
electronics

Article

An Adaptive Routing Framework for Efficient Power
Consumption in Software-Defined Datacenter Networks

Mohammed Nsaif 1 , Gergely Kovásznai 2 , Anett Rácz 3 , Ali Malik 4 and Ruairí de Fréin 4,*

����������
�������

Citation: Nsaif, M.; Kovásznai, G.;

Rácz, A.; Malik, A.; de Fréin, R. An

Adaptive Routing Framework for

Efficient Power Consumption in

Software-Defined Datacenter

Networks. Electronics 2021, 10, 3027.

https://doi.org/10.3390/

electronics10233027

Academic Editors: Dongkyun Kim,

Qinghe Du, Mehdi Sookhak, Lei Shu,

Nurul I. Sarkar, Jemal H. Abawajy

and Francisco Falcone

Received: 18 October 2021

Accepted: 30 November 2021

Published: 4 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Technology, University of Debrecen, 4032 Debrecen, Hungary;
mohammed.nsaif@mailbox.unideb.hu

2 Department of Computational Science, Eszterhazy Karoly Catholic University, 3300 Eger, Hungary;
kovasznai.gergely@uni-eszterhazy.hu

3 Department of Applied Mathematics & Probability Theory, University of Debrecen, 4032 Debrecen, Hungary;
racz.anett@inf.unideb.hu

4 School of Electrical and Electronic Engineering, Technological University Dublin, D07 EWV4 Dublin, Ireland;
ali.malik@tudublin.ie

* Correspondence: ruairi.defrein@tudublin.ie

Abstract: Data Center Networks (DCNs) form the backbone of many Internet applications and
services that have become necessary in daily life. Energy consumption causes both economic and
environmental issues. It is reported that 10% of global energy consumption is due to ICT and network
usage. Computer networking equipment is designed to accommodate network traffic; however,
the level of use of the equipment is not necessarily proportional to the power consumed by it. For
example, DCNs do not always run at full capacity yet the fact that they are supporting a lighter load
is not mirrored by a reduction in energy consumption. DCNs have been shown to unnecessarily
over-consume energy when they are not fully loaded. In this paper, we propose a new framework
that reduces power consumption in software-defined DCNs. The proposed approach is composed of
a new Integer Programming model and a heuristic link utility-based algorithm that strikes a balance
between energy consumption and performance. We evaluate the proposed framework using an
experimental platform, which consists of an optimization tool called LinGo for solving convex and
non-convex optimization problems, the POX controller and the Mininet network emulator. Compared
with the state-of-the-art approach, the equal cost multi-path algorithm, the results show that the
proposed method reduces the power consumption by up to 10% when the network is experiencing
a high traffic load and 63.3% when the traffic load is low. Based on these results, we outline how
machine learning approaches could be used to further improve our approach in future work.

Keywords: DCN; integer programming; optimization; power consumption; QoS; SDN

1. Introduction

In recent years, energy consumption has become an important issue in a range of
technology sectors such as Wireless Sensor Networks (WSN), Mobile Crowd Sensing
(MSC), Internet of things (IoT) and Data Center Networks (DCN) [1–3]. Data centers aim
to provide reliable and scalable computing infrastructure for massive Internet services [4].
Data centers promise several benefits such as: (1) flexibility without sacrificing forwarding
performance; (2) high efficiency which is achieved by optimizing routing; (3) ease of
deployment/administration; and finally, (4) cost reduction [5]. The recent Software-Defined
Networking (SDN) paradigm decouples the network control plane from the data plane, as a
result, the level of network programmability is increased. New SDN architectures make
new, bespoke solutions for a wide range of networking issues possible. In terms of cost
reduction in DCNs, two main strategies have been adopted: (1) smart energy management
and (2) software-defined power consumption reduction. These approaches are similar.
They have the same goal, which is to enhance the energy consumption efficiency by

Electronics 2021, 10, 3027. https://doi.org/10.3390/electronics10233027 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6768-4644
https://orcid.org/0000-0001-8455-0218
https://orcid.org/0000-0002-6373-3194
https://orcid.org/0000-0002-2866-0743
https://orcid.org/0000-0002-3912-1470
https://doi.org/10.3390/electronics10233027
https://doi.org/10.3390/electronics10233027
https://doi.org/10.3390/electronics10233027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10233027
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10233027?type=check_update&version=2

