
electronics

Review

Gate-Level Static Approximate Adders: A Comparative Analysis

Padmanabhan Balasubramanian * , Raunaq Nayar and Douglas L. Maskell

����������
�������

Citation: Balasubramanian, P.;

Nayar, R.; Maskell, D.L. Gate-Level

Static Approximate Adders: A

Comparative Analysis. Electronics

2021, 10, 2917. https://doi.org/

10.3390/electronics10232917

Academic Editors: Alessandro Savino

and Akash Kumar

Received: 1 October 2021

Accepted: 20 November 2021

Published: 25 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798, Singapore; nayar.raunaq@ntu.edu.sg (R.N.); asdouglas@ntu.edu.sg (D.L.M.)
* Correspondence: balasubramanian@ntu.edu.sg; Tel.: +65-6790-4745

Abstract: Approximate or inaccurate addition is found to be viable for practical applications which
have an inherent error tolerance. Approximate addition is realized using an approximate adder,
and many approximate adder designs have been put forward in the literature targeting an acceptable
trade-off between quality of results and savings in design metrics compared to the accurate adder.
Approximate adders can be classified into three categories as: (a) suitable for FPGA implementation,
(b) suitable for ASIC type implementation, and (c) suitable for FPGA and ASIC type implementations.
Among these, approximate adders, which are suitable for FPGA and ASIC type implementations
are particularly interesting given their versatility and they are typically designed at the gate level.
Depending on the way approximation is built into an approximate adder, approximate adders can be
classified into two kinds as static approximate adders and dynamic approximate adders. This paper
compares and analyzes static approximate adders which are suitable for both FPGA and ASIC type
implementations. We consider many static approximate adders and evaluate their performance
for a digital image processing application using standard figures of merit such as peak signal to
noise ratio and structural similarity index metric. We provide the error metrics of approximate
adders, and the design metrics of accurate and approximate adders corresponding to FPGA and
ASIC type implementations. For the FPGA implementation, we considered a Xilinx Artix-7 FPGA,
and for an ASIC type implementation, we considered a 32/28 nm CMOS standard digital cell library.
While the inferences from this work could serve as a useful reference to determine an optimum
static approximate adder for a practical application, in particular, we found approximate adders
HOAANED, HERLOA and M-HERLOA to be preferable.

Keywords: approximate computing; approximate adder; digital circuits; logic design; FPGA; ASIC

1. Introduction

Computation-intensive technologies such as artificial intelligence, machine learning,
big data and analytics, data mining, cloud computing, Internet-of-Things, etc., often deal
with a data deluge, which makes processing using accurate computing techniques expen-
sive in terms of time and resources. In such cases, it would be more feasible and economical
if computing is performed such that the results are sufficiently correct, which is called ap-
proximate, inaccurate or imprecise computing. For example, in image processing, a minor
deterioration in the quality of an image may not be noticeable by a human eye. Another
example is when a keyword is input into the Google Search engine, many approximate
results are sorted according to how well they match the input keyword and displayed
for a user’s reference. Google employs approximate computing in their tensor processing
units [1], which are application-specific integrated circuits (ASICs) developed for machine
learning, used in Google Search, Street View and Photos, among others [2], which achieve
a 10× improvement in efficiency [3] than conventional graphics processing unit imple-
mentations [4]. An approximate implementation of k-means clustering [5], which is a
popular method of vector quantization used for cluster analysis in data mining, achieves a
50× energy savings by allowing a 5% loss in classification accuracy when compared with
a fully accurate classification [6]. An approximate neural network-based solution to the

Electronics 2021, 10, 2917. https://doi.org/10.3390/electronics10232917 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9412-4773
https://orcid.org/0000-0003-3109-8197
https://doi.org/10.3390/electronics10232917
https://doi.org/10.3390/electronics10232917
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10232917
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10232917?type=check_update&version=1

Electronics 2021, 10, 2917 2 of 15

problem of branch divergence in single instruction multiple data architectures was found
to yield, on average, a 13.6× gain in performance and a 14.8× savings in energy compared
to the accurate solution, while providing an accuracy of 96% [7]. Thus, approximate com-
puting is a potential alternative to accurate computing for practical applications, which are
inherently error tolerant and helps to reduce standard design metrics such as delay, area,
power and energy [8,9].

Approximate computing encompasses hardware, software and memory storage [10–12].
With respect to approximate hardware, research has focused on arithmetic circuits [13] and
logic circuits [14]. Within the realm of approximate arithmetic circuits, adders and multipli-
ers have received significant attention, and this is because addition and multiplication are
often performed in microprocessors [15] and digital signal processors [16].

This paper discusses approximate adders, which are derived by introducing inaccu-
racies in an accurate adder. Basically, there are two kinds of approximate adders, namely
static approximate adders (SAAs) and dynamic approximate adders (DAAs). Approx-
imation is fixed in an SAA that may produce an accurate sum or an approximate sum
corresponding to a specified accuracy in a single clock cycle and guarantees assured sav-
ings in design metrics compared to the accurate adder. On the other hand, approximation
is variable in a DAA, which may produce an approximate or accurate sum on demand
involving single or multiple clock cycles. Generally, DAAs comprise an additional error
detection and correction logic (EDCL) to adjust their sum corresponding to a specified
accuracy. While EDCL is necessary, nevertheless it represents a design overhead in DAAs.
In [17], for a digital video encoding application, it was observed that the reduction in power
achieved with a dynamic approximate hardware is similar to that achieved using a static
approximate hardware and the reason for this is attributed to the extra EDCL present in
the former that is absent in the latter.

In this work, we focus on SAAs. SAAs can be classified into three categories based on
their implementation platform as: (a) suitable for FPGA implementation [18,19]; (b) suitable
for ASIC type implementation [20–22]; and (c) suitable for both FPGA and ASIC type
implementations [23–36]. With respect to ASIC type implementations, full-custom and
semi-custom design approaches may be adopted. The former involves a manual transistor-
level design, while the latter involves an automated gate-level design where a gate-level
approximate adder can be described in a hardware description language (HDL) that can
be synthesized using a logic synthesis tool. Additionally, a gate-level design is suitable
for an FPGA implementation. Hence, gate-level SAAs, suitable for FPGA and ASIC type
implementations, are particularly interesting since they are generic and versatile and
they form the focus of this work. The objective of this work is to perform a comparative
evaluation of different SAAs from the perspectives of error metrics and design metrics,
and provide some inferences about which SAA(s) are better optimized. In the rest of the
paper, Section 2 reviews several gate-level SAAs that are suitable for FPGA and ASIC type
implementations. Section 3 discusses digital image processing involving the accurate adder
and various approximate adders and presents the error metrics of approximate adders.
Section 4 gives FPGA- and ASIC-based design metrics of accurate and approximate adders
corresponding to the application considered. Section 5 gives the concluding remarks.

2. Gate-Level Static Approximate Adders

An SAA is usually partitioned into two parts [37] viz. a precise part where addition
is performed accurately and an imprecise part where addition is performed inaccurately.
Less significant adder input bits are allotted to the imprecise part and more significant
adder input bits are allotted to the precise part. Hence, the precise part is more significant
than the imprecise part. A block schematic of the accurate adder and generic architectures
of many SAAs are shown in Figures 1 and 2, where the precise and imprecise parts of the
approximate adders are highlighted in blue and red, respectively.

Electronics 2021, 10, 2917 3 of 15

Electronics 2021, 10, x FOR PEER REVIEW 3 of 16

of many SAAs are shown in Figures 1 and 2, where the precise and imprecise parts of the

approximate adders are highlighted in blue and red, respectively.

