrastruc-
ture was a prerequisite. Therefore, we thoroughly elaborated the fragmentation method by
utilizing potential datasets from COVID-19 cases.

Furthermore, the security and reliability of data-sharing infrastructure need a com-
munity of trust. Therefore, this paper also introduces an encryption frame based on data
fragmentation.

We statistically analysed Italy’s monthly mortality rate to forecast the fatality rate that
corresponds to cumulative infectious cases in cumulative cases. Moreover, we studied the
contradiction between the cumulative infectious cases’ forecast and the PCR testing rate
from the pandemic’s second wave. More specifically, if we interpret cumulative infectious
cases and the daily percentage of newly infected patients from the total daily number of
examinations, we end up with a different prediction.

2. Literature Review

In order to determine how the Dark Web has been influenced by recent global events,
such as the pandemic situation Razaque et al. studied with the usage of a crawler, which
scans the network and collects data for further analysis with machine learning [8]. The
pandemic, along with its conservatism measures, has become the new norm for human
life. Yaxi et al., based on data acquisition regarding mobile phone positioning of thirty-one
million users in Beijing, China, tracked vicissitudes in two rudimentary human daily
activities: dwelling and working. They concluded that working concentrations decreased
approximately 60% urban wide during the pandemic outbreak while dwelling decreased
about 40% [9]. Andreou and Mavromoustakis et al. proposed a cloud-based framework for
accurately identifying truly positive infectious cases. Moreover, they introduced a novel
solution aiming to prevent and control the outbreak based on smartphones and initiatives
within a Naive Bayesian Network (NBN). In addition, they sought to provide local health
authorities with a risk assessment of geolocation risk and early findings to trigger them
to increase test rates in high-risk areas [1]. An approach around economic management
orientation to improve the accuracy of the forecast for the pandemic was proposed by
Xuan et al. based on a self-correcting intelligent pandemic prediction model [10]. For the
same purpose, Rongbo and Qianao et al. have introduced a real-time warning model that
studies the factors of public opinion on the internet and the dynamic characteristics of
epidemic incidents. Therefore, they constructed a vector machine and a logistic regression
model in order to enhance the prediction based on COVID-19 data [11]. Following the
same motive, Srikanta et al. have analyzed COVID-19 mortality and infectious diseases in
Europe using spatial regression models. More specifically, they select thirty-one countries
for modelling and consequent analysis [12]. Elbasi et al., aiming to discover vulnerable
groups and to reduce the impact of the disease on particular groups, have deployed
machine learning techniques.

Naglaa and Ehab et al. stated that “architecture and urbanism after the COVID19
epidemic will never be the same” and they might be correct [13]. Their scope was to research
the current pandemic situation in order to enhance the response to future similar outbreaks.
Chanjuan and Zhiqiang et al., aiming to prevent the spread of corona-virus, elaborated on
research fields with respect to spatial distance and indoor ventilation efficiency [14]. Based
on the same research area, Antony, Velraj and Fariborz et al. studied the spread of COVID-
19 under several different climates and environmental conditions: indoor and outdoor [15].
To overcome several lockdown policies’ adverse economic impact due to continually
pandemic waves, this paper [16] proposed a real-time data-driven dynamic clustering
framework. Finally, Xing-Yi et al. examined the risk of Coronavirus spreading to health
and care ecosystems in order to enhance sustainable work in the hospital environment [17].
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Cities across the EU need to develop supportive environments that provide access
to a range of facilities and services to achieve a higher quality of life for their senior
citizens in order to improve the future after the Coronavirus pandemic and to confront
the fear of a potential upcoming pandemic resurgence. A prerequisite is to identify the
areas where cutting-edge technology could be integrated and be beneficial to ageing
societies. The three main fields we need to focus on in our research include home services,
community services and healthcare services. Hisham et al. presented challenges in the
area of knowledge for the pandemic. They concluded with re-entering the norms and
standards of social distancing. Moreover, they endorsed the continuation of research
after the pandemic recedes, undertaking multidisciplinary methods between fields of
knowledge [18]. Chaudhury et al. explored the difference among multigenerational
neighbourhoods in the metropolitan regions, concluding that older people in the higher
density neighbourhoods are exposed to more traffic hazards than in the lower density
neighbourhoods [19]. Azzam and Ibrahim et al. investigated the impact of COVID-19
and the global pandemic on energy sector dynamics [20]. Shiau et al. surveyed older
adults to identify KPIs’ importance and their degree of satisfaction relating to age-friendly
transportation [21]. Metz et al. stated that it would be attractive to develop a helpful
mobility framework to measure a group of benefits associated with older adults’ travel
and transport [22]. The age-friendly metaphor is multifactorial. For instance, Broome et al.
identified that public transport can limit older people’s participation in society. Therefore,
focusing on public buses explained the link between bus usability and older people’s health
and frames existing evidence on bus usability issues [23]. COVID-19 research studies are
relatively new for apparent reasons. Thus, we also reviewed literature from previous
epidemic periods. Liang Fang and Zhi Dong Cao et al. [24] have constructed a real-time
web system by using ArcGIS and Mashup’s technology to collect and display new hotspots
according to geographical location. Various models for predicting stability and MERS-CoV
infection recovery have been developed by Isra Al-Turaiki et al. [25] based on Naive Bayes
and J48 decision tree classification algorithms. Zhaoyang Zhang et al. [26] elaborated
the epidemiological clusters by using social networking sites, collecting vital signs and
social interactions. Based on this approach, we can identify and isolate the optimal bound
cluster to reduce dispersion. To forecast and stem Ebola virus disease, Sareen S. Sood,
S.K.; and Gupta, S.K. et al. [27] developed a cloud-based system by deploying Temporal
Network Analysis (TNA) and wearable body sensor technology. Sanjay Sareen et al. [28]
developed a cloud-based system for detecting and monitoring Zika virus through IoT
technology’s deployment.