Electronics 2021, 10, 3027 2 of 18

reducing redundancy and capital costs. According to the Energy Efficiency Status Report
which was published by the European Commission Joint Research Center in 2012 in [6],
the total energy consumption of data centers in 2007 was estimated to be 56 TWh. This
constitutes 2% of the total energy consumption in the EU each year. It is expected that this
power consumption will nearly double to reach 104 TWh/year in the future [6,7]. In the
same context, in 2017, other studies showed that the energy consumption of DCNs was
estimated to account for 1.4% of the global electricity energy usage and the Compound
Annual Growth Rate (CAGR) was estimated to be 4.4% for the period 2007–2012. This is
much higher than the projected 2.1% increase in global demand from 2012 to 2040 estimated
in [8]. In Table 1, we summarize the study conducted in [6], which shows the decrease in
energy consumption of DCNs achieved in Europe due to consolidation, virtualization and
energy-efficient technologies especially in cooling over the period 2013 to 2020.

Table 1. Decreasing energy consumption in DCNs.

Western Europe 2013 2014 2015 2016 2017 2018 2019 2020

Net data center space
(thousands of m2) 10,256 10,221 10,105 10,055 9875 9555 9365 9155

Average power density
(kW/m2) 1.1 1.1 1.2 1.2 1.3 1.3 1.2 1.3

Total power usage
(GW) 11.3 11.2 12.1 12 12.8 12.4 11.3 10.9

It has been suggested that there are three different strategies that can be pursued to
improve the energy power consumption of DCNs. The first approach consists of improving
efficiency by being aware of the energy consumption associated with different types of
traffic. This approach is inspired by the fact that network components are frequently
underutilized. The key concept of this technique is to turn network components on and off
based on traffic demand. It is projected that this strategy has the ability to save up to 50%
of the total energy usage when traffic loads are low (for example, during the night) in the
following studies [4,9–11]. The second approach focuses on making end-systems aware of
possible energy savings. This class of approaches attempts to run underutilized physical
server tasks on a fewer number of servers in SDN-based DCNs. Notable proponents of this
approach include the authors of [12–15]. The third class of approaches is a rules placement
technique. In this approach the central controller converts high-level policies into switch-
readable rules. On the one hand, rules placement is considered to be an NP-hard problem
and therefore, heuristic solutions are required. On the other hand, heuristic-based methods
can not guarantee that the optimal solution will be found. There is an inherent trade-off
between obtaining the optimal solution and having a solver which is practical, e.g., it runs
in a short enough time to yield a solution which is useful in an engineering setting. In many
cases, the complexity that results from the constraints required to obtain the optimum
solution causes the performance of these solvers to be unpractical [15–18]. In recent years,
Internet traffic volume has been growing exponentially due to the dramatic increase in
the use of live video streaming, video games and social networks [19]. Managing network
components by considering the footprint of traffic in DCNs has the potential for large
energy consumption savings.

In this paper, we adopt a traffic-aware approach to reduce the power consumption
in DCNs. We propose a new energy-efficient adaptive approach, which is called the Fill
Preferred Link First (FPLF) algorithm. FPLF aims to maintain the QoS and the energy
consumption of DCNs. This is achieved by continuously monitoring the traffic conditions
of the DCN by utilizing the OpenFlow protocol [20] to obtain the topology state and data
traffic information. It picks the most energy-efficient path that is below a pre-defined
threshold value. We demonstrate that FPLF can maintain satisfactory QoS whilst reducing
power consumption in DCNs.

Electronics 2021, 10, 3027 3 of 18

This paper is organized as follows. Section 2 introduces various power consumption
reduction techniques from the literature. The problem statement is given in Section 3.
The proposed model is presented in Section 4. The proposed algorithm is presented
in Section 5. The implementation and and an analysis of the performance of the FPLF
algorithm is presented in Section 6. We conclude by summarizing the key contributions
and results in Section 7 and outline some future directions.