Figure 1. Block schematics of accurate adder and some approximate adders: (a) Accurate adder; (b) LOA; (c) LOAWA; (d)

APPROX5; (e) HEAA; (f) M‐HEAA; (g) OLOCA; (h) HOERAA.

In Figures 1 and 2, X and Y denote the adder inputs and SUM denotes the adder

output. N is the adder size in bits and P is the number of input bits allotted to the imprecise

part. Hence, (N–P) input bits are allotted to the precise part. If (N–P) is significantly

greater than P, the speed of an approximate adder would be dictated by the speed of its

precise part. Given this, for an FPGA implementation, the accurate adder and the precise

part of the approximate adders can be described using the addition operator; thereby, the

fast carry logic of an FPGA slice can be utilized to realize the accurate and approximate

adders in a high‐speed fashion. For a semi‐custom ASIC type implementation using

standard cells, the accurate adder and the precise part of the approximate adders can be

described using a high‐speed adder architecture such as a carry look‐ahead adder (CLA),

Figure 1. Block schematics of accurate adder and some approximate adders: (a) Accurate adder; (b) LOA; (c) LOAWA;
(d) APPROX5; (e) HEAA; (f) M-HEAA; (g) OLOCA; (h) HOERAA.

In Figures 1 and 2, X and Y denote the adder inputs and SUM denotes the adder
output. N is the adder size in bits and P is the number of input bits allotted to the imprecise
part. Hence, (N–P) input bits are allotted to the precise part. If (N–P) is significantly greater
than P, the speed of an approximate adder would be dictated by the speed of its precise
part. Given this, for an FPGA implementation, the accurate adder and the precise part
of the approximate adders can be described using the addition operator; thereby, the fast
carry logic of an FPGA slice can be utilized to realize the accurate and approximate adders
in a high-speed fashion. For a semi-custom ASIC type implementation using standard cells,
the accurate adder and the precise part of the approximate adders can be described using a
high-speed adder architecture such as a carry look-ahead adder (CLA), and they can be
synthesized using a logic synthesis tool with speed set as the optimization goal. The precise
parts of the approximate adders shown in Figures 1b–h and 2a–f are almost the same,
except for the difference pertaining to whether the precise part may incorporate a carry

Electronics 2021, 10, 2917 4 of 15

input or not. Hence, the differences between various approximate adders are primarily
attributed to the differences in logic between their imprecise parts.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 16

and they can be synthesized using a logic synthesis tool with speed set as the optimization

goal. The precise parts of the approximate adders shown in Figures 1b–h and 2a–f are

almost the same, except for the difference pertaining to whether the precise part may in‐

corporate a carry input or not. Hence, the differences between various approximate ad‐

ders are primarily attributed to the differences in logic between their imprecise parts.

Figure 2. Block schematics of approximate adders: (a) SETA; (b) LZTA; (c) LDCA; (d) HOAANED; (e) HERLOA; (f) M‐

HERLOA.

Since the precise parts of the approximate adders can be realized in the same manner,

the following discussion would deal with the imprecise parts of approximate adders

shown in Figures 1b–h and 2a–f, which correspond to LOA, LOAWA, APPROX5, HEAA,

M‐HEAA, OLOCA, HOERAA, SETA, LZTA, LDCA, HOAANED, HERLOA and M‐HER‐

LOA. The approximate adders presented in [24,26] were called LOAWA and HEAA in

[30], and we retain the same acronyms here for referencing. Further, the approximate ad‐

der constructed using an approximate full adder (AMA5) in [25] was called APPROX5 in

[30] and we use the same acronym here for referencing. In the following discussions, OR

refers to logical OR, AND (NAND) refers to logical AND (NAND), and XOR (XNOR)

refers to logical XOR (XNOR) performed between Boolean literals.

Figure 1b shows LOA [23]. In the imprecise part of LOA, XP–1 up to X0 are bitwise OR‐

ed with YP–1 up to Y0, respectively, to produce the corresponding sum bits SUMP–1 up to

SUM0. XP–1 and YP–1 are AND‐ed to provide the carry input to the precise part.

Figure 1c shows LOAWA [24]. The logic corresponding to sum bits SUMP–1 up to

SUM0 are the same for LOAWA as LOA. However, unlike LOA, there is no carry input

provided from the imprecise part to the precise part in LOAWA.

Figure 2. Block schematics of approximate adders: (a) SETA; (b) LZTA; (c) LDCA; (d) HOAANED; (e) HERLOA;
(f) M-HERLOA.

Since the precise parts of the approximate adders can be realized in the same manner,
the following discussion would deal with the imprecise parts of approximate adders shown
in Figures 1b–h and 2a–f, which correspond to LOA, LOAWA, APPROX5, HEAA, M-HEAA,
OLOCA, HOERAA, SETA, LZTA, LDCA, HOAANED, HERLOA and M-HERLOA. The ap-
proximate adders presented in [24,26] were called LOAWA and HEAA in [30], and we
retain the same acronyms here for referencing. Further, the approximate adder constructed
using an approximate full adder (AMA5) in [25] was called APPROX5 in [30] and we use
the same acronym here for referencing. In the following discussions, OR refers to logical
OR, AND (NAND) refers to logical AND (NAND), and XOR (XNOR) refers to logical XOR
(XNOR) performed between Boolean literals.

Figure 1b shows LOA [23]. In the imprecise part of LOA, XP–1 up to X0 are bitwise
OR-ed with YP–1 up to Y0, respectively, to produce the corresponding sum bits SUMP–1 up
to SUM0. XP–1 and YP–1 are AND-ed to provide the carry input to the precise part.

Figure 1c shows LOAWA [24]. The logic corresponding to sum bits SUMP–1 up to
SUM0 are the same for LOAWA as LOA. However, unlike LOA, there is no carry input
provided from the imprecise part to the precise part in LOAWA.

In the case of APPROX5 [25], shown in Figure 1d, YP–1 up to Y0 are forwarded as the
corresponding sum bits SUMP–1 up to SUM0 using buffers, and XP–2 up to X0 are discarded.
XP–1 is given as the carry input to the precise part.

In the case of HEAA [26], shown in Figure 1e, XP–2 up to X0 are bitwise OR-ed with
YP–2 up to Y0, respectively, to produce the corresponding sum bits SUMP–2 up to SUM0.

Electronics 2021, 10, 2917 5 of 15

XP–1 and YP–1 are AND-ed and given as the carry input to the precise part, which also
serves as the select input to a 2:1 multiplexer (MUX21). If the select input of MUX21 is
0, the OR of XP–1 and YP–1 is produced as SUMP–1 and if the select input is 1, SUMP–1 is
assigned a 0.

The modified version of HEAA is shown in Figure 1f [27], which is referred to as
M-HEAA in this paper. The modification pertains to the assignment of a constant 1 to (P–2)
least significant sum bits of the imprecise part, i.e., SUMP–3 up to SUM0. The rest of the
logic of M-HEAA is the same as HEAA. Likewise, OLOCA [28], shown in Figure 1g, is a
modified version of LOA in that (P–2) least significant sum bits, i.e., SUMP–3 up to SUM0
of the imprecise part of LOA are assigned a constant 1 to obtain OLOCA. Excepting for
this, the rest of the logic of OLOCA is the same as LOA.

In the case of HOERAA [30], shown in Figure 1h, SUMP–3 up to SUM0 are assigned a
constant 1, and SUMP–2 is produced by OR-ing XP–2 and YP–2 like M-HEAA and OLOCA.
Like HEAA and M-HEAA, XP–1 and YP–1 are AND-ed and given as the carry input to the
precise part and also to the select input of a MUX21. If the select input of MUX21 is 0,
the OR of XP–1 and YP–1 is produced as SUMP–1 and if the select input is 1, the AND of
XP–2 and YP–2 is produced as SUMP–1.

