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Abstract: Developments in drones have opened new trends and opportunities in different fields,
particularly in small drones. Drones provide interlocation services for navigation, and this interlink
is provided by the Internet of Things (IoT). However, architectural issues make drone networks
vulnerable to privacy and security threats. It is critical to provide a safe and secure network to
acquire desired performance. Small drones are finding new paths for progress in the civil and defense
industries, but also posing new challenges for security and privacy as well. The basic design of the
small drone requires a modification in its data transformation and data privacy mechanisms, and it is
not yet fulfilling domain requirements. This paper aims to investigate recent privacy and security
trends that are affecting the Internet of Drones (IoD). This study also highlights the need for a safe
and secure drone network that is free from interceptions and intrusions. The proposed framework
mitigates the cyber security threats by employing intelligent machine learning models in the design
of IoT-aided drones by making them secure and adaptable. Finally, the proposed model is evaluated
on a benchmark dataset and shows robust results.

Keywords: cyber-security; IoT; drones; machine learning

1. Introduction

Pervasive environments have become increasingly popular over the last two decades,
especially considering the importance of pervasiveness and the smartness of the objects
present in an environment such as a building, a town, a playground, a shopping mall, etc.
The element of pervasiveness in an environment enables various tasks such as controlling
activities with improved efficiency and efficacy, responding to various events, providing
better facilities, etc., by connecting many devices and sensors. In recent times, drone
technology has led to small-sized drones such as quadcopters, mini-drones, etc. A benefit
of these small-sized drones is that they can easily enter a building and can hover inside
a building for the sake of monitoring and surveillance in various fields of life, such as
the surveillance of industrial areas [1–3] and for disaster management, military uses [4],
search and rescue [5,6] shipping and delivery [7], precision agriculture [8,9], and many
other applications. There are other possible applications of commercial drones, such as
aerial photography, weather forecasting, etc.

Unmanned aerial vehicles (UAVs) are air-bound vehicles without human operators.
Typically, UAVs are used by aerodynamics forces to provide the forces with the facility
of remotely piloting a machine [10]. There are similar commercial applications as well,
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which have caused a change in the behavior of many industries and have had an impact on
day-to-day life. Since drones are typically capable of collecting aerial data and transmitting
these to their base station with ease, this feature makes drones a convenient vehicle for
surveillance and monitoring purposes [11]. However, the rapid growth in the use of drone
technology in our daily life has brought challenges not only in terms of drone safety and
security but also privacy, liability, and regulation in particular [12]. There are so many
advantages of small-size drones in agriculture, industry, shipping, delivery, etc., that these
drones are becoming part of our daily life. However, the security and privacy of these
drones are an open challenge [13]. In recent times, another emerging field of research has
been the attempt to make drones smart by adding a few sensors that a small drone may
be sufficiently capable of carrying. A set of devices such as sensors, transmitters, and
cameras for many different and complex applications can make drones more useful and
effective [14].

Small drones are opening new avenues for the defense and civil industries. However,
small drones are vulnerable to privacy and security threats due to a lack of appropriate
architecture. Evolutions in the Internet of Drones (IoD) and Internet of Things (IoT) provide
new directions and also pose additional challenges related to data privacy and data security.
The basic architecture and design require modification in order to provide a more secure
and reliable network. In the recent past, the structure of a typical drone has been based on
a layered architecture [1], as shown in Figure 1.

Figure 1. Layered architecture for industrial drones.

In a typical layered architecture [1] of industrial drones, the drone layer is the first
layer, where a quadcopter or other mini drone has a camera attached to it. This drone is
attached to an IoT hub through an IoT gateway. Here, IoT gateways play an important role
in providing communication; for example, a cloud-based IoT Hub of a base-station. The
data received at IoT Hub is further passed to the data processing layer to investigate the
data stream of the drone. The results of data analysis are stored in data storage centers
at the data storage layer, and data are streamed to the data visualization layer, which
visualizes the drone data analytics. This platform can be used in Microsoft’s Azure services
for cloud storage and Hub services. However, a problem with such a platform is the lack
of support for cybersecurity and data privacy. The Internet of Drone Things (IoDT) [15] is
another recent idea that introduces the use of IoT with drones, allowing drones to connect
with an IoT network. In this research, the idea of the IoDT is proposed along with security
and privacy concerns. The proposed work proposes the use of the IoT with drones to
obtain smart drones that have decision-making ability, and we use blockchain technology
to make these smart drones secure and private.

The proposed framework consists of seven layers: the drone layer, edge processing
layer, security and privacy layer, data connection layer, data processing layer, data storage
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layer, and data visualization layer. The main goals of this complete IoDT-based architecture
are as follows:

• A layered framework is designed to provide security and privacy in the small drone’s
network;

• We highlight the design details of the proposed framework, implementation, hardware
components, and attack handling methods using ML models;

• The proposed framework utilizes IoT-based sensor data, drone data, and network
information to handle security attacks and achieves 99.99% accuracy;

• The experimental results prove the generalizability and robustness of the proposed
LRRF model, which is tested on two benchmark datasets—KDD CUP 99 and NSL-KDD.