2. Related Work

This section presents important, recent studies which have adopted Integer Program-
ming (IntP) to address the power consumption reduction challenge for DCN routing
algorithms. We outline the strengths and limitations of current approaches. We start by
considering DCN routing algorithms in enterprise and data center environments. The state-
of-the-art forwarding approach uses Equal Cost Multipath (ECMP) to stripe flows across
available paths using flow hashing statically [21]. Collisions overwhelm switch buffers
and degrade the overall switch used. Due to this, static mapping of flows to paths does
not account for the current network use or the size of the flows. To resolve this problem,
Al-Fares et al. proposed an extensible and dynamic flow scheduling system called Hedera
in [22]. Hedera is a system that exploits path diversity in DCN topologies to enable a near-
ideal bisection bandwidth for a range of traffic patterns. Hedera collects flow information
from constituent switches, computes non-conflicting paths for flows, and instructs switches
to re-route traffic accordingly. Its goal is to maximize the aggregate network utilization
bisection bandwidth. However, this approach impacts active flows by changing the paths
as well as increasing power consumption levels.

The Elastic Tree algorithm was proposed by Heller et al. in [4]. This approach can
dynamically change idle network devices to sleep mode to save energy. The study suggests
that a topology-aware heuristic optimizer should split the flow and that it finds the link
subset easily. ElasticTree’s experimental results reveal that it can achieve an energy saving
of up to 50%. One drawback is that it does not consider the correlation among the flows.
In light of this observation we add this type of constraint in our enhanced version of
the model. The two-directions study presented by Luo et al. in [23] was called FLOWP.
FLOWP attempts to achieve both power reduction and QoS. An IntP formulation for
power-efficient flow scheduling was proposed. In the formulation, the network status and
the minimum threshold for the efficiency of links and switches was considered. The result
proved a saving of 30% was achievable and that the QoS was improved compared to the
approach in [4]. Traffic-aware energy approaches for cloud computing infrastructure are
introduced in [24], where two components are suggested: (1) The Data Manager (DM)
to control the states of switches and to detect input traffic; (2) Power Manager (PM) to
control the operating system modes of switches . The results reveal that all switches save
up to 30–35% on average. The Next Shortest Path and Next Maximum Utility heuristics
prioritized performance and energy savings, respectively. A single heuristic proposed by
Assefa and Ozkasap in [25] maximized a parameter called the Energy Profit Threshold
(EPT) to achieve both energy-saving and performance at the same time. Experiments using
a real network architecture and traces provided by SNDLib [26] indicated that a 50% energy
saving was possible. In the same context, the RESDN was also presented by Assefa and
Ozkasap in [27] as an energy efficiency metric that quantified energy efficiency based on
link utility intervals, the IntP formulation, and the method for maximizing the ratio for
energy saving of the SDN network. A Genetic Algorithm-based heuristic was presented
in [13] to minimize the number of modified rules and the network power consumption in
flow tables. The authors’ aim was to minimize the cost of re-configuration in the flow tables
when traffic volume changed. The results showed that the rule size reduction contributed
to reducing power consumption by approximately 20%, compared to similar methods.

The approaches considered above look to deliver high QoS whilst achieving energy
efficiency improvements. There exist methods that consider QoS from the perspective of
link failure probability and the frequency of usage of links [28] but that do not consider

Electronics 2021, 10, 3027 4 of 18

energy efficiency. Finally, the authors in [1] introduced fast heuristic methods as well as
iterative heuristic algorithms to select optimal controller placement and switch assignment
to minimize total control traffic in SDN-based IoT networks with the goal of reducing
power consumption. The study revealed that the algorithms achieved the near-optimal
solution within a shorter computation time. However, it is possible that the framework
for encoding prior information into path allocation could be adapted to consider the
QoS-energy efficiency trade-off considered here.

Many of the above studies used Linear Programming and IntP to solve the problems
and to give reasonable solutions which were scalable. However, some open problems
need to be further investigated such as the ability to include other network operation
conditions. For instance, traffic-aware methods should be able to support scalability as the
traffic load gets larger. In this case the complexity of finding feasible solutions should also
be considered. To address these challenges, this paper suggests an enhanced model that
introduces an acceptable trade-off level between energy savings and network performance.
This trade-off is suggested by the FPLF algorithm based on link utilization classification.
A more detailed description of the approach is given in Section 5, but first, we define the
problem and outline how the proposed solution operates.

3. Problem Statement and Proposed Solutions

For the majority of the time, it has been reported that the DCN is in a low-load state [5].
The problem is that energy consumption of DCN resources, such as links, is wasteful when
the utilization level is low. This is because engaging certain equipment in DCN activities,
e.g., routing, does not justify the additional cost of the associated energy consumption [4].
Therefore, our proposed approach causes a gradual increase in the number of active links
as the traffic demand increases. The opposite strategy is pursued when the traffic demand
is low.