A review of the current technological solutions state shows various digital tools to
remediate the COVID-19 outbreak. Reshaped implementations of machine learning and
cloud computing can contribute to the fight against the virus. Alibaba Cloud 2020 deployed
machine learning and deep learning to establish a modified SEIR model to predict the
spreading trend of COVID-19 and evaluate the risk of infection increases in a specific
region [29]. This innovative solution can provide a COVID-19 pandemic prediction report
with 98% accuracy by submitting primary data such as flight information, number of new
cases, number of confirmed cases, number of close contacts, contact date and number of
people under quarantine. An innovative biomedical tool that could also contribute to the
battle with the invisible enemy is the genomic sequence of machine modelling to forecast
possible infectious reactions to various drugs or to control the spread of COVID-19 [30].
An artificial intelligence frame was also developed to assess computed tomography images
identifying COVID-19 pneumonia features relative to screen infected patients [31].

3. Regression Models and Performance Comparison

By implementing regression analysis, which is explained in the chapter [32] and further
analyzed in the article [33], we construct linear, exponential and polynomial interpretive
models, as shown in Figure 1, for the cumulative infectious cases of daily reports since
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31 January 2020. In addition, the least-squares method enables the calculation of the
coefficients for Equations (1)–(3):

y = 52, 205x− 2× 106 (1)

y = 9784.261e0.055x (2)

y = 0.00003x6 − 0.011161x5 + 1.478908x4 − 78.482575x3 + 1720.083148x2

−12, 628.242181x + 51, 000
(3)

where x denotes the days from the initiation of the pandemic, and y denotes the cumulative
infectious cases.

Italy’s cumulative infectious cases appear on the vertical axis according to the daily
report (x-axis) from 31 January. Linear (1), exponential (2) and sixth-degree polynomial (3)
regression modes in Figure 1, respectively, are presented by the dashed line. All models
interpret 353 days of Italy’s data since 31 January 2020 and are prospectively forecasting
30 days, as we present through the extension of the dashed lines.

The R-square or coefficient of determination is a statistical measure that shows the
dependent variable’s variance concerning the independent variable. R2 ∈ [0, 1] meaning
that the horizontal axis values can explain 0% to 100% of the vertical axis variation.

R2 = 1−
[

∑n
i=1(yi − ŷi)

2

(yi − y)2

]
(4)

While the numerator of (3) represents the unexplained variation, the denominator
represents the total variation. Table 1 present the values of the R-squared evaluation of the
three regression models, respectively.

Table 1. R-squared values.

Regression Models R-Square

Linear R2 = 0.8609
Exponential R2 = 0.922

6th-degree Polynomial R2 = 0.999336

Regression model comparisons by the coefficient of determination
(

R2
)

drew the
conclusion that sixth-degree polynomial regression best fits the data because the value is
closer to one, as shown in Table 1.