Section 2 explains the related work regarding the identification of security threats
and attacks to drones and IoT systems. A small portion of the literature was found that
uses lightweight authentication processes to make drones secure. Section 3 describes the
research methodology and the proposed research framework for secure drone systems.
Section 4 discusses secure authentication and access control for drones. Section 5 presents
the experiments and results, and Section 6 discusses the conclusions and future work.

2. Related Work

The typical usage of drones is for defense and military purposes. The drones range
from military usage 200 feet war machines to tiny, inch-wide micro flying particles in the air.
The size of drones is also a very important feature for their uses and purposes. The flying
range also varies from a few meters around the operators to advanced military drones that
fly around 17,000 miles without land controls. The maximum flight time also varies with
altitude, surface area, landscape, etc. The height of the flight also varies from a few meters
to 65,000 feet [1].

2.1. Security Threats to Drones

Drone security involves several types and layers according to their use, size, and
control techniques. In most cases, the drone uses the Wi-Fi communication protocol
(IEEE 802.11) [15]. The drone framework includes a Wi-Fi network and respective ground
stations, which are vulnerable to cyber security threats. The lack of encryption techniques
on their chips can lead to the hijacking of drones [16]. Other attacks, such as man-in-the-
middle attacks, normally range up to 2 km and are also a cause of hijackings [4]. The
IoD is becoming very popular in the military industry [17]. One main challenge regards
privacy and security concerns in its design. Privacy issues involve the protection of data,
information leakage, data accessibility, and data encryption and decryption techniques [18].
In the past few years, many researchers have identified security threats. These threats
are categorized into four types: jammers, sensor-based and protocol-based threats, and
compromised components. A literature review of these four categories is presented in
Table 1.

Table 1. Typical cybersecurity and data privacy threats to smart drones.

Attack Common Cybersecurity Threats Threats Identified Citations Countermeasures Citations

Protocol-based Attacks

Security of Communication Link [5,15,18,19] [18]
Data Confidentiality Protection [10]
Replay Arrack [20,21] [22]
Privacy Leakage [5,10]
De-authentication Attack [4,15]

Sensors based Attacked
GPS Spoofing/Jamming Attack [13,23,24] [25,26]
Motion Sensors Spoofing [27] [28]
UAV Spoofing/Jamming Attack [13]

Compromised Component IoT Security Threats [13,29]
Control/Data Interception [13,19]

Jammers Denial of Service [4,13,15]
Stop Packet Delivery [17] [17]
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Table 1 shows that the previous literature has mostly focused on the identification of
cyber security threats in drones. The solution to these threats is not discussed in many cases.
A research avenue for researchers was the use of encrypted data during the transmission
of drone data to its base station by using an encryption algorithm for safe and secure
data transmission [17]. Small drones have been in the public eye in the past decade
due to their small size, low weight, and wingspan. The small drone is also a threat to
public and government data privacy [30]. Many other pieces of research have discussed
security threats and challenges faced by drones [29,31–35]. Tian discussed an effective
and intelligent authentication model for the edge-assisted IoD that ensured the security of
the drone data network [36]. Likewise, Hell presented a monitoring system for the drone
data security of a factory area [2]. In 2019, authors proposed a drone for sensing gas in a
factory [3]. Drones are mostly being used for monitoring purposes in the agriculture and
security fields.

Investigating cyber security threats related to drones has been a widely discussed
research area in the last decade. Drone applications of a smart city and their related
privacy issues are discussed in [5]. Some important issues are also discussed in Table 1.
Researchers have also discussed the cybersecurity threats of drone networks and their
limitations and future directions [37]. Other similar studies [6,38,39] presented applications
and challenges in business. Some proposed the use of blockchain for safe data transmission
using 5G and IoT-based drones [39]. However, this system identified types of threats and
their intensity manually. An efficient, intelligent and secure system of drones that can
investigate cyberattacks and enact preventive measures to ensure drone data security is
required. Some other studies [7,40–42] identified challenges and their relevant solutions to
security issues related to drones used in industrial and commercial areas. A few studies
tried to solve the problem of the authentication of devices by using key agreement [40] and
key-enabling data [7] for secure drone data delivery. The application of IoT-based drones in
agriculture is discussed in [8,9]. The hijacking of drones, drone data, and UAVs is a common
problem faced by commercial drones, as discussed in [20–23]. The countermeasures and
solutions of these problems are proposed in [22] and [23]. GPS spoofing is another common
problem related to drones [24] and UAV machines and needs a safe, secure, and authentic
solution. Some other studies on drone hijacking and the control intercepting of a drone are
also detailed in [25–28].