Section 5 clarifies how the FPLF algorithm addresses this problem. In summary,
the FPLP algorithm aims to minimize the level of power consumption subject to achieving
an acceptable level of QoS. We continue by highlighting the general concept of the problem.
A study which measured and modeled the power consumption of OpenFlow switches
was published in 2014 [29]. The study summarized the sources of energy consumption
in SDN, and one of those sources was active ports. According to the authors, the under-
utilization of links caused an increase in energy consumption due to an increase in the
power consumption of ports. This is because the underlying technology used to establish
a link is two ports between two switches. We conclude that minimizing the number of
under-utilized links is one of the main factors that can be exploited to save power. Thus,
the mission of FPLF is to maximize the benefit from using the set of active links and their
capacity, i.e., to maximize the utilization of links.

We illustrate our approach in more detail in Figure 1. We construct a topology as an
example in order to analyze the performance of the two forwarding methods we propose
below. There are 20 switches and 16 hosts. Assume the links have the same bandwidth, BW.
The source and destination hosts of data flows f1 and f2 are C, H, and D, G, respectively.
The volume of traffic injected by f1 and f2 are V1 and V2, respectively. Assume that the
flows are sent to the DCN simultaneously at t = 0. When flows arrive at 16, the FPLF
algorithm checks the link utilization matrix so that it fills the active links to 90% of their
maximum utility. This percentage utilization is targeted for performance reasons between
the source and the destination. Once it is exceeded we open new paths. The end result is
that we keep as many links as possible in the off state. From a routing perspective, the path
16→ 13→ 2→ 9→ 12 is shared between both of f1 and f2 if and only if the utility of the
links is under the threshold value in the link utilization matrix.

At time t = 5, an additional flow is injected into the network. The host A sends the
flow f3 to the destination H. Assume that the total traffic volume of the flows exceeds the
90% target utilization, ∑3

i=1 Vi > 0.9, when f3 arrives at A1 FPLF checks the link utilization
matrix again, and directly opens a new path 15→ 13→ 1→ 9→ 11→ 19→ 12 in response.

Electronics 2021, 10, 3027 5 of 18

Note that this new path has more hops. In summary, FPLF classifies all the links in the first
path as being overloaded links. As a result of this overloaded status, FPLF opens a new
path and classifies the new path’s links as being under-utilized links. All the other links
are classified as being idle links, i.e., unused links.

Figure 1. Motivational example of the FPLF algorithm’s behavior.

4. Proposed Model

We start first by outlining some of the notation that will be used in the rest of the
paper. The notation is summarized in Table 2.

Table 2. List of notation.

Parameter Description

S Set of nodes (switches) in the DCN topology, S = {S1, . . . , Sn}
E Set of edges where eij ∈ E represents the connection between two switches Si and Sj
BWij adjacency matrix scaled by the bandwidth of the edges E equal to 1 Mbps for all links

Lij =

{
1, if eij is active
0, otherwise

F Set of flows
f =

(
f .Sr , f .Ds, λ f

)
A flow f ∈ F represented by source, destination and packet rate

FR(f , i, j) =

{
1, if flow f passes through edge eij
0, otherwise

U Utilization matrix where Uij represents the utilization of the link eij
T Input traffic matrix where Tij denotes input traffic of eij
C Link-cost matrix where Cij denotes the cost of the link eij
k number of the pods in the fat-tree topology
ESP energy-saving path
sr source switch
ds destination switch

4.1. Network Model

The network topology is modelled as an undirected weighted graph G = (S,E),
which has a vertex-set, S, and an edge-set, E. Each node is an OpenFlow switch and the
i-th switch is denoted Si. The role of each switch is to forward information based on the
path selected by the network controller. Each edge in the graph is a link. The link between
i-th and j-th switches is denoted by eij. Network links can be in either ON or OFF mode.
We define the binary variables: Lij to confirm the current mode state. The value of Lij is 1 if
the link between switches i and j is active. In other words, the link can transmit packets
between two ports. The value of Lij is 0 otherwise. In order to capture the flows traversing
the topology, the variable FR(f , i, j) takes the value 1, which means that f traverses the
edge eij. If eij is not traversed by the flow FR(f , i, j), it is set to 0. The link utilization
Uij represents the ratio of the size of the flows passing through the edge eij and the link
bandwidth BWij. When this ratio is scaled by 100, the utility of a link ranges from 0 to 100%.
A link utilization matrix, U, is constructed by considering the utilization of each edge.
The traffic of the DCN is represented by the set of flows F, where each f ∈ F is defined as
f =