Figure 1. Linear, Exponential and Polynomial regression model.

4. Concavity and Points of Inflection

Inflexion points are defined as the change of concavity on the curve’s trajectory. We
refer to the intervals where the curve concaves upwards or downwards based on the
second derivative sign in terms of concavity. The curve’s symmetrical course around
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these points motivated us to study Italy’s sigmoid function from cumulative infectious
cases. Before the inflexion point curve’s, the orbit is concaved upwards as F′′ (x) > 0 and
concaved downwards as F′′ (x) < 0. Therefore, initially, we interpret the data points by the
sixth-grade polynomial function (4) that presents the best fitting, and we can calculate the
second derivative. Then, the inflexion point coordinates are determined by evaluating the
curve’s coordinates, where the second derivative presents its root. That root will be the
x-coordinate, and the value that derives from the substitution of the root on the original
function will be the y-coordinate of the inflexion point.

As presented in Figure 2 we calculated the trendline with the coefficient of deter-
mination R2 = 0.9929, which means a high accuracy of interpretation. After that, we
determine the function of the trendline and implement the second derivative, as shown
below Equations (5) and (6).

F(x) = −7× 10−8x6 + 6× 10−5x5 − 0.0191x4 + 2.4617x3 − 125.43x2

+4001.3x− 35, 696
(5)

F′′ (x) = −2.1× 10−6x4 + 1.2× 10−3x3 − 0.2292x2 + 14.7702x− 250.86 (6)

F′′ (x) = 0⇐⇒ x1 ≈ 26.3226, x2 ≈ 77.5071,

F(x1) = 19, 183.5771, F(x2) = 130, 493.3966

The turning points estimate counts as an additional result that acts as a trademark in
the pandemic. Concavity changes which are determined in Table 2 is essential because it
presents the curve’s furtherance until the next turning point and how the infectious cases
will progress.

Table 2. Concavity.

x x1 x2

F′′ (x) + - +

F(x)
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Figure 2. Italy’s cumulative infectious cases.

5. Proposed Cloud Framework

In order to forecast the evolution of the COVID-19 pandemic, we propose modifying
a machine learning technique deployed in a cloud-based framework. The regression
models we analyzed in Section III can predict the increase and decrease in cumulative
infectious cases and any other parameter that could help governments align their policy
strategies against the invisible enemy. Furthermore, since late Januarys, several online
open data repositories have collected various data regarding the pandemic driven from
laboratories worldwide. Therefore, to forecast the progress of the unprecedented situation
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with accuracy, we propose integrating repositories by using cloud computing to interpret
data trends using machine learning methods.

Figure 3 illustrates the proposed model pattern, where raw data from laboratories and
hospitals worldwide are routed through the network to data repositories. By modifying the
Levenberg–Marquardt algorithm, a machine learning technique, we optimize the accuracy
in the trend line that interprets these data sets [34]. The Levenberg [1944] and Marquardt
[1963] algorithm modified the Gauss–Newton method, which provided the solution to the
least square determination for nonlinear determination equation coefficients. According
to section III, the polynomial that best fits the dataset has coefficients determined by the
equation’s minimum values (7), where x denotes the days, m denotes the amount of days
from the initial outbreak and F(x) is the aforementioned function.

F(x) =
1
2

m

∑
i=1

[fi(x)]
2 =

1
2
‖f(x)‖ (7)

Extreme values and data noise prompted us to develop an iterative weighting strategy
in order to flatten the graph of the curve and to reduce the error for greater accuracy [35]. In
addition, we were reconstructing the regression model to achieve better curve adjustment
and reduce outlier data distances. As shown in Equations (8)–(10), we developed three
weights by composing the SoftMax function [23] and the function, which is the difference
between the lengths of all the values along the y-axis from the curves of the Sigmoid func-
tion, Arc-tangent (tan h−1) and Hyperbolic-tangent (tan h) function in order to optimize
the curve fitting process.