In the case of SETA [31], shown in Figure 2a, the imprecise part does not supply a
carry input to the precise part. The OR of XP–1 with YP–1 and XP–2 with YP–2 produce sum
bits SUMP–1 and SUMP–2, respectively. The AND of XP–2 and YP–2 is individually OR-ed
with the respective bitwise OR-ed outputs of XP–3 up to X0 with YP–3 up to Y0 to produce
the corresponding sum bits SUMP–3 up to SUM0.

LZTA [32] is shown in Figure 2b, where all the sum bits of the imprecise part, i.e., SUMP–1
up to SUM0 are assigned a constant 0. As a result, XP–2 up to X0 and YP–2 up to Y0 are
discarded, and XP–1 and YP–1 are OR-ed and given as the carry input to the precise part.

In the case of LDCA [33], shown in Figure 2c, the imprecise part is subdivided into
two sections of size L bits and (P–L) bits, and these two sections are typically equal in size.
The sum bits corresponding to the L bit section, i.e., SUML–1 up to SUM0, are assigned a
constant 1. In the (P–L) bit section, YP–1 up to YL are forwarded as the sum bits SUMP–1 up
to SUML through buffers, and XP–1 is given as the carry input to the precise part.

HOAANED [34] is shown in Figure 2d. Just like M-HEAA, OLOCA and HOERAA,
SUMP–3 up to SUM0 are assigned a constant 1 in HOAANED, and XP–2 and YP–2 are OR-ed
to produce SUMP–2. Like HEAA, M-HEAA and HOERAA, in HOAANED, XP–1 and YP–1
are AND-ed and given as the carry input to the precise part and also as the select input of
a MUX21. If the MUX21 select input is 0, the OR of XP–1 and YP–1 and the AND of XP–2
and YP–2 are OR-ed to produce SUMP–1; otherwise, the AND of XP–2 and YP–2 alone would
yield SUMP–1.

HERLOA [35], shown in Figure 2e, consists of a unique logic in the imprecise part.
XP–1 and YP–1 are XOR-ed and XP–2 and YP–2 are AND-ed and these two are then OR-ed
to produce SUMP–1. The XOR of XP–1 and YP–1 is complemented and NAND-ed with the
AND of XP–2 and YP–2, which is then AND-ed with the OR of XP–2 and YP–2 to produce
SUMP–2. The XOR of XP–1 and YP–1 and the AND of XP–2 and YP–2 are AND-ed and this is
individually OR-ed with the respective bitwise OR-ed outputs of XP–3 up to X0 with YP–3
up to Y0 to produce the corresponding sum bits SUMP–3 up to SUM0. Like LOA, HEAA,
M-HEAA, OLOCA, HOERAA and HOAANED, XP–1 and YP–1 are AND-ed and given as
the carry input to the precise part in HERLOA.

M-HERLOA [36], shown in Figure 2f, is a modification of HERLOA in that the logic
corresponding to more significant sum bits of the imprecise part (here, SUMP–1 up to
SUMP–4) are retained the same as HERLOA and the remaining less significant sum bits
of the imprecise part (here, SUMP–5 up to SUM0) are assigned a constant 1. However,
the optimum number of least significant sum bits in the imprecise part, which may be
assigned a constant 1 in M-HERLOA is best decided depending on which assignment
enables reduced error metrics commensurate with a target application.

Electronics 2021, 10, 2917 6 of 15

3. Digital Image Processing Using Accurate and Approximate Adders

We considered digital image processing (reconstruction) as a practical application,
as in [37], to evaluate the performance of different approximate adders vis-à-vis the accu-
rate adder. We considered many digital images with a grayscale resolution of 8 bits and a
spatial resolution of 512 × 512 for experimentation. Image processing was performed as
described in [34], whereby an original image was translated into a matrix form which was
then processed by computing fast Fourier transform and inverse fast Fourier transform ac-
curately or approximately. The matrix output was subsequently re-translated into a digital
image. Integer Fourier transforms were computed wherein multiplication was performed
accurately, while addition was performed accurately or approximately. To perform accurate
addition, we used the accurate adder and to perform approximate addition, we used dif-
ferent approximate adders individually. We considered a 32-bit addition as in [37], which
implies that the size of the accurate adder and approximate adders are 32 bits.

In general, having a small imprecise part in an approximate circuit would reduce
the savings in design metrics gained compared to the accurate circuit, while having a big
imprecise part in an approximate circuit may make its output quality (here, image quality)
unacceptable for a practical application. Therefore, having an optimum imprecise part in an
approximate circuit is important as that would pave the way for an acceptable compromise
between output quality and savings in design metrics gained by an approximate circuit
compared to the accurate circuit [30,34].

It was observed in [20,25] that for digital image processing and digital video encoding
applications, the approximation limit may be optimally specified in the range of 7 to 9 least
significant bits while considering a 32-bit arithmetic. Here, following a trial-and-error
approach, as discussed in [34], the optimum imprecise part of the approximate adders was
determined as 10 bits in size and the optimum precise part as 22 bits in size.

Example images lena and cameraman, which were processed accurately and approxi-
mately using accurate and approximate adders, respectively, are shown in Figures 3 and 4
for an illustration. Two figures of merit viz. peak signal to noise ratio (PSNR) [38] and
structural similarity index metric (SSIM) [39] were estimated to ascertain the quality of
reconstructed images, and they are given above the images in Figures 3 and 4. While
PSNR is a figure of merit widely used in digital signal processing, SSIM is a figure of merit
of specific relevance for digital image processing. Here, PSNR is used to quantify the
signal strength relative to the noise/distortion in an image. A high value of PSNR indicates
less distortion in an image. SSIM is estimated by comparing a reference (original) image
with a target image. Here, the target image may refer to an accurately or approximately
reconstructed image. SSIM ranges from 0 to 1 decimal, with 0 indicating no similarity
and 1 indicating a perfect similarity between the reference and target images. Hence, a high
value of SSIM is also preferred. A perusal of Figures 3 and 4 would reveal major or minor
distortions in the form of grains, spots and/or shaded regions in the images obtained using
approximate adders compared to the images obtained using the accurate adder.

The image reconstructed by computing accurate fast Fourier transform and inverse
fast Fourier transform involving accurate addition is shown in Figures 3a and 4a, while the
images reconstructed by computing approximate fast Fourier transform and inverse fast
Fourier transform involving approximate additions are shown in Figures 3b–n and 4b–n,
respectively. Due to the accurate computation, PSNR = ∞ for Figures 3a and 4a, and
their SSIM = 1.

Electronics 2021, 10, 2917 7 of 15Electronics 2021, 10, x FOR PEER REVIEW 7 of 16

Figure 3. The lena image processed accurately and approximately using (a) accurate adder and (b–n) approximate adders.

The image reconstructed by computing accurate fast Fourier transform and inverse

fast Fourier transform involving accurate addition is shown in Figures 3a and 4a, while

the images reconstructed by computing approximate fast Fourier transform and inverse

fast Fourier transform involving approximate additions are shown in Figures 3b–n and

4b–n, respectively. Due to the accurate computation, PSNR = ∞ for Figures 3a and 4a, and

their SSIM = 1.

PSNR and SSIM calculated for the images reconstructed using different approximate

adders are given in Tables 1 and 2, respectively. From Figures 3 and 4 and Tables 1 and 2,

it is noted that among the approximate adders, HOAANED consistently results in an im‐

proved PSNR and this is attributed to its near‐normal error distribution characteristic.