2.2. Machine Learning for Drone Security

The basic types of machine learning techniques include supervised, unsupervised, and
semi-supervised learning. A literature review revealed that machine learning models have
been utilized by many researchers to deal with cyberattacks in mobile-based networks [43],
sensor-based wireless networks [44], cloud-computing [45], and IoT-based systems [44].
Vedula et al. combined a supervised learning model with a self-learning model through RF
and LSTM (autoencoder) to detect DDoS attacks using two features [46]. Researchers pro-
posed an approach to detect and control an actuation attack in a constrained cyber-physical
system using a probabilistic approach in [47]. No work has been found dealing with
cyberattacks using machine learning models in drone networks. We have also proposed an
access control system in drone security. Our previous work showing the use of machine
learning for wireless network security systems is presented in Table 2.

Table 2. Typical cybersecurity and data privacy threats to smart drones.

Sr. No Attacks Security Technique Machine Learning Solution

1 Jamming Secure Offloading Q-learning [43,45] DQN [48]
2 Denial of Service Secure Offloading Neural Networks [45] Multivariate Correlation Analysis [49] Q-learning [50]
3 Malware Access Control Q/Dyna-Q/PDS [51] K-nearest neighbors [52] Random Forest [52]
4 Intrusion Access Control Naive Bayes [44] Support Vector Machine [44] Neural Network [53] K-NN [54]
5 Spoofing Authentication SVM [55] DNN [56] Dyna-Q [57] Q-learning [57]
6 Traffic blockage Authentication Q-learning [43]
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An extensive literature review ranging from 2010 to 2020 concerning privacy and
safety concerns of drone data security shows a large number of research works have been
published. Most of the studies discuss challenges, applications, and issues related to cyber
security, data privacy concerns, spoofing, hijacking drones, and other threats. However,
many researchers have highlighted the problem domain but have not provided a potential
solution to resolve these problems. In [39], a solution based on blockchain is devised for
data safety during transmission using 5G and IoT-enabled drones. This system is based on
the identification of threats manually. An authentication system based on keys for devices
was proposed that was not suitable in an IoT-based network of drones. There is a clear
research gap in the area of developing a safe and secure drone network by proposing a
solution that deals with cybersecurity threats and makes drones adaptable in industry and
the commercial sector.

A smart and intelligent system is required for the security of drones that can investigate
data of attacks and ensure the security of drones by taking proactive measures. In the
past, machine learning models were proposed in the field of cybersecurity for wireless
sensor-based networks and mobile-based networks but not for drone-based security. A
machine learning-based solution is proposed in this study for drone security authentication
and control access methods.

3. Proposed Architecture: Layers and Hardware Components

The proposed research primarily focuses on improving the cybersecurity of drones
and IoT devices. This research assists in enhancing the basic framework of drones—
particularly, small drones—to ensure reliability and security against common cybersecurity
threats, interception threats, and privacy threats. The proposed framework is presented
as a layered approach that deals with the security issues and analysis methods in each
layer. This layered approach provides data security and analysis techniques in addition
to the traditional operations of drones. Moreover, the layered architecture facilitates the
implementation and future enhancement and improvement of our method. In the proposed
approach, the use of machine intelligence by utilizing machine learning models improves
drone data security. The proposed framework is shown in Figure 2.

Figure 2. Proposed architecture for smart drone security.

Small drones are opening new possibilities in the defense and civil industries. How-
ever, small drones are vulnerable to privacy and security threats due to a lack of appropriate
architecture. Evolutions in the IoD and IoT provide new directions and also pose additional
challenges related to data privacy and data security. The available framework is not yet
secure and reliable in terms of data privacy concerns.
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3.1. Layers

A layered architecture [1], as shown in Figure 2, that is typically used for smart drones
is updated by adding a security and privacy layer and updating the data processing layer
with machine intelligence components.

3.1.1. Drone Layer

In the proposed layered architecture of industrial drones, the first layer is the drone
layer, where a quadcopter or other mini drone has a camera attached to it. This layer is
updated by IoT sensor data. Smart sensors are used, including a GPS sensor, altitude
sensor, radar, and camera. This is the first step in the proposed architecture. This layer
can perform sensing, recording, and sending the information recorded by drones to the
next layer. In this layer, an unmanned aircraft system (UAS) drone is involved, which is
responsible for drone flight operations, information recording by sensors, etc. The UAS
consists of two parts: a ground controller and a communication connection. In the proposed
architecture, a DJI phantom 3 drone is used, which consists of a custom remote controller
and communication link. In the proposed architecture, sensors are attached to the drone.