(
f .Sr, f .Ds, λ f

)
. A flow represents a group of packets which have the same source and

destination address, that travel along the same route to reach their destination. The source

Electronics 2021, 10, 3027 6 of 18

and destination switches are denoted by sr and ds, respectively. Finally, the packet rate of
flow f is denoted λ f and is measured in bits per second.

4.2. Optimization Model

In this model, we consider the links as the main energy-saving components in the
network. To accommodate the provided traffic, the model uses the set of active links which
has the smallest cardinality. The optimization model considers the following problem
characteristics: (1) the optimization model’s parameters refer to a snapshot of the network
state for the sake of simplicity. This means that the model considers the network state
at a specific moment of time; (2) the model starts with a standard multi-commodity flow
problem. The constraints include flow conservation, link capacity, demand satisfaction,
and the total number of active links; and finally, (3) splitting a single flow into packets
across multiple links in the topology could save the energy by increasing overall link
utilization. However, the reordered packets at the destination, due to varied path delays,
can degrade the performance. As a result, we incorporate restrictions into our formulation
based on the entire flow.

We assume that all the links have the same energy consumption at the beginning.
The objective function is defined as

minimize

(
n

∑
i=1

n

∑
j=1

Lij

)
. (1)

The objective function in Equation (1) minimizes the number of active links, which
reduces the energy consumption in turn. We set Lij = 0, when there is no physically
connection between Si and Sj. When a physical link does exist, the value of the link is either
0 or 1 depending on the traffic demand. The model also takes into account the correlation
between the links and traffic volume. Therefore, the first and second constraints, which are
defined in Equations (2) and (3), respectively, define the relationship between the traffic
volume and link state,

Tij

BWij
6 Lij, ∀eij ∈ E, and (2)

Uij = ∑
∀ f∈F

FR(f , i, j) · λ f , ∀eij ∈ E. (3)

The third constraint is defined in Equation (4). It states that the utility of each link
should be less than the link capacity BWth minus the current flows described by the input
traffic matrix. This constraint acts to bound the value of Uij, by considering the active flows
fij and their packet rate values λ f ,

Uij 6 BWth − Tij, ∀eij ∈ E. (4)

The fourth and fifth constraints in Equations (5) and (6) guarantee the path of each
flow goes from a source to a destination,

n

∑
i=1

FR(f , f .Sr, i) = 1, ∀ f ∈ F, (5)

n

∑
i=1

FR(f , i, f .Dr) = 1, ∀ f ∈ F. (6)

To avoid packet loss, the sixth constraint in Equation (7) states that the incoming and
outgoing flows of the transit switches, which are neither sources nor destinations, should
be equal,

Electronics 2021, 10, 3027 7 of 18

n

∑
i=1

i 6=sr(f)

FR(f , i, j) =
n

∑
i=1

i 6=ds(f)

FR(f , j, i), ∀ f ∈ F, j ∈ S. (7)

To avoid the looping between nodes, we formulate the seventh constraint as follows
in Equation (8),

FR(f , i, j) + FR(f , j, i) 6 1, ∀ f ∈ F, i, j ∈ S. (8)

Finally, the eighth constraint in Equation (9) illustrates the correlation between links
and flow status variables, by pointing out that the link should be active if there is at least
one flow that passes through it,

FR(f , i, j) 6 L(i, j), ∀ f ∈ F, i, j ∈ S. (9)

4.3. IntP formulation

Our goal is to obtain the optimal solution, which performs appropriate link and flow
assignments, so that the traffic demands are satisfied. However, determining the best flow
assignment is an NP-complete problem according to the analysis in [4].