HOAANED also enables an enhanced SSIM in comparison with many approximate ad‐

ders, except HERLOA and M‐HERLOA. HERLOA and M‐HERLOA consistently result in

almost the same SSIM, which is greater than the SSIM of images reconstructed using other

approximate adders, and this is due to a better approximate logic employed in their im‐

precise parts. To validate this, an error analysis was performed by supplying one million

random input vectors to the accurate adder and approximate adders. The extent of error

occurring in the approximate adders relative to the accurate adder was plotted in the form

of an error distribution, as shown in Figure 5, which portrays the error magnitudes in

terms of their percentage occurrence.

Figure 3. The lena image processed accurately and approximately using (a) accurate adder and (b–n) approximate adders.

PSNR and SSIM calculated for the images reconstructed using different approximate
adders are given in Tables 1 and 2, respectively. From Figures 3 and 4 and Tables 1 and 2, it is
noted that among the approximate adders, HOAANED consistently results in an improved
PSNR and this is attributed to its near-normal error distribution characteristic. HOAANED
also enables an enhanced SSIM in comparison with many approximate adders, except
HERLOA and M-HERLOA. HERLOA and M-HERLOA consistently result in almost the
same SSIM, which is greater than the SSIM of images reconstructed using other approximate
adders, and this is due to a better approximate logic employed in their imprecise parts.
To validate this, an error analysis was performed by supplying one million random input
vectors to the accurate adder and approximate adders. The extent of error occurring in
the approximate adders relative to the accurate adder was plotted in the form of an error
distribution, as shown in Figure 5, which portrays the error magnitudes in terms of their
percentage occurrence.

Two well-known error metrics, namely mean absolute error (MAE) and root mean
square error (RMSE) were calculated for the approximate adders relative to the accurate
adder whose equations are given by (1) and (2). MAE is also called mean error distance
in the literature. Nevertheless, RMSE is more important since it better quantifies the
extent of signal degradation in digital signal processing [40]. In Equations (1) and (2),
L represents the number of input vectors supplied to the adders for calculation of the error
metrics and here, L = 1,000,000. The notation (XK, YK) denotes one set of adder inputs.
Accurate_Sum (XK, YK) represents the sum produced by the accurate adder for a given

Electronics 2021, 10, 2917 8 of 15

input, and Approximate_Sum (XK, YK) represents the sum produced by an approximate
adder for the same input.

MAE =
1
L

L

∑
K=1
|Approximate_Sum(XK, YK)−Accurate_Sum(XK, YK) | (1)

RMSE =

√√√√ 1
L

L

∑
K=1

(Approximate_Sum(XK, YK)−Accurate_Sum(XK, YK))
2 (2)Electronics 2021, 10, x FOR PEER REVIEW 8 of 16

Figure 4. The cameraman image processed accurately and approximately using (a) accurate adder and (b–n) approximate

adders.

Two well‐known error metrics, namely mean absolute error (MAE) and root mean

square error (RMSE) were calculated for the approximate adders relative to the accurate

adder whose equations are given by (1) and (2). MAE is also called mean error distance in

the literature. Nevertheless, RMSE is more important since it better quantifies the extent

of signal degradation in digital signal processing [40]. In Equations (1) and (2), L repre‐

sents the number of input vectors supplied to the adders for calculation of the error met‐

rics and here, L = 1,000,000. The notation (XK, YK) denotes one set of adder inputs. Accu‐

rate_Sum (XK, YK) represents the sum produced by the accurate adder for a given input,

and Approximate_Sum (XK, YK) represents the sum produced by an approximate adder

for the same input.

MAE
1
L

|Approximate_Sum X , Y Accurate_Sum X , Y | (1)

RMSE
1
L

Approximate_Sum X , Y Accurate_Sum X , Y (2)

Figure 4. The cameraman image processed accurately and approximately using (a) accurate adder and (b–n) approximate adders.

Table 1. PSNR (in dB) of various digital images reconstructed using different approximate adders.

Approximate
Adder Barbara Boat Einstein Lake Cameraman Peppers Woman Average

PSNR

LOA 32.4863 32.5604 32.5567 32.6313 32.1966 32.6581 32.8121 32.5574
LOAWA 25.1106 24.8022 25.7325 25.2703 25.0872 25.1460 25.2304 25.1970

APPROX5 31.6881 31.8445 31.8320 31.7789 31.3060 31.8853 32.1200 31.7793
HEAA 30.6490 30.5959 31.0126 30.6447 30.6800 30.7053 30.8507 30.7340

M-HEAA 29.6692 29.5523 30.1740 29.6633 29.6510 29.6921 29.8162 29.7454
OLOCA 32.0496 32.1698 32.1424 32.1815 31.8063 32.2262 32.3729 32.1355

HOERAA 32.9709 33.0211 33.1791 32.9155 32.7300 33.0998 33.2847 33.0287
SETA 25.1447 24.8346 25.7657 25.3066 25.1226 25.1806 25.2653 25.2314
LZTA 30.8740 30.9092 31.0290 30.8975 30.9622 31.0619 30.8768 30.9444
LDCA 31.7570 31.9085 31.8894 31.8521 31.3805 31.9542 32.1818 31.8462

HOAANED 34.7582 34.6552 34.7908 34.7423 34.7383 34.7416 34.7845 34.7444
HERLOA 33.7722 33.6949 33.9227 33.7501 33.7766 33.8136 33.8772 33.8010

M-HERLOA 32.8549 32.7319 33.1088 32.8431 32.8210 32.8586 32.9572 32.8822

Electronics 2021, 10, 2917 9 of 15

Table 2. SSIM (in decimal) of various digital images reconstructed using different approximate adders.

Approximate
Adder Barbara Boat Einstein Lake Cameraman Peppers Woman Average

SSIM

LOA 0.8527 0.8602 0.8440 0.8666 0.8422 0.8447 0.8150 0.8465
LOAWA 0.8396 0.8464 0.8198 0.8514 0.8181 0.8302 0.7884 0.8277

APPROX5 0.8450 0.8461 0.8318 0.8537 0.8322 0.8284 0.8063 0.8348
HEAA 0.9426 0.9480 0.9370 0.9485 0.9266 0.9471 0.9174 0.9382

M-HEAA 0.9362 0.9426 0.9305 0.9426 0.9297 0.9458 0.9086 0.9337
OLOCA 0.8463 0.8517 0.8373 0.8587 0.8412 0.8359 0.8096 0.8401

HOERAA 0.9297 0.9358 0.9226 0.9394 0.9113 0.9279 0.9028 0.9242
SETA 0.8412 0.8475 0.8213 0.8527 0.8175 0.8319 0.7901 0.8289
LZTA 0.8290 0.8516 0.8234 0.8490 0.8237 0.8287 0.7813 0.8267
LDCA 0.8480 0.8484 0.8349 0.8562 0.8374 0.8313 0.8103 0.8381

HOAANED 0.9301 0.9361 0.9225 0.9372 0.9072 0.9286 0.9020 0.9234
HERLOA 0.9619 0.9660 0.9578 0.9663 0.9462 0.9643 0.9445 0.9581

M-HERLOA 0.9601 0.9640 0.9559 0.9648 0.9469 0.9637 0.9423 0.9568
Electronics 2021, 10, x FOR PEER REVIEW 10 of 16

Figure 5. Error distribution of 32‐bit approximate adders with a 10‐bit imprecise part along with a highlight of their MAE

and RMSE: (a) LOA; (b) LOAWA; (c) APPROX5; (d) HEAA; (e) M‐HEAA; (f) OLOCA; (g) HOERAA; (h) SETA; (i) LZTA;

(j) LDCA; (k) HOAANED; (l) HERLOA; (m) M‐HERLOA. The error magnitudes are given in the X axis and the percentage

of their occurrences is given in the Y axis.