3.1.2. Edge Processing Layer

In the second layer—the edge processing layer—the drone and IoT raw data are
forwarded to the security and privacy layer, where it is verified that the data originate from
authenticated devices. This layer deals with the communication and transmission of data
to the next station; i.e., the cloud layer. Several gateway device mechanisms are available
which provide wireless communication. Wi-Fi communication transmits information at a
fast speed. The edge processing layer provides device to cloud communication efficiently.
This layer is responsible for data protection, cashing, and flooding. The proposed research
uses the Azure IoT gateway for cloud communication. The architecture of the IoT gateway
is shown in Figure 3.

Figure 3. IoT gateway model.

3.1.3. Security and Privacy Layer

This layer plays an important role in providing device authentication and secure
access control by using machine learning models. At this level, the safety and security of
data are implemented, which is the key element of this IoT framework. There are several
types of privacy threats that can occur at this stage. These are as follows:

1. Physical privacy threat;
2. Behavior privacy threat;
3. Location privacy threat.

Physical privacy is related to capturing someone’s property. If a third party is secretly
monitoring the drone information, then the private information of someone’s property can
be compromised. A location privacy threat refers to someone’s location being captured
by an unauthorized person. A behavior privacy threat is related to the monitoring of
someone’s activities and behavior by an unauthorized person. Such types of security risks
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must be tackled by using authentication schemes and protocols. Several types of security
breaches are used by unauthorized persons to make such security threats. Intrusion,
spoofing, jamming, and DoS attacks are the most common kinds of threat. In the proposed
architecture, device authentication is maintained using a machine learning algorithm to
detect and alert users of such security attacks.

3.1.4. Device Connection Layer

IoT gateways play an important role in providing a link for communication to a cloud-
based IoT Hub at a base station. Here, an extra module is added for security orchestration
and automation to ensure connectivity for only authenticated devices. The IoT Hub works
by providing a message medium between IoT applications and IoT devices. The IoT hub
allows message passing between IoT devices and cloud systems in an IoT network. This
communication is bidirectional. In this layer, security arrangements for only authenticated
devices are made. Figure 4 shows the registration and encryption process of devices that
are attached to the network. Sensor data, along with drone and network information, is
forwarded to the blockchain client, which performs data integrity protection and stores
the information in a database on a cloud server. A basic blockchain mechanism provides
devices and the IoT security in real-time.

Figure 4. Blockchain-based communication for a drone.

3.1.5. Data Processing Layer

The data received at the IoT Hub are then passed to the data processing layer to
analyze the data stream of the drone. Here, two new modules are implemented: a machine
intelligence module that performs intelligent data analysis and a data hub service that
assists in smooth and simple cloud storage. Several machine learning algorithms are
available that are suitable according to the situations and requirements of data. This
research focuses on device authentication using an intelligent machine learning approach.
This layer consists of an authentication scheme based on the Naïve Bayes model, an
intelligent machine learning algorithm. The IoT hub layer works by authenticating devices
using the timestamp data of drones for a fixed interval of time. Drone flight data are used
for the training and testing of the model. Firstly, training of the model is performed, and
then testing is carried out to check if the model is intelligent enough to detect malicious
drone activities. If drone information is miscellaneous, the model will alert the system
and stop the device from connecting to the cloud. If a drone’s behavior is not suitable, it
is detected immediately, and unauthorized access is denied using machine intelligence.
Several security threats are associated with flight operations. A man in the middle attack
is the most common kind of threat, which occurs when a third person hijacks the drone
and takes it over. The spreading of false information can also occur when an unauthorized
person tries to take control of the drone. In the proposed architecture, a model is trained
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using the Naïve Bayes classifier, and this trained model is used to authenticate newly
engendered aircraft paths. We have used the KDD’99 dataset and real-time dataset to
determine accuracy, precision, and recall. Precision is the rate of correct predictions that
are truly correct, and recall is the rate of correct predictions that are incorrect in reality.

3.1.6. Data Storage Layer

The results of the data analysis generated by the data processing layer are stored
in the data storage centers at the data storage layer. A cloud-based NoSQL database is
used for the storage of results generated by drones in the drone layer. The data consist
of IoT sensor data along with network and drone information. The NoSQL database
provides the schema-less storage of information, making it easy to access and retrieve data
quickly. A large volume of data can be stored with this technique. A NoSQL databse is a
self-referential database, which makes it more useful than SQL databases. Figure 5 shows
the common storage structures that are used in such databases. A document structure,
graph structure, key–value structure, and column structure are shown, which are the most
used structures.

Figure 5. Storage structures used in NoSQL databases.

3.1.7. Data Visualization Layer

The data visualization layer allows data monitoring using several tools and services.
Microsoft Azure services for storage services and hub services are used in this platform. A
mobile app is used to view the results generated by the visualization layer, showing the
predictions made by our intelligent model about the security level of a drone. Drone attacks
are identified using the intelligent Naïve Bayes model. Figure 6 shows the architecture
of how business intelligence works using stream analytics results, which are stored in
a storage center. These results are used by Power BI, which is a platform for business
intelligence modeling and result visualization.