.
wn+1

i =
e

[1−
dn

i −(1+e
−dn

i )
−1

max
i

dn
i −(1+e

−dn
i )
−1 ]

∑i e

[1−
dn

i −(1+e
−dn

i )
−1

max
i

dn
i −(1+e

−dn
i )
−1 ]

(8)

..
wn+1

i =
e
[1−

dn
i −(

2
π )tanh−1dn

i
max

i
dn
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We divide the distances denoted by d between the coordinates and the trendline by
the maximum value and subtract from one. The SoftMax function standardized the results
corresponding to each point. We initially provided three weights denoted by w equal
to one for all data points to fit the Levenberg–Marquardt Algorithm 1 curve. Then, we
substitute the value calculated from (8)–(10) corresponding to every point for the next
iteration i ∈ {1, 2, . . . , n}. Finally, we implemented the Levenberg–Marquardt algorithm
with the new weights and evaluated the curve fitting of the three methods. The sum of all
weights’ deviation should be lower than a threshold value to converge the algorithm.

At MATLAB’s Curve Fitting Tool, we implemented a ninth-degree polynomial for
curve fitting corresponding to Italy’s cumulative infectious cases. As a result, we generated
the curve shown in Figure 4 interpreted by (11) where x is normalized by mean 181 and
std 104.4, and the coefficients’ (with 95% confidence bounds) goodness of fit results are
presented in Table 3.
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Algorithm 1. Modified Levenberg–Marquardt Algorithm

Requirements:
x: Input sequence of days from first reported case
y: Input number of cases corresponding to each day in x
t: Threshold parameter (the earliest time a failure may occur)

Process:
w0 ← 1 ∗ x
for iteration n from 0, step 1 do

f← Levenberg Marquardt (input : x, y, wn)
di ← |f(xi)− yi|, ∀i ∈ N

Apply one of the following:
wn+1

i ← (7)
wn+1

i ← (8)
wn+1

i ← (9)
if ∑i

∣∣∣wn
i −wn+1

i

∣∣∣ < t then

break
end for

end procedure

F(x) = 1.088 ∗ 105x9 + 8.952 ∗ 104x8 − 6.961 ∗ 105x7 − 5.891 ∗ 105x6

+1.312 ∗ 106x5 + 1.207 ∗ 106x4−3.719 ∗ 106x3 − 3.95 ∗ 105x2

+5.243 ∗ 104x + 2.691 ∗ 105
(11)

Table 3. Goodness of fit.

SSE R-Square Adjusted R-Square RMSE

3.836 × 1011 0.9979 0.9979 3.306 × 104

Figure 3. Proposed Model.

Figure 4. Italy’s curve fitting output from MATLAB curve fitting tool.
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6. Distribution Fitting

We present significant distribution models regarding daily new COVID-19 cases
from datasets of countries that show a decline in their curve’s furtherance, which was
preferred. Then, we identified the best performing distributions for each patient using
EasyFit Standard version 5.6.

Figures 5–9 present the distributions Johnsons SB, Gen. Extreme Value, Person 6 and
Degum as the best performance of goodness of fit for Italy, Czech Republic, France and
Denmark, respectively, and they were evaluated by Kolmogorov Smirnov and Anderson
Darling tests. Johnson SB distribution shows the best fitting performance compared to the
other distributions in two countries, Italy (Figure 5) and Spain (Figure 8) [36]. From the
iteratively weighted approach in section zero, the distributions fit the curve better than
without weight.

Figure 5. Italy.

Figure 6. Czech Republic.

Figure 7. France.



Electronics 2021, 10, 2910 10 of 18

Figure 8. Spain.

Figure 9. Denmark.

7. Personal and Health Information Protection

In order to secure the confidentiality of patients, we propose the implementation
of an additional encryption process [37]. We developed a mathematical model based on
data fragmentation to disintegrate the information into several cloud repositories [38]:
fragmentation in terms of features distribution. Thus, their values could only be visible
only by a critical enabler. We propose a necessary arithmetical analysis procedure for
the decryption process: Newtons’ divided difference interpolation for reconstructing the
datasets. The constraints are defined as the rule for distribution among attributes. Consider
A as a set of users’ features and c as a set of confidentiality constraints [39]. Hence, c will
be a subset of A, c ⊆ A, and each constraint cannot be a subset of another constraint [40].
We propose distributing and storing the subsets to database service providers (DSP) with
repositories by developing polynomials. The distribution of datasets to k fragments is
enable through (k− 1) coefficients. We denote the constant value as a0, which constitutes
the sensitive value of the National Identity Number, NIDN. Hence, we construct a (k− 1)
degree polynomial as shown in the Equation (12).