From Figure 5, it is seen that HOAANED has a near‐normal error distribution, which

is a reflection of the fact that its positive and negative (true) error magnitudes are rather

balanced and become almost neutralized on average—this is the reason for the greater

PSNR of images reconstructed using HOAANED compared to the PSNR of images recon‐

structed using other approximate adders, as seen from Table 1.

Figure 5. Error distribution of 32-bit approximate adders with a 10-bit imprecise part along with a highlight of their MAE

Electronics 2021, 10, 2917 10 of 15

and RMSE: (a) LOA; (b) LOAWA; (c) APPROX5; (d) HEAA; (e) M-HEAA; (f) OLOCA; (g) HOERAA; (h) SETA; (i) LZTA;
(j) LDCA; (k) HOAANED; (l) HERLOA; (m) M-HERLOA. The error magnitudes are given in the X axis and the percentage
of their occurrences is given in the Y axis.

From Figure 5, it is seen that HOAANED has a near-normal error distribution, which
is a reflection of the fact that its positive and negative (true) error magnitudes are rather bal-
anced and become almost neutralized on average—this is the reason for the greater PSNR
of images reconstructed using HOAANED compared to the PSNR of images reconstructed
using other approximate adders, as seen from Table 1.

In Figure 5, HERLOA has a restricted magnitude of error occurrences compared to the
other approximate adders, and this may be the reason for the reduced distortions noticed
in Figures 3m and 4m compared to Figures 3b–l and 4b–l, respectively. HERLOA does
not have a positive error magnitude, and HERLOA is closely followed by M-HERLOA in
terms of an optimized error distribution. Although the magnitude of error occurrences
is relatively greater in M-HERLOA compared to HERLOA, the former has some positive
error magnitudes, which contributes to an overall decrease in its MAE and RMSE.

Figure 6 depicts MAE and RMSE calculated for different approximate adders by
considering one million random input vectors. MAE is depicted by the blue bars and
RMSE is depicted by the orange bars in Figure 6. In general, approximate adders which
include a carry input in their precise part that is supplied from the imprecise part would
have less errors compared to approximate adders which have disjoint precise and imprecise
parts. This is because a valid carry input supplied from the imprecise part may significantly
impact the output of the precise part and, thus, the overall sum. Hence, LOAWA and
SETA, which do not feature an internal carry input, have higher MAE and RMSE compared
to their counterparts, which feature an internal carry input. LZTA, which is shown in
Figure 2b, is worse since the sum bits belonging to the imprecise part of LZTA are assigned
a constant 0 and so the information corresponding to the imprecise part may become
completely lost during the data processing depending upon the specified inputs. Figure 6
shows that M-HERLOA has less MAE and RMSE compared to other approximate adders,
with HERLOA having MAE and RMSE closer to M-HERLOA.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 16

In Figure 5, HERLOA has a restricted magnitude of error occurrences compared to

the other approximate adders, and this may be the reason for the reduced distortions no‐

ticed in Figures 3m and 4m compared to Figure 3b–l and Figure 4b–l, respectively. HER‐

LOA does not have a positive error magnitude, and HERLOA is closely followed by M‐

HERLOA in terms of an optimized error distribution. Although the magnitude of error

occurrences is relatively greater in M‐HERLOA compared to HERLOA, the former has

some positive error magnitudes, which contributes to an overall decrease in its MAE and

RMSE.

Figure 6 depicts MAE and RMSE calculated for different approximate adders by con‐

sidering one million random input vectors. MAE is depicted by the blue bars and RMSE

is depicted by the orange bars in Figure 6. In general, approximate adders which include

a carry input in their precise part that is supplied from the imprecise part would have less

errors compared to approximate adders which have disjoint precise and imprecise parts.

This is because a valid carry input supplied from the imprecise part may significantly

impact the output of the precise part and, thus, the overall sum. Hence, LOAWA and

SETA, which do not feature an internal carry input, have higher MAE and RMSE com‐

pared to their counterparts, which feature an internal carry input. LZTA, which is shown

in Figure 2b, is worse since the sum bits belonging to the imprecise part of LZTA are as‐

signed a constant 0 and so the information corresponding to the imprecise part may be‐

come completely lost during the data processing depending upon the specified inputs.

Figure 6 shows that M‐HERLOA has less MAE and RMSE compared to other approximate

adders, with HERLOA having MAE and RMSE closer to M‐HERLOA.

To achieve a higher PSNR, HOAANED is preferable and to achieve a higher SSIM,

HERLOA and M‐HERLOA are preferable. Nevertheless, in terms of the error metrics and

image processing figures of merit combined, M‐HERLOA may be preferable to its approx‐

imate counterparts.

Figure 6. Error parameters (MAE and RMSE) calculated for different approximate adders of size 32

bits comprising a 10‐bit imprecise part.

4. Accurate and Approximate Adders—Implementation Results

Accurate and approximate adders were implemented commensurate with the digital

image processing application discussed using FPGA and ASIC design platforms. About

1000 random input vectors were supplied to the adders to perform functional simulations

and their switching activity data was used to estimate total power dissipation.

For the FPGA implementation, the accurate and approximate adders were described

behaviorally in Verilog HDL and synthesized and implemented on a Xilinx Artix‐7 FPGA

1
9
1
.9
6
3 2
5
5
.7
0
4

2
5
6
.2
1
9

1
2
7
.7
0
9

1
2
7
.9
3
7 2
0
8
.0
7
3

1
2
7
.9
5
8

2
3
9
.7
2

3
4
0
.7
1
1

2
5
6
.5
6
2

1
2
8
.0
0
1

8
7
.7
1
3

8
4
.4
5
8

2
5
6
.0
9
7

3
6
1
.7
4

2
9
5
.7
1
4

1
8
0
.7
9
7

1
6
5
.1
4
5

2
7
6
.6
2
6

1
6
5
.1
7
7

3
4
5
.3
9 4
1
7
.3
1
6

2
9
6
.2
9
6

1
6
5
.2
4
3

1
2
9
.1
4
6

1
2
4
.5
5
5

MAE RMSE

Figure 6. Error parameters (MAE and RMSE) calculated for different approximate adders of size
32 bits comprising a 10-bit imprecise part.

To achieve a higher PSNR, HOAANED is preferable and to achieve a higher SSIM,
HERLOA and M-HERLOA are preferable. Nevertheless, in terms of the error metrics
and image processing figures of merit combined, M-HERLOA may be preferable to its
approximate counterparts.

Electronics 2021, 10, 2917 11 of 15

4. Accurate and Approximate Adders—Implementation Results

Accurate and approximate adders were implemented commensurate with the digital
image processing application discussed using FPGA and ASIC design platforms. About
1000 random input vectors were supplied to the adders to perform functional simulations
and their switching activity data was used to estimate total power dissipation.

For the FPGA implementation, the accurate and approximate adders were described
behaviorally in Verilog HDL and synthesized and implemented on a Xilinx Artix-7 FPGA
(device: xc7a100tcsg324-3) using the Vivado design tool (version: 2018.3). We described the
accurate adder and the exact parts of approximate adders using the addition operator in
Verilog. As a result, the fast carry logic (CARRY4) inherent in an FPGA slice was utilized
to realize high speed addition. Flow_AreaOptimized_high was specified as the synthesis
strategy and the default implementation strategy was used. Following an efficient FPGA
design practice, a pair of register banks was provided before the adder inputs to eliminate
unnecessary input–output (IO) routing delay from dominating the critical path delay.
A register bank collects the adder outputs and, thus, the adder is sandwiched between
the input and output register banks, with these register banks driven by a common clock.
The adders were successfully synthesized and implemented, and the FPGA design metrics
obtained after placement and routing are given in Table 3. In Table 3, delay refers to the
minimum clock period, which is representative of critical path delay, and power refers
to the total on-chip power, which is the sum of the power consumed by clock, signals,
logic and IO. The number of slice look-up tables (LUTs) and flip-flops consumed for the
implementation of the adders is also given in Table 3.