Figure 6. Microsoft Azure working and hub services.
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3.2. Hardware Components

The hardware components used in this experiment are cheap and easily available in
the market. As the microcontroller, an Arduino mega 2560 with a built-in WiFi module
ESP8266 was used as a processing device to receive data from sensors. Figure 7 shows the
hardware components used in the proposed methodology.

Figure 7. Hardware components of the proposed system.

3.2.1. DJI Phantom 3 Drone

Drones are now available in different shapes and sizes. These shapes also define
the working of a drone concerning its working style and size. The drone used in the
proposed framework is a powerful Phantom 3 standard flying vehicle produced and
distributed under the banner of DJI. It is controlled by a custom controller that can be
connected wirelessly from distant areas. Table 3 shows the specifications of this unmanned
aerial vehicle.

Table 3. Detail of classes in the dataset.

Class Description

Normal Connections are generated by simulating user behavior.
DoS Attack Use of resources or services is denied to authorized users.
Prob Attack Information about the system is exposed to unauthorized entities.

User to Remote attacks Access to account types of administrator is gained by unautho-
rized entities.

Remote to local attacks Access to hosts is gained by unauthorized entities.

3.2.2. Radar Sensor

A radar sensor is used to track, locate, and identify items from distant locations. These
sensors work by transmitting electromagnetic energy toward the objects and target areas.
These sensors can precisely detect objects, as compared to optical sensors. Accelerometers
can be used in place of a radar sensor. In the proposed system, an HC-SR04 ultrasonic
proximity sensor is used for this purpose. This sensor calculates object patterns. Table 4
shows the sensor specifications.

Table 4. Performance measures used for evaluation in this study.

Evaluation Metric Formula

Accuracy TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Recall TP
TP+FN

F1-Score 2* precision.recall
precision+recall
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3.2.3. GPS Sensor

The GY-GPS6MV2 is a global positioning system receiver device that consists of an
NEO-6M crumb combined on an electric board. It consists of batteries and an LED light.
The light is turned on when it sends or receives GPS data to/from satellites. This sensor
module also provides a sensitivity of around −161 dBm. Table 5 shows the GY-GPS6MV2
specifications. Figure 8 shows the GPS sensor.

Table 5. Result comparison of classifiers.

Models Accuracy Precision Recall F1-Score

Random Forest 99.09% 99.71% 99.68% 99.69%
Decision Tree 99.05% 99.07% 99.18% 99.12%
Logistic Regression 99.35% 99.28% 99.28% 99.28%
Naïve Bayes 96.27% 97.23% 96.88% 97.05%
Support Vector Machine 99.07% 99.07% 99.18% 99.12%
MLP 98.46% 98.67% 98.18% 98.42%
LRRF 99.99% 99.99% 99.99% 99.99%

Figure 8. GY-GPS6MV2.

3.2.4. Pressure Sensor

BMP180 provides altitude and pressure values of a specified location with low battery
consumption. It is small in size and provides high accuracy. This module is factory
calibrated, which makes it more accurate than other altitude measurement sensors. Table 6
shows the specifications of this altitude measurement sensor. Figure 9 shows the hardware
of the pressure sensor.

Table 6. Performance comparison of proposed model with state-of-the-art models.

Methods Dataset Accuracy

Proposed (LR + RF) Drone Dataset 99.99%
Proposed (LR + RF) KDD CUP 99 99.99%
Proposed (LR + RF) NSL-KDD 99.99%

PCA + MCA [58] KDD CUP 99 94.20%
Deep neural model [59] KDD CUP 99 92.49%
DT-RFE [60] KDD CUP 99 99.21%
SVM-ANN [61] NSL-KDD 91.48%
Deep Hierarchical Model [62] NSL-KDD 83.58%
DT-RFE [60] NSL-KDD 99.23%
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Figure 9. BMP180.

3.2.5. ZigBee Wireless Transmission

ZigBee wireless transmission technology is currently widely used because of its feature
and analogy as well as digital data communication capabilities. XBee Pro S1 is used here,
which can send and receive data over long distances. Figure 10 shows the hardware of
this module.

Figure 10. XBee pro S1.

4. Securing Drones

A smart and intelligent system is needed for the security of drones that can investigate
the data of attacks and ensure the security of drones by taking proactive measures. A secure
IoD relies on security, reliability, and consistency to develop a trustworthy system. In past,
machine learning models have been proposed in the field of cyber-security for wireless
sensor-based networks and mobile-based networks but not for drone-based security. A
machine learning-based solution is proposed in this study for drone security authentication
and control access methods.

Various metrics are used for the evaluation of cyber-security systems. The purpose
of using these metrics is that they are better for handling various performance indices
in the cyber-security of a system. In this research, we propose the use of the following
cyber-security metrics to evaluate the performance of the proposed system [63].