P(x) = a0 + a1x + a2x2 + · · ·+ ak−1xk−1 (12)

The database management system (DBMS) stores the secret information
x = (x1, x2, . . . , xn), where n = fragments, and can computes the values of
P(xi) = fake values of NIDN, i = 1, 2, . . . , k by substituting k of the n values from the vec-
tor x. By using Newton–Gregory’s divided difference interpolation and by the knowledge
of k order pairs (xi, P(xi)), i = 1, 2, . . . , k, we can determine (k− 1) coefficients of the
polynomial as well as the original value of National Identity Number NIDN corresponding
to the constant a0, as shown in Equation (13):

P(x) = P(xk−1) + ∆P(xk−1)
(x− xk−1) + ∆2

∆P(xk−1)
(x− xk−1)(x− xk)+

· · ·+ ∆n−k−1
∆n−k−2P(xk−1)

n
∏

i=k−1
(x− xi)

(13)
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where ∆P(xk−1)
, ∆2

∆P(xk−1)
, . . . , ∆n−k−1

∆n−k−2P(xk−1)
will be the first, second and (n− k− 1)th di-

vided differences, respectively.
Example:
A = {National Identity Number (NIDN), Name, Date of Birth (DoB), Mobile Number

(MN), Postal Code (PC), Probability of Infection (PoI)}
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The date of birth with the mobile number can infer the 
identity of the users and in combination with other features 
is considered sensitive 

The names in conjunction with any other attribute are 
considered sensitive information 

An example of fragmenting the attributes which are presented in Table 4 involved in
the constraints so that they are not visible together could be f1 = {Name},
f2 = {DoB, MN} and f3 = {PC, PoI}. Fragments will be stored in three separate database
service providers: database service providers 1, 2 and 3 DSP1, DSP2 and DSP3, respectively.
We will develop a second-degree polynomial to share the data among database service
providers DSPs, as shown in the Equation (14):

P(x) = a2x2 + a1x + a0 (14)

where a0 represents the NIDN, and the coefficients a1 = (1,2,5,6,4) and a2 = (7,3,2,1,9) are
randomly selected. Moreover, the secret values of xi, i = 1, 2, 3 are randomly selected
and correspond to each DSP, respectively; let x1 = 1, x2 = 2, x3 = 4. Table 5 presents
the computational results of substitution to each polynomial of the coefficients and the
secret values.

Table 4. Examples of registered data.

NIDN Name DoB MN PC PoI

880,618 Andrew 26/03/1984 96,536,499 4529 80%
526,548 Nicolas 12/05/1968 99,652,342 2324 95%
616,636 Jane 13/07/1975 96,521,548 2528 3%
844,131 David 25/04/1983 99,215,482 4528 0%
321,131 Mathew 01/09/1950 99,992,272 5232 75%

Table 5. Substitution results.

NIDN Polynomial x = 1 x = 2 x = 4

P(x) DSP1 DSP2 DSP3
880,618 1x2 + 7x + 880,618 880,626 880,636 880,662
526,548 2x2 + 3x + 526,548 526,553 526,562 526,592
616,636 5x2 + 2x + 616,636 616,643 616,660 616,724
844,131 6x2 + 1x + 844,131 844,138 844,157 844,231
321,131 4x2 + 9x + 321,131 321,144 321,165 321,231

The fragments will be distributed as shown within the following tables (Tables 6–8)
presenting an incorrect value of NIDN for each data from Table 4.
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Table 6. Data of DSP1.

NIDN Name

880,626 Andrew
526,553 Nicolas
616,643 Jane
844,138 David
321,144 Mathew

Table 7. Data of DSP2.

NIDN DoB MN

880,636 26/03/1984 96,536,499
526,562 12/05/1968 99,652,342
616,660 13/07/1975 96,521,548
844,157 25/04/1983 99,215,482
321,165 01/09/1950 99,992,272

Table 8. Data of DSP3.