We implement our proposed model in LinGo [30], which is a high-level language for
optimization modeling. The inputs to the model are summarized by the notation in Table 2.
They include: the topology (fat-tree made up of k = 4), where disabled links have their
status set to zero; the capacity of the link (1 Mbps); the current state of the DCN traffic Tij;

and finally, flows f =
(

f .Sr, f .Ds, λ f

)
which are described by their source, destination,

and speed rate. The output of the optimizer is defined in Equation (10). The output of
the solver is the paths defined by the active links Lij for each flow and the current link
utilization Uij which increases and decreases according to the traffic input matrix, Tij,((

Lij
)

n×n,
(
Uij
)

n{
FR(f , i, j) | f ∈ F, eij ∈ E

})← LinGo
((

BWij
)

n×n,F,
(

Tinput
ij

)
n×n

)
. (10)

Regular network optimization models determine the optimal (shortest, fastest, cheap-
est, etc.) route from the source to the destination at a given time. In contrast, our model
can determine more paths at a time. In addition, it works like a “multi-layer” network
optimization model, where the model finds not only one optimal route for one flow with
a source and destination but for multiple input flows at a given time. It defines optimal
paths for all the input flows, as well as managing the current state of the network. It gets
the current traffic load as an input in parallel with new flow demands, which are then
considered when determining the optimal paths.

We inject different burst sizes and numbers of random flows into the DCN in order to
evaluate our approach. The results in Table 3 show the global optimal solutions for each
status. The number of flows appears in the second column. The size of the model (variables
and constraints) increases in parallel with the number of flows. In this state, the model
runtime is enormous when there are greater than ≈100 flows active at a time, because of
the large number of integer variables. We conclude that the limitation of the IntP model is
the long runtime when there are multiple, complex flows of traffic. In response, we develop
a heuristic algorithm which has the same goal, i.e., to minimize the number of active links
in DCNs, in the next section.

Electronics 2021, 10, 3027 8 of 18

Table 3. LinGo test analysis.

Case No. of Flows Objective
Value Total Variables Integer

Variables
Total

Constraints Memory (kB) Runtime (s)

1 120 35 156,912 155,616 319,249 51,179 9891.79

2 110 32 142,656 141,360 290,341 46,542 275.24

3 100 32 130,992 129,696 266,689 42,747 219.28

4 90 33 118,032 116,736 240,409 38,531 452.84

5 80 30 105,072 103,776 214,129 34,315 45.53

6 70 31 90,816 89,520 185,221 29,678 49.00

7 60 29 77,856 76,560 158,941 25,463 12.38

8 50 29 66,192 64,896 135,289 21,247 16.89

9 40 28 51,936 50,640 106,381 17,031 4.37

10 30 28 38,976 37,680 80,101 12,858 3.22

11 20 24 26,016 24,720 53,821 8599 2.22

12 10 19 14,352 13,056 30,169 4805 1.34

13 5 17 7872 6576 17,029 2697 0.79

5. Proposed Power Consumption Method

As in the proposed IntP Objective Function in Section 4.2, the intuition behind our
FPLF algorithm is minimizing the energy consumption of DCN. This is achieved by
maximizing the link utilization in Equation (11), which is defined for the aggregation and
core layer switches,

max

(
∑eij∈E Tij

BWth

)
, ∀eij. (11)

Therefore, the FPLF algorithm forces all switches to use the specified link as long as its
bandwidth is underutilized. Otherwise, when the link exceeds the threshold value, 90%,
of the bandwidth, the FPLF algorithm redirects flows to the shortest alternative path based
on a Dijkstra-like algorithm. Before FPLF starts, comprehensive statistics on traffic within
the DCN must be available. For this purpose, we developed a small monitoring model.

5.1. Monitoring Model

As a pre-requirement, to enable FPLF to properly work, we developed a small mon-
itoring model to collect all statistics, i.e, real-time traffic from each node by utilizing the
OpenFlow protocol 1.0. The OpenFlow protocol provides extensive statistics like flow,
port, and group table statistics. In our case, each link consists of two ports, therefore we
collect port statistics by sending the OpenFlow “port stats request messages” to all switches,
periodically. When receiving the response messages, the monitoring model extracts the
bytes and packets aggregation values. Then, according to the relation equation between
those regular intervals, the monitoring model calculates the instantaneous traffic change
value for each link,

instantaneous traffic = current state of traffic− last state of the traffic. (12)