• Drone cyber-security threat exposure;
• Denial of service attacks;
• Malicious attacks;
• Jamming;
• Spoofing.

The machine-learning-based research solution for secure authentication and access
control for drones and IoT devices is a key contribution of this research. This work aims to
fill the research gap by making drones safe and reliable against major cyber-security issues
and making them a useful monitoring tool, both commercially and for the industry. As
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explained in Section 3, the proposed architecture of the drone security system consists of
seven layers. Data from the drone layer and edge processing layer are passed through the
security and privacy layer before being forwarded to the device connection layer. At the
security and privacy layer, data are protected from security threats by deploying machine
learning models, where a mobile alert is sent when an attack is identified. Figure 11 shows
the mobile alert of an identified attack.

Figure 11. Result visualization.

4.1. Approach

In the previous section, the architecture and complete design details of the proposed
system are explained. In this section, we discuss the implementation of the proposed
system along with machine learning.

4.1.1. Dataset

This experiment was performed on real-time data of drones. This drone dataset
comprised geo-location-based features (latitude, longitude, and altitude), drone OBD data,
and KDD intrusion detection features [64]. The proposed model was trained and tested
with the drone dataset as well as with two other benchmark datasets for intrusion detection
and cyber security attacks prediction. Table 3 presents the classes of the dataset.

4.1.2. Machine and Deep Learning Models

Machine learning has contributed considerably to improving the results of rating pre-
diction based on reviews. There are many rich variants of machine learning classifiers that
exist for performing rating classification. A large number of machine learning classifiers
can be found in the Python Scikit-learn library. It is an open-source library with a large
user support base. In this study, the Scikit-Learn library was used for all the classifiers,
including Random Forest, the Gradient Boosting model, Extra Tree classifier, Naïve Bayes,
Logistic Regression, and Stochastic Gradient Classifier.

Random Forest is an ensemble learning classifier that works with the decision trees—
also called estimators—for classification. Results of various trees are aggregated by voting
to produce improved results [65]. Bootstrap samples are used to train trees using the
bagging technique. All trees are built in the same way to test the performance of the model
on test data. A higher weight is assigned to the decision tree with a low error rate resulting
in smaller chances of an incorrect prediction.

Decision Tree [66] is a commonly used machine learning model for text classification
and is based on multiple variables. This algorithm is applied to predict a target variable. It
classifies data features into branch-like segments that are used to build an inverted tree
including a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and
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can handle large-sized and complex datasets efficiently without imposing a complicated
parametric structure.

Logistic Regression is based on a statistical approach that analyzes the data and works
on multiple variables to predict the results [67]. It is a simple yet efficient algorithm with
low variance and is mostly used in classification. Features can also be extracted using this
model. It is easy to update with new data by using Stochastic Gradient Descent.

Bayes’ theorem is the foundation of the Naïve Bayesian classifier [68], in which
independent assumptions are made between predictors. It is very convenient to construct,
with simple iterative parameters estimation. Therefore, it is considered very suitable for
large datasets. In spite of being simple in nature, it gives extremely good results and
performs better than other sophisticated classifiers.

The Support Vector Machine (SVM) is very common in text classification. It draw hy-
perplanes that separate classes by maximizing the marginal distance. The SVM hyperplane
divides the text into two (non-overlapping) classes in the case of binary classification [69]. It
is simpler and less complex than deep learning methods and provides simple interpretabil-
ity [70]. SVM has also been widely used for intrusion detection [71,72].

Multilayer Perceptron (MLP) is a simple deep learning model and has a reasonable
classification ability. It is a layered model, where input layer neurons indicate the number of
features and hidden layers work on the basis of weights to process input data and feed them
to the output layer where neurons represent the output value. To obtain optimal results,
numbers of neurons and numbers of hidden layers are selected according to requirements.
To improve training efficiency for classification, the model is trained with the appropriate
values of hyperparameters. To deal with the weights of MLP layers, backpropagation is
generally used, which is based on Gradient Descent.

In hidden layers, the Rectified Linear Unit (ReLU) is used, and the sigmoid is used as
an activation function f (x) in the last layer.

f (x) =
1

(1 + e(−x))
(1)

In voting classifiers, the results of various classifiers are combined and the final
decision is made based on voting. Voting classifiers are generally classified into hard voting
and soft voting. The hard voting type considers the results predicted by the majority
of the classifiers. On the other hand, the soft voting category computes the percentage
weight of each classifier. For every record, the model predicts class probability, multiplies
it with the classifier weight, and averages it to determine the final outcome. This study
utilizes a voting classifier by combining Logistic Regression and Random Forest, which
outperformed other approaches at intrusion detection individually. Algorithm 1 describes
the working of the proposed voting classifier, which can be presented as follows:

p̂ = argmax{
n

∑
i

LogisticRegressioni,
n

∑
i

RandomForesti}. (2)

where
n

∑
i

LogisticRegressioni and
n

∑
i

RandomForesti both show the prediction result based

on probability against each test sample. After that, the probabilities for each instance by
both Logistic Regression and Random Forest pass through the soft voting criteria as shown
in Algorithm 1.