NIDN PC PoI

880,662 4529 80%
526,592 2324 95%
616,724 2528 3%
844,231 4528 0%
321,231 5232 75%

Recreating the dataset is a prerequisite for knowing the three ordered pairs
{(xi, P(xi)), i = 1, 2, 3}, which corresponds to the three database service providers DSPs.
The decryption will be achieved by employing Newton–Gregory’s divided difference
interpolation as shown in Table 9, from which the polynomial after reconstruction will
present the original value of NIDN as the constant part of it a0 [41]. Finaly, we retrieve the
reconstructed Table 10.

P(x) = P(x2) + ∆P(x2)(x− x2) + ∆2
∆P(x2)

(x− x2)(x− x3)

P(x) = 880, 636 + 13(x− 2) + 1(x− 2)(x− 4)

P(x) = 880, 636 + 13x− 26 + x2 − 4x− 2x + 8

P(x) = x2 + 7x + 880, 618

Table 9. Newton–Gregory’s divided difference interpolation.

i xi P(xi) ∆P(xi) ∆2
∆P(xi)

1 1 880,626
∆P(x1) =

P(x2)−P(x1)
x2−x1

= 10
2 2 880,636 ∆P(x2)

−∆P(x1)

x3−x1
= 1

∆P(x2) =
P(x3)−P(x2)

x3−x2
= 13

3 4 880,662

Table 10. Reconstructed table.

NIDN Name DoB MN PC PoI

880,618 Andrew 26/03/1984 96,536,499 4529 80%
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8. Mortality Rate

This section statistically analyzes the mortality rate, aiming to predict the number
of deaths due to COVID-19. If we take the quantity of affirmed cases as an independent
variable and the number of deaths as a dependent variable, we can find the correlation
coefficient between them. We refer to implementing a strategy to evaluate a surmised linear
relationship between the two continuous variables by finding the correlation. Measurement
can be within the interval [−1, 1] that assess an estimated direct connection between two
persistent variables [42]. To this point, we utilize Student’s t-test to affirm the average
number of death rates with the previous quantity of cases [43]. The T-test is regularly used
as a measurable strategy to examine whether the average information from an independent
sample following a normal distribution is consistent or deviates from the mean estimate of
a null hypothesis or whether the distinction between methods for two independent models
following a normal distribution is statistically noteworthy [44].

r(x, y) =
n ∑ xy−∑ x ∑ y√

n ∑ x2 − (∑ x)2
√

n ∑ y2 − (∑ y)2
(15)

Karl Pearson’s correlation coefficient can be calculated using (15) by substituting the
results derived from Table 11. We obtained the data from Italy’s information as n represents
the months, x represents the cumulative infectious cases and y represents the number of
deaths due to COVID-19. The calculation shows that r(x,y) = 0.869185; thus, we have a high
degree of positive correlation. Therefore, the mortality rate denoted by m% will increase
by the increment of COVID-19 cumulative cases [45].

t =
m− µ

S/
√

n
(16)

S =

√
∑(m−m)2

n− 1
(17)

In order to identify whether the data are substantial or not, we implement hypothesis
testing where the null hypothesis was what Italy’s average mortality rate could be according
to Table 11, µ = 14.48%. From (16), (17) and Table 11, we derived |t| = 3.45, which shows
a 0.5% level of significance and 11 degrees of freedom, confirming our null hypothesis
that Italy’s maximum average fatality rate could be 14.48%, where t denotes the T-test’s
variable, m denotes mortality, m denotes the average of the mortality, n is the total amount
of the sample, S indicates the Standard deviation, and µ denotes the statistical mean.

Table 11. Tabulated data.

f x y m% xy x2 y2 (m−m)2

1 2 0 0 0 4 0 81.29
2 1128 29 2.57 32712 1,272,384 841 41.54
3 105,792 12,428 11.75 1,314,782,976 1.12× 1010 1.54× 108 7.46
4 205,463 27,967 13.61 5,746,183,721 4.22× 1010 7.28× 108 21.12
5 232,997 33,415 14.34 7,785,594,755 5.43× 1010 1.12× 109 28.36
6 240,136 34,767 14.48 8,348,808,312 5.77× 1010 1.21× 109 29.83
7 247,537 35,141 14.20 8,698,697,717 6.13× 1010 1.23× 109 26.83
8 269,214 35,483 13.18 9,552,520,362 7.25× 1010 1.26× 109 17.34
9 314,861 35,894 11.40 1.1302× 1010 9.91× 1010 1.29× 109 5.68