Table 3. Design metrics of accurate and approximate adders implemented on an Artix-7 FPGA.

Adder Delay (ns) LUTs Flip-Flops Power (W)

Accurate (FPGA) 2.10 32 97 0.209
LOA 1.89 27 97 0.198

LOAWA 1.86 27 97 0.198
APPROX5 1.84 22 88 0.200

HEAA 1.89 27 97 0.199
M-HEAA 1.87 23 73 0.188
OLOCA 1.87 23 73 0.187

HOERAA 1.87 23 73 0.188
SETA 1.85 31 97 0.199
LZTA 1.87 22 69 0.184
LDCA 1.83 22 78 0.195

HOAANED 1.87 23 73 0.188
HERLOA 1.89 28 97 0.199

M-HERLOA 1.90 25 79 0.190

From Table 3, we see that, in general, the approximate adders have less delay, consume
fewer LUTs and flip-flops and have less on-chip power compared to the accurate FPGA
adder. This is because the accurate adder is 32 bits in size, whereas the precise part of
the approximate adders is only 22 bits in size, since 10 bits have been allocated to the
imprecise part. Hence, the delay of the approximate adders is dominated by the delay of
their precise part. Because the imprecise parts of the approximate adders have reduced
logic compared to the accurate adder, fewer LUTs and/or flip-flops were required for
their implementation and, thus, overall, the approximate adders require lesser resources
(LUTs and flip-flops) compared to the accurate adder. For example, M-HERLOA requires
7 LUTs and 18 flip-flops less compared to the accurate FPGA adder in Table 3. Since
6 least significant sum bits were assigned a constant 1 in M-HERLOA, 12 input flip-
flops and 6 output flip-flops were not required, thus saving 18 flip-flops compared to the
accurate adder. Additionally, the reduction in logic of the approximate adders results
in their reduced power consumption compared to the accurate adder. The differences
between the resource utilization and power consumption of approximate adders are due

Electronics 2021, 10, 2917 12 of 15

to the differences between their imprecise part logic. The delay is almost the same for
the approximate adders and only minor variations are observed between them. This is
partly because the precise part of some approximate adders accepts a carry input from the
imprecise part, while this is absent in the other approximate adders, and partly due to the
area optimized place and route as performed by the FPGA design tool.

In Section 3, in terms of error metrics and/or image processing results, it was noted
that HOAANED, HERLOA and M-HERLOA are preferable. From Table 3, it is noted that
compared to the accurate FPGA adder, HOAANED has 11% less delay, requires 28.1%
fewer LUTs and 24.7% fewer flip-flops, and consumes 10% less power; HERLOA has 10%
less delay, requires 12.5% fewer LUTs and consumes 4.8% less power; and M-HERLOA has
9.5% less delay, requires 21.9% fewer LUTs and 18.6% fewer flip-flops, and consumes 9.1%
less power.

For an ASIC type standard cell-based implementation, the accurate and approximate
adders were described structurally in Verilog HDL. To realize the accurate and approximate
adders for high speed, the accurate adder and precise parts of the approximate adders
were described using a high speed CLA architecture [41]. The 32-bit accurate adder was
described using eight 4-input CLAs, and the 22-bit precise parts of the approximate adders
were described using five 4-bit CLAs and a 2-bit CLA. The 2-bit CLA may or may not
include a carry input and this depends on the approximate adder architecture considered,
i.e., whether the approximate adder may or may not have a carry input supplied from the
imprecise part to the precise part. It may be recalled from Section 2 that LOAWA and SETA
do not feature an internal carry input from the imprecise part to the precise part, while the
rest of the approximate adders do.

The accurate and approximate adders were synthesized for high speed using Syn-
opsys Design Compiler with speed set as the optimization goal and their total area (cells
area + interconnect area) was estimated. A 32/28 nm CMOS standard cell library [42] was
used for the implementation. A typical case library specification with a supply voltage of
1.05 V and an operating junction temperature of 25 ◦C was considered. After synthesis,
the adders were simulated and their functionality was verified. Subsequently, the switch-
ing activity data obtained was used to estimate the total (average) power dissipation
using PrimePower. PrimeTime was used to estimate the critical path delay. The adder
outputs were assigned a fanout-of-4 drive strength and default wire loads were included.
The ASIC-based design metrics are given in Table 4.

In Table 4, we see that all the approximate adders have the same delay and this is
because their precise parts were realized for high speed using a common CLA architecture.
The areas of approximate adders, however, differ and this is due to the differences in the
logic composition of their imprecise parts. Consequently, their power dissipation also
differs. To assign a constant 1 to some least significant sum bits in M-HEAA, OLOCA,
HOERAA, LDCA, HOAANED and M-HERLOA, tie-to-high (TIEH) standard cells were
used and to assign a constant 0 to some least significant sum bits in LZTA, tie-to-low
(TIEL) standard cells were used. TIEH and TIEL standard cells of [42] have the same
design attributes. Given that HOAANED, HERLOA and M-HERLOA are preferable,
from Table 4, it is noted that HOAANED, HERLOA and M-HERLOA have 17.9% less
delay compared to the accurate CLA. Further, compared to the accurate CLA, HOAANED
occupies 24.7% less area and dissipates 28.2% less power, HERLOA occupies 21.5% less area
and dissipates 21.5% less power, and M-HERLOA occupies 23.1% less area and dissipates
26.7% less power.

Power-delay product (PDP), which is representative of energy and considered as a low
power figure of merit, was calculated for accurate and approximate adders corresponding
to FPGA and ASIC type implementations and normalized, which is shown in Figure 7.
To normalize the PDP, the highest PDP corresponding to an adder (i.e., accurate adder)
was considered as the baseline and this was used to divide the PDP of all the adders
corresponding to FPGA and ASIC type implementations separately. The green and blue
bars shown in Figure 7 represent the normalized PDP corresponding to FPGA and ASIC

Electronics 2021, 10, 2917 13 of 15

type implementations, respectively. Power and delay are preferred to be less for a digital
design and, hence, PDP is also preferred to be less. In Figure 7, the approximate adders
are found to have less PDP compared to the accurate adder, meaning the former are more
energy efficient than the latter.

Table 4. Design metrics of accurate and approximate adders synthesized using a 32/28 nm CMOS
standard digital cell library.

Adder Delay (ns) Area (µm2) Power (µW)

Accurate (CLA) 1.17 564.60 94.33
LOA 0.96 428.36 71.77

LOAWA 0.96 413.37 68.86
APPROX5 0.96 424.58 73.54

HEAA 0.96 430.65 71.49
M-HEAA 0.96 422.32 66.11
OLOCA 0.96 420.03 66.38

HOERAA 0.96 430.38 68.82
SETA 0.96 419.68 72.94
LZTA 0.96 415.56 63.14
LDCA 0.96 420.07 68.05

HOAANED 0.96 425.36 67.73
HERLOA 0.96 443.28 74.01

M-HERLOA 0.96 433.94 69.11

Electronics 2021, 10, x FOR PEER REVIEW 14 of 16

Table 4. Design metrics of accurate and approximate adders synthesized using a 32/28 nm CMOS

standard digital cell library.