5.2. FPLF-Adaptive Algorithm Components

FPLF incorporates three components. We begin by describing the Link-Utility (LU)
calculation component. This component is responsible for calculating the utilization matrix
U, which stores the utility, Uij, for all the links. We continue by describing the Link-Cost
(LC) component, which returns the link-cost matrix C. This matrix includes the costs Cij of
all the links. Finally, the Fill-Shortest Path (FSP) component forces the forwarding elements

Electronics 2021, 10, 3027 9 of 18

to utilize the specified links as long as the bandwidth BWij bound is satisfied. The pseudo
code of LU component is outlined in Algorithm 1. The input parameters are the traffic
demand set, F, and the underlay network graph, G, i.e., a Fat-Tree in our case. When a
traffic flow f = (f .Sr, f .Ds, λ f) passes through a link, eij, its corresponding utility Uij is

increased by
λ f

BWij
. The LU component returns the utilization matrix U which describes the

links as being overloaded, idle, or under-utilized. The pseudo code of LC is illustrated in
Algorithm 2. This algorithm computes the cost value for each link eij. The input parameters
are the utilization matrix U and the graph G. According to the utility values Uij, the LC
algorithm classifies the links to be either overloaded, idle or under-utilized and it sets a
different cost Cij for each link as a result of this classification. The cost values that are
generated by this component are used as an input to the FSP component. The pseudo-code
for FSP is illustrated in Algorithm 3. The FSP component computes the shortest path for a
given flow,

(
f .Sr, f .Ds, λ f

)
. The input parameters are the network graph, G, the link-cost

matrix, C, and the incoming flows
(

f .Sr, f .Ds, λ f

)
. The FPLF algorithm fills the preferred

links by selecting paths with under-utilization links. As the traffic volume increases, under-
utilized links gradually become overloaded links, and the FPLF algorithm compels the FPS
component to select idle links to meet the traffic demand. Thus, the FPS component finds
the most energy-saving path for the flow, depending on the cost values, namely overload,
idle, under-utilization of the links that are obtained from the LC algorithm. It is worth
mentioning that if all links become loaded, the FPLF algorithm shares new traffic demand
as overload traffic between the links. In terms of algorithm time complexity, the FPLF
algorithm has order O

(
|S|2

)
complexity as it depends on Dijkstra algorithm to pick paths

based on the minimum number of hops.

Algorithm 1: Link-Utility.
Input : Fat-Tree topology G , traffic demand F
Output : utilization matrix U of all links

1 U = 0
2 foreach edge eij ∈ G do
3 foreach (f .Sr, f .Ds, λ f) ∈ F passing through eij do

4 Uij ← Uij +
λ f

BWij

5 end
6 end
7 sleep()

Algorithm 2: Link-Cost.
Input : utilization matrix U, Fat-Tree topology
Output : link-cost matrix C

1 ∀ Cij ← cost.de f ault() . idle Uij
2 foreach edge eij ∈ G do
3 if Uij > BWth then
4 Cij ← cost.high() . overload eij
5 end
6 else
7 Cij ← cost.low(Uij) . underutilization eij
8 end
9 end

10 sleep()

Electronics 2021, 10, 3027 10 of 18

Algorithm 3: Fill-Shortest Path (Dijkstra-like algorithm).

Input : Fat-Tree topology G, flow
(

f .Sr, f .Ds, , λ f

)
, link-cost matrix C

Output : energy-saving path ESP
1 Set all switches unvisited with weight +∞
2 Set the weight of Sr to 0
3 while ∃ unvisited switch do
4 Si ← unvisited switch with lowest weight Wi
5 Add Si to ESP
6 Set Si visited
7 if Si = ds then
8 break
9 end

10 foreach unvisited Sj in neighborhood of Si do
11 Wj ← min(Wj, Wi + Cij)

12 end
13 end

6. Proposed Framework and Implementation

The experimental platform is constructed using the Mininet network emulator [31],
and the POX controller which is run using Ubuntu 20.04.2 LTS 64-bit. The network topology
is imported from the Fast Network Simulation Setup (FNSS) [32], and the FPLF algorithm
is implemented using the POX controller as POX modules. To generate network traffic from
servers within a DCN, the Distributed Internet Traffic Generator (D-ITG) [33] platform is
used. The architecture is shown in Figure 2.