10 679,430 38,618 5.68 2.6238× 1010 4.62× 1011 1.49× 109 11.10
11 1,601,554 55,576 3.47 8.9008× 1010 2.56× 1012 3.09× 109 30.76
12 2,047,696 71,925 3.51 1.4728× 1011 4.19× 1012 5.17× 109 30.29

n ∑ x ∑ y ∑ m ∑ xy ∑ x2 ∑ y2 ∑(m−m)2

12 5,945,808 381,243 108.19 3.1527× 1011 7.62× 1012 1.68× 1010 331.6104
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9. Cumulative Cases vs. Daily Case Rate

The relaxation of COVID-19 lockdown measures triggered the second wave of the
pandemic. As a result, most countries have reassessed, redefined, and revived COVID-
19 response activities in readiness to deal with the second and potentially third wave
of the outbreak. Unfortunately, in the second wave, an overblown panic occurred as
cumulative cases present a contradiction concerning new cases’ positivity per number of
tests conducted daily. Based on that, we studied Italy’s number of cumulative cases and
the percentage of the PCR testing rate daily since 25 February.

As shown in Figure 10, since 16 October (day 235), we observed considerable accel-
eration as the curve displays rapid increasing progression. As observed, the red dashed
curve represents (18), which is the trendline that is derived from the implementation of the
curve adjustment to predict the extension for 20 days. Evaluation through the coefficient of
determination presents that the regression predictions approximate the real data points
with a fitting accuracy of R2 = 0.9885.

y = −8× 10−8x6 + 8× 10−5x5− 0.0249x4 + 3.6742x3− 269.11x2 + 11, 479x− 82, 549 (18)

Figure 10. Number of cumulative cases.

We evaluated the percentage of infected cases over the number of daily conducted
tests during the same period and presented the generated results graphically in Figure 11.
As shown, the two schemes conclude to dissimilarities due to the curve’s progress and
the inferences. The curve in Figure 10 can be observed, and it changes the concavity from
upwards to downwards and presents increasing progress since 06 October, day 225. More
specifically, the contradiction occurs due to the rapidly growing growth of the curve in
Figure 11 and the slow acceleration of growth in Figure 10. The second wave’s maximum
point appears to be lower than in the first wave of the pandemic. The forecast for 20 days
shows that the trendline’s function (18) with R2 = 0.866 is decreasing within the interval
[273,289] in contrast to the previous Figure 10 where the rapid increment in the interval
[235, ∞) is presented.
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Figure 11. Daily infection rate.

10. Discussion and Conclusions

This paper proposes a modified machine learning technique to accurately interpret the
data provided by fragmentation techniques by countries worldwide regarding COVID-19.
The objective is to inform governments in an early stage of a pandemic situation to regulate
their policies with a better strategy based on an accurate forecast model. The correspond-
ing groups among countries utilize models to provide predictions regarding the virus’s
progress that could result in a contradiction. Thus, our proposed model’s goal was to
implement a technique that fits the regression models as best as possible to the curve.
Additionally, the updated data will be driven daily to develop a new polynomial function.
The goals are to estimate the upcoming turning points daily. We presented the pandemic
progress hallmarks in Section 4 and forecasted the new curve’s furtherance with the new
polynomial. By comparing cumulative infectious cases with the daily rate of PCR testing,
we concluded that it is efficient to predict the progression of a pandemic’s second wave by
using the daily testing rate as it effectively interprets the outbreak. According to Section 8,
the mortality rate in Italy is 14.48%, as evaluated by Student’s t-test.

As presented in Figure 12, the initial stay-at-home orders (enforced and referred
to as ‘lockdown’) for Italy’s general population began on 10 March and finished on 4
May. The second lockdown, largo, started on 26 October and was partially completed, as
most restrictions were still being implemented on 4 November. Therefore, as the second
pandemic wave occurred, there was an increasing trend in new cases. For this reason, if we
had early lockdown strategy and if the quarantine measures had been adopted earlier, we
would have avoided the unpleasant increment situation of the second wave.

The limitations from our research work include the noise that occurs in datasets due
to weekends and public holidays. Due to these occurrences, the real-time data present
outliers, resulting in unnecessary concavity points relative to the curves and incorrect
gradients for the linear case. Henceforth, we will focus our future orientation to modify
the system to exclude the corresponding data that generates this outlier by understanding
each country’s weekends and public holidays.
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