This is also shown in Figure 12.
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Algorithm 1 Ensembling of Logistic Regression and Random Forest Classifier (LRRF).

Input: input data (x, y)N
i=1

MLR = Trained_ LR
MRF = Trained_ RF

1: for i = 1 to M do
2: if MLR 6= 0 & MRF 6= 0 & training_set 6= 0 then
3: ProbRF− dos = MRF.probibility(dos− class)

4: ProbRF− normal = MRF.probibility(normal − class)

5: ProbRF− probe = MRF.probibility(probe− class)

6: ProbRF− r2l = MRF.probibility(r2l − class)

7: ProbRF− u2r = MRF.probibility(u2r− class)

8: ProbLR− dos = MLR.probibility(dos− class)

9: ProbLR− normal = MLR.probibility(normal − class)

10: ProbLR− probe = MLR.probibility(probe− class)

11: ProbLR− r2l = MLR.probibility(r2l − class)

12: ProbLR− u2r = MLR.probibility(u2r− class)

13: Decision function = max( 1
Nclassi f ier

, ∑classi f ier

(Avg(ProbRF−dos,ProbLR−dos),
(Avg(ProbRF−normal,ProbLR−normal),
(Avg(ProbRF−probe,ProbLR−probe),
(Avg(ProbRF−r2l,ProbLR−r2l),
Avg(ProbRF−u2r,ProbLR−u2r)))

14: end if

15: Return final label p̂

16: end for

RF LR

 P(1) p(4)

P(1)= (P RF + P LR)/2
P(2)= (P RF+ P LR)/2
P(3)= (P RF + P LR)/2
P(4)= (P RF+ P LR)/2
P(5)= (P RF+ P LR)/2

Final Prediction= argmax{P(1), P(2), P(3), P(4), P(5)}

Instance

 P(2)  P(3)  P(1) p(4) P(2)  P(3) p(5)p(5)

Figure 12. Proposed voting classifier architecture (LRRF).
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5. Experiments and Results

In the previous section, the list of proposed sensors and algorithms is explained and
the experimentation is explained in detail. In this section, the results produced by the model
as well as the experiment are explained. The results are displayed for the mobile system
consisting of the security status of the drones and the IoT network identified using machine
learning. This study utilizes four evaluation measures to compare the performance of
the models. The confusion matrix help to calculate these measures. The elements of the
confusion matrix are the True Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN). The measures of the performance are given in Table 4.

5.1. Comparison of the Results of the Proposed Model with Baseline Classifiers

In this section, the results obtained from the experiments are discussed. Results of
the proposed model are evaluated and compared with the other state-of-the-art machine
learning models employed on the drone dataset. The classifiers employed in this study are
Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, MLP, and LRRF (voting
ensemble of Logistic Regression and Random Forest). All experiments were performed in
Python using sklearn, keras and Tensorflow.

Data were classified into three classes: spoofing, jamming and DOS attack. In this
task, 99.99% accuracy was obtained, which is the best accuracy score for the cybersecurity
controlling process.

A comparative analysis of classifiers was performed on the drone dataset. Table 5
presents the evaluation results of classifiers. The analysis of the results reveals that the
machine learning models as well as a simple deep learning model have shown considerable
results for intrusion detection on the drone dataset. It can be seen in Table 5 that Naïve Bayes
shows the lowest results in terms of accuracy, precision, recall, and F1-Score. However,
MLP shows a slightly better accuracy at 98.46%. Furthermore, Random Forest, Decision
Tree, and SVM achieve a value greater than 99% in terms of all evaluation measures. Our
proposed LRRF method achieves robust results with 99.99% values in terms of accuracy,
precision, recall, and F1-Score in classifying attacks into DoS, Prob, R2L, and U2R on
thedrone dataset.

From Table 5, it can be observed clearly that the voting ensemble of the two best-
performing models can accurately classify attacks into four categories—DoS, Prob, R2L,
and U2R—with 99.99% accuracy. The graph shows the comparison of the drone dataset
performance along with system data. The drone data are given to the machine learning
model for the identification of cyber-attacks and to generate alerts.

5.2. Comparison with Other State-of-the-Art Approaches

Table 6 shows the accuracy comparison of the proposed voting classifier with state-
of-the-art models from the previous literature. It can be observed that researchers have
applied various approaches such as SVM-ANN, PCA + MCA, and DT-RFE to enhance the
performance of the models for intrusion detection, and some have employed the latest
deep learning approaches such as the Deep Hierarchical model. However, the proposed
approach outperformed all approaches with 99.99% accuracy for intrusion detection.