Adder Delay (ns) Area (μm2) Power (μW)

Accurate (CLA) 1.17 564.60 94.33

LOA 0.96 428.36 71.77

LOAWA 0.96 413.37 68.86

APPROX5 0.96 424.58 73.54

HEAA 0.96 430.65 71.49

M‐HEAA 0.96 422.32 66.11

OLOCA 0.96 420.03 66.38

HOERAA 0.96 430.38 68.82

SETA 0.96 419.68 72.94

LZTA 0.96 415.56 63.14

LDCA 0.96 420.07 68.05

HOAANED 0.96 425.36 67.73

HERLOA 0.96 443.28 74.01

M‐HERLOA 0.96 433.94 69.11

Figure 7. Normalized PDP of accurate and approximate adders corresponding to FPGA and ASIC

type implementations.

The normalized PDP plots of the adders corresponding to FPGA and ASIC type im‐

plementations indicate a similar trend. Among the adders, LZTA is very energy efficient.

However, the image processing results shown in Figures 3 and 4 and Tables 1 and 2, and

the error distribution and error metrics given in Figures 5 and 6, clearly show that LZTA

is not preferable. In approximate computation, output quality assumes higher precedence

than savings in design metrics gained compared to accurate computation. Given this,

LZTA is not preferable, although it may have a high energy efficiency. On the contrary,

HOAANED, which enables a higher PSNR, and HERLOA/M‐HERLOA, which enable a

higher SSIM, are preferred and they report a significant improvement in energy efficiency

compared to the accurate adder. From Figure 7, we observe that HOAANED, HERLOA

and M‐HERLOA achieve 19.9%, 14.3% and 17.5% reduction in PDP, respectively, com‐

pared to the accurate adder for an FPGA implementation, and 41.1%, 35.6% and 39.9%

reduction in PDP, respectively, compared to the accurate CLA for an ASIC‐type imple‐

mentation.

1

0
.8
5
2
6

0
.8
3
9
1

0
.8
3
8
5

0
.8
5
6
9

0
.8
0
1

0
.7
9
6
7

0
.8
0
1

0
.8
3
8
8

0
.7
8
4

0
.8
1
3
1

0
.8
0
1

0
.8
5
6
9

0
.8
2
2
51

0
.6
2
4

0
.5
9
9

0
.6
4

0
.6
2
2

0
.5
7
5

0
.5
7
7

0
.5
9
9

0
.6
3
4
5

0
.5
4
9
2

0
.5
9
1
9

0
.5
8
9

0
.6
4
4

0
.6
0
1

Normalized PDP (FPGA) Normalized PDP (ASIC)

Figure 7. Normalized PDP of accurate and approximate adders corresponding to FPGA and ASIC
type implementations.

The normalized PDP plots of the adders corresponding to FPGA and ASIC type
implementations indicate a similar trend. Among the adders, LZTA is very energy efficient.
However, the image processing results shown in Figures 3 and 4 and Tables 1 and 2, and the
error distribution and error metrics given in Figures 5 and 6, clearly show that LZTA is
not preferable. In approximate computation, output quality assumes higher precedence
than savings in design metrics gained compared to accurate computation. Given this,
LZTA is not preferable, although it may have a high energy efficiency. On the contrary,
HOAANED, which enables a higher PSNR, and HERLOA/M-HERLOA, which enable a
higher SSIM, are preferred and they report a significant improvement in energy efficiency
compared to the accurate adder. From Figure 7, we observe that HOAANED, HERLOA
and M-HERLOA achieve 19.9%, 14.3% and 17.5% reduction in PDP, respectively, compared
to the accurate adder for an FPGA implementation, and 41.1%, 35.6% and 39.9% reduction
in PDP, respectively, compared to the accurate CLA for an ASIC-type implementation.

Electronics 2021, 10, 2917 14 of 15

5. Conclusions

A comparative analysis of different gate-level SAAs, suitable for both FPGA and ASIC
type implementations, has been performed in this work. Digital image processing was con-
sidered as an example application and the image processing results were shown. The error
metrics of approximate adders corresponding to the image processing application were
calculated and provided for a comparison. Further, the design metrics of accurate and ap-
proximate adders commensurate with the target application were provided corresponding
to FPGA and ASIC type implementations. The objective is to identify those approximate
adders that would facilitate an acceptable compromise between output quality and savings
in design metrics compared to the accurate adder. In this context, HOAANED, HERLOA
and M-HERLOA are found to be preferable.

Author Contributions: Conceptualization, P.B., R.N. and D.L.M.; methodology, P.B., R.N. and D.L.M.;
software, P.B. and R.N.; validation, P.B., R.N. and D.L.M.; investigation, P.B. and R.N.; resources, D.L.M.;
data curation, P.B. and R.N.; writing—original draft preparation, P.B.; writing–review & editing, P.B.; vi-
sualization, P.B. and R.N.; supervision, P.B. and D.L.M.; project administration, P.B. and D.L.M.; fund-
ing acquisition, D.L.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Education (MOE), Singapore under an
academic research fund Tier-2 grant number MOE2018-T2-2-024.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Available online: https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-

processing-unit-tpu (accessed on 12 November 2021).
2. Available online: https://research.google/pubs/pub41694/ (accessed on 12 November 2021).
3. Available online: https://www.tomshardware.com/news/google-tensor-processing-unit-machine-learning,31834.html

(accessed on 13 March 2018).
4. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.

In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, Toronto, ON, Canada, 24–28 June 2017.

5. Hartigan, J.A.; Wong, M.A. A k-means clustering algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 100–108.
6. Chippa, V.K.; Mohapatra, D.; Roy, K.; Chakradhar, S.T.; Raghunathan, A. Scalable effort hardware design. IEEE Trans. VLSI Syst.

2014, 22, 2004–2016. [CrossRef]
7. Grigorian, B.; Reinman, G. Accelerating divergent applications on SIMD architectures using neural networks. ACM Trans. Archit.

Code Optim. 2015, 12, 1–23. [CrossRef]
8. Han, J.; Orshansky, M. Approximate computing: An emerging paradigm for energy-efficient design. In Proceedings of the 18th

IEEE European Test Symposium, Avignon, France, 27–30 May 2013.
9. Roy, K.; Raghunathan, A. Approximate computing: An energy-efficient computing technique for error resilient applications.

In Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Montpellier, France, 8–10 July 2015.
10. Saadat, H.; Parameswaran, S. Hardware approximate computing: How, why, when and where? In Proceedings of the International

Conference on Compilers, Architectures and Synthesis for Embedded Systems, Seoul, Korea, 15–20 October 2017.
11. Sampson, A.; Deitl, W.; Fortuna, E.; Gnanapragasam, D.; Ceze, L.; Grossman, D. EnerJ: Approximate data types for safe and

general low-power computation. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, San Jose, CA, USA, 4–8 June 2011.

12. Shoushtari, M.; Rahmani, A.M.; Dutt, N. Quality-configurable memory hierarchy through approximation. In Proceedings of the
14th International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, Taipei, Taiwan, 9–14 October
2011.

13. Jiang, H.; Liu, C.; Liu, L.; Lombardi, F.; Han, J. A review, classification, and comparative evaluation of approximate arithmetic
circuits. ACM J. Emerg. Technol. Comput. Syst. 2017, 13, 1–37. [CrossRef]

14. Scarabottolo, I.; Ansaloni, G.; Constantinides, G.A.; Pozzi, L.; Reda, S. Approximate logic synthesis: A survey. Proc. IEEE 2020,
108, 2195–2213. [CrossRef]

15. Hennessy, J.; Patterson, D. Computer Architecture: A Quantitative Approach, 5th ed.; Morgan Kaufmann: Burlington, MA, USA,
2003; ISBN 9780123838735.