To show the robustness and generalizability of the proposed approach, we have also
experimented on KDD Cup 99 [73] and NSL-KDD [74] datasets as shown in Table 6. The
proposed LRRF model is superior over all state-of-the-art models from the literature and is
suitable for intrusion detection.

6. Conclusions

This paper proposes IoT-aided cyber-security for drone-based networks using a voting
ensemble of machine learning algorithms. This framework utilizes IoT-based data from
sensors, drones, and network information to achieve security-level patterns and identify
the security attacks using these patterns. With this framework, the model can identify
attacks in the network data. The proposed framework is tested with the drone dataset and
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shows robust results in real-time cyber attack identification. The accuracy achieved by the
model is 99.99%, which is greater than previous approaches. The accuracy, precision, recall,
and F1-score are calculated to estimate the performance. The proposed LRRF model works
by identifying attack types accurately and proves its generalizability and robustness. In the
future, the proposed framework will be tested on other domains for intrusion detection.
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67. Korkmaz, M.; Güney, S.; YİĞİTER, Ş. The importance of logistic regression implementations in the Turkish livestock sector and

logistic regression implementations/fields. Harran Tarım ve Gıda Bilimleri Dergisi 2012, 16, 25–36.
68. Leung, K.M. Naive bayesian classifier. Polytech. Univ. Dep. Comput. Sci. Risk Eng. 2007, 2007, 123–156.
69. Ribeiro, A.A.; Sachine, M. On the optimal separating hyperplane for arbitrary sets: A generalization of the SVM formulation and

a convex hull approach. Optimization 2020, 1–14. [CrossRef]
70. Xu, B.; Shirani, A.; Lo, D.; Alipour, M.A. Prediction of relatedness in stack overflow: Deep learning vs. SVM: A reproducibility

study. In Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
Oulu, Finland, 11–12 October 2018; pp. 1–10.

http://dx.doi.org/10.1109/ACCESS.2016.2565198
http://dx.doi.org/10.1109/COMST.2014.2320099
http://dx.doi.org/10.3390/electronics10172105
http://dx.doi.org/10.1109/TCNS.2016.2549640
http://dx.doi.org/10.1109/TMC.2017.2687918
http://dx.doi.org/10.1007/s00500-014-1511-6
http://dx.doi.org/10.1109/COMST.2015.2494502
http://dx.doi.org/10.1007/s10115-011-0474-5
http://dx.doi.org/10.1109/TNNLS.2015.2404803
http://dx.doi.org/10.1109/TVT.2016.2524258
http://dx.doi.org/10.1155/2016/1467051
http://dx.doi.org/10.1109/ACCESS.2020.2980937
http://dx.doi.org/10.1155/2020/2835023
http://dx.doi.org/10.1080/18756891.2016.1237186
http://dx.doi.org/10.1109/ACCESS.2020.2973730
http://dx.doi.org/10.1016/j.compind.2018.08.002
http://dx.doi.org/10.1021/ci034160g
http://www.ncbi.nlm.nih.gov/pubmed/14632445
http://www.ncbi.nlm.nih.gov/pubmed/26120265
http://dx.doi.org/10.1080/02331934.2020.1830089


Electronics 2021, 10, 2926 19 of 19

71. Wang, H.; Gu, J.; Wang, S. An effective intrusion detection framework based on SVM with feature augmentation. Knowl.-Based
Syst. 2017, 136, 130–139. [CrossRef]

72. Tao, P.; Sun, Z.; Sun, Z. An improved intrusion detection algorithm based on GA and SVM. IEEE Access 2018, 6, 13624–13631.
[CrossRef]

73. Siddique, K.; Akhtar, Z.; Khan, F.A.; Kim, Y. KDD cup 99 data sets: A perspective on the role of data sets in network intrusion
detection research. Computer 2019, 52, 41–51. [CrossRef]

74. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
IEEE: Piscataway, NJ, USA, 2009; pp. 1–6.

http://dx.doi.org/10.1016/j.knosys.2017.09.014
http://dx.doi.org/10.1109/ACCESS.2018.2810198
http://dx.doi.org/10.1109/MC.2018.2888764

	Introduction
	Related Work
	Security Threats to Drones
	Machine Learning for Drone Security

	Proposed Architecture: Layers and Hardware Components
	Layers
	Drone Layer
	Edge Processing Layer
	Security and Privacy Layer
	Device Connection Layer
	Data Processing Layer
	Data Storage Layer
	Data Visualization Layer

	Hardware Components
	DJI Phantom 3 Drone
	Radar Sensor
	GPS Sensor
	Pressure Sensor
	ZigBee Wireless Transmission 


	Securing Drones
	Approach
	Dataset
	Machine and Deep Learning Models


	Experiments and Results
	Comparison of the Results of the Proposed Model with Baseline Classifiers
	Comparison with Other State-of-the-Art Approaches

	Conclusions
	References