16. Wanhammar, L. DSP Integrated Circuits, 1st ed.; Academic Press: Cambridge, MA, USA, 1999; ISBN 9780127345307.

https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://research.google/pubs/pub41694/
https://www.tomshardware.com/news/google-tensor-processing-unit-machine-learning,31834.html
http://doi.org/10.1109/TVLSI.2013.2276759
http://doi.org/10.1145/2717311
http://doi.org/10.1145/3094124
http://doi.org/10.1109/JPROC.2020.3014430

Electronics 2021, 10, 2917 15 of 15

17. Raha, A.; Jayakumar, H.; Raghunathan, V. Input-based dynamic reconfiguration of approximate arithmetic units for video
encoding. IEEE Trans. VLSI Syst. 2016, 24, 846–857. [CrossRef]

18. Prabakaran, B.S.; Rehman, S.; Hanif, M.A.; Ullah, S.; Mazaheri, G.; Kumar, A.; Shafique, M. DeMAS: An efficient design
methodology for building approximate adders for FPGA-based systems. In Proceedings of the Design, Automation and Test in
Europe, Dresden, Germany, 19–23 March 2018.

19. Perri, S.; Spagnolo, F.; Frustaci, F.; Corsonello, P. Efficient approximate adders for FPGA-based data-paths. Electronics 2020,
9, 1529. [CrossRef]

20. Gupta, V.; Mohapatra, D.; Park, S.P.; Raghunathan, A.; Roy, K. IMPACT: Imprecise adders for low-power approximate com-
puting. In Proceedings of the IEEE/ACM International Symposium on Low Power Electronics and Design, Fukuoka, Japan,
1–3 August 2011.

21. Yang, Z.; Jain, A.; Liang, J.; Han, J.; Lombardi, F. Approximate XOR/XNOR-based adders for inexact computing. In Proceedings
of the 13th IEEE International Conference on Nanotechnology, Beijing, China, 5–8 August 2013.

22. Zhang, T.; Liu, W.; McLarnon, E.; O’Neill, M.; Lombardi, F. Design of majority logic (ML) based approximate full adders.
In Proceedings of the IEEE International Symposium on Circuits and Systems, Florence, Italy, 27–30 May 2018.

23. Mahdiani, H.R.; Ahmadi, A.; Fakhraie, S.M.; Lucas, C. Bio-inspired computational blocks for efficient VLSI implementation of
soft-computing applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2010, 57, 850–862. [CrossRef]

24. Albicocco, P.; Cardarilli, G.C.; Nannarelli, A.; Petricca, M.; Re, M. Imprecise arithmetic for low power image processing.
In Proceedings of the 46th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 4–7 November
2012.

25. Gupta, V.; Mohapatra, D.; Raghunathan, A.; Roy, K. Low-power digital signal processing using approximate adders. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2013, 32, 124–137. [CrossRef]

26. Balasubramanian, P.; Maskell, D. Hardware efficient approximate adder design. In Proceedings of the IEEE Region 10 Conference,
Jeju, Korea, 28–31 October 2018.

27. Balasubramanian, P.; Maskell, D.L.; Prasad, K. Approximate adder with reduced error. In Proceedings of the IEEE 31st
International Conference on Microelectronics, Nis, Serbia, 16–18 September 2019.

28. Dalloo, A.; Najafi, A.; Garcia-Ortiz, A. Systematic design of an approximate adder: The optimized lower part constant-OR adder.
IEEE Trans. VLSI Syst. 2018, 26, 1595–1599. [CrossRef]

29. Lu, Q.; Gharehbaghi, A.M.; Fujita, M. Approximate arithmetic circuit design using a fast and scalable method. In Proceedings of
the IFIP/IEEE 27th International Conference on Very Large Scale Integration, Cuzco, Peru, 6–9 October 2019.

30. Balasubramanian, P.; Maskell, D.L. Hardware optimized and error reduced approximate adder. Electronics 2019, 8, 1212. [CrossRef]
31. Lee, J.; Seo, H.; Kim, Y.; Kim, Y. Approximate adder design with simplified lower-part approximation. IEICE Electron. Express

2020, 17, 20200218. [CrossRef]
32. Lee, J.; Seo, H.; Kim, Y.; Kim, Y. Design of a low-cost approximate adder with a zero truncation. In Proceedings of the International

SoC Design Conference, Yeosu, Korea, 21–24 October 2020.
33. Seo, H.; Kim, Y. A new approximate adder with duplicate-constant scheme for energy efficient applications. In Proceedings of the

IEEE International Conference on Consumer Electronics–Asia, Seoul, Korea, 1–3 November 2020.
34. Balasubramanian, P.; Nayar, R.; Maskell, D.L.; Mastorakis, N.E. An approximate adder with a near-normal error distribution:

Design, error analysis and practical application. IEEE Access 2021, 9, 4518–4530. [CrossRef]
35. Seo, H.; Yang, Y.S.; Kim, Y. Design and analysis of an approximate adder with hybrid error reduction. Electronics 2020, 9, 471.

[CrossRef]
36. Balasubramanian, P.; Nayar, R.; Maskell, D. An approximate adder with reduced error and optimized design metrics. In Proceed-

ings of the 17th IEEE Asia Pacific Conference on Circuits and Systems, Penang, Malaysia, 22–26 November 2021.
37. Zhu, N.; Goh, W.L.; Zhang, W.; Yeo, K.S.; Kong, Z.H. Design of low-power high-speed truncation-error-tolerant adder and its

application in digital signal processing. IEEE Trans. VLSI Syst. 2010, 18, 1225–1229.
38. Gibson, J.D. Handbook of Image and Video Processing; Gibson, J.D., Bovik, A., Eds.; Academic Press: Orlando, FL, USA, 2000; ISBN

978-0121197902.
39. Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE

Trans. Image Process. 2004, 13, 600–612.
40. Chan, W.-T.J.; Kahng, A.B.; Kang, S.; Kumar, R.; Sartori, J. Statistical analysis and modeling for error composition in approximate

computation circuits. In Proceedings of the 31st IEEE International Conference on Computer Design, Asheville, NC, USA,
6–9 October 2013.

41. Balasubramanian, P.; Maskell, D.L. Factorized carry lookahead adders. In Proceedings of the IEEE 14th International Symposium
on Signals, Circuits and Systems, Iasi, Romania, 11–12 July 2019.

42. Synopsys SAED_EDK32/28_CORE Databook. Revision 1.0.0. January 2012. Available online: https://www.synopsys.com/
community/university-program/teaching-resources.html (accessed on 21 July 2021).

http://doi.org/10.1109/TVLSI.2015.2424212
http://doi.org/10.3390/electronics9091529
http://doi.org/10.1109/TCSI.2009.2027626
http://doi.org/10.1109/TCAD.2012.2217962
http://doi.org/10.1109/TVLSI.2018.2822278
http://doi.org/10.3390/electronics8111212
http://doi.org/10.1587/elex.17.20200218
http://doi.org/10.1109/ACCESS.2020.3047651
http://doi.org/10.3390/electronics9030471
https://www.synopsys.com/community/university-program/teaching-resources.html
https://www.synopsys.com/community/university-program/teaching-resources.html

	Introduction
	Gate-Level Static Approximate Adders
	Digital Image Processing Using Accurate and Approximate Adders
	Accurate and Approximate Adders—Implementation Results
	Conclusions
	References