 Monitoring
model

FPLF Routing
Algorithm

C
o
r
e

A
g
g
r
e
g
a
t
i
o
n

E
d
g
e

A BS
e
r
v
e
r
s

C D E F G H I J K L M N O P

D
a
t
a

P
l
a
n
e

1 2 43

14913 10 6175 18

197 815 16 1211 20

C
o
n
t
r
o
l

P
l
a
n
e

C
o
n
t
r
o
l
l
e
r

Southbound API

Northbound API

A
p
p
l
i
c
a
t
i
o
n

L
a
y
e
r Topology

Discovery and
Parser

Traffic Manager
(D-ITG)

Figure 2. Architecture of the proposed framework and its components: the primary contribution is
the FPLF algorithm and the traffic-aware optimizer blocks. OpenFlow was used on the southbound
interface and POX Python APIs were used on the northbound interface.

To demonstrate that the FPLF algorithm has an adaptive primary function proportional
to traffic demand, we will experiment with different scenarios of traffic demand.

Electronics 2021, 10, 3027 11 of 18

6.1. Experiment Design and Simulation Results

We now explore the possible energy savings of the FPLF algorithm over both low,
i.e., multiple small-size flows, and high traffic demand, i.e., multiple large size flows. We
considered fat-tree topology with k = 4, as depicted in the data plane of Figure 2 in our
experiments. We deployed a D-ITG transmitter onto the terminal of each sender server,
i.e., A-H, and a D-ITG receiver onto the terminal of the servers M-P. In essence, D-ITG was
used to inject high and low traffic load in the simulated network. Two UDP traffic patterns
were simulated here, namely, low and high traffic. We set the simulation time to be 2 min
for the low traffic case and 8 min for the high traffic. The packet size used for both patterns
was 512 bytes. The flow rate of low traffic was constant and set to 10 packets per second,
whereas, the high traffic was set to range over 10 to 400 packets per second. Traffic was
generated between the servers in Figure 2.

The results show that the FPLF algorithm collected all traffic in one core switch
as a best-case when the utility of the links of the paths was below the threshold value,
i.e., low traffic demand. This leads to the most significant energy savings because the FPLF
algorithm reduces the number of used core switches to the minimum number of links
with an idle:active ratio of 1:Ecore. Figures 3a and 4a show the power saving paths and a
time-varying utilization that is lower than the threshold value, respectively.

(a) Low traffic load

(b) High traffic load.

Figure 3. Forward (–), downward (–), and unused (–) paths are illustrated along with the cumulative
traffic which is being served by DCN nodes: • > 10 Mb, • 500 kb–10 Mb, • < 500 kb.

Table 4 illustrates the first 33 s from the low traffic scenario events with the responses
of the FPLF algorithm for each burst of flows. The remaining 87 s are not shown due to
the lack of events, except for the utility of download link (D-L (2,17)) gradually decreasing
until the end of the simulation.

Electronics 2021, 10, 3027 12 of 18

Table 4. Low traffic scenario events that were generated and had server P as the traffic’s destination.

Source Number of Flows Start Time (s) End Time (s) D-L Utility (2,17) FPLF-Action Number of the
Core Switches

A, B Single/Multiple small 0 100 increased from 0 to 1.7 Install-ESP 1

C, D Single/Multiple small 3 105 increased from 1.7 to 0.22 Install-ESP 1

E, F Single/Multiple small 10 115 increased from 0.22 to 0.25 Install-ESP 1

G, H Single/Multiple small 15 120 increased from 0.25 to 0.37 Install-ESP 1

I, J Single/Multiple small 20 120 increased from 0.37 to 0.51 Install-ESP 1

K, L Single/Multiple small 33 120 fluctuated between 0.51 and 0.47 Install-ESP 1

In the second experimental scenario, we increazed the traffic gradually until the link-
utilization value exceeded the threshold. The FPLF algorithm responded to this change by
balancing the traffic among core switches to meet the traffic demands as well as to maintain
the QoS. This scenario can be considered as the worst-case scenario due to the lower energy
saving. In summary, as the demand continued to increase, the FPLF algorithm filled all
available links and power savings became minimum because every link in the network
was utilized. Figures 3b and 4b show that the load balancing paths and the link-utility of
core switches was higher than the threshold value, respectively.

(a) Low traffic utility.

(b) High traffic utility.

Figure 4. The link utilization is illustrated for both scenarios. The utility is less than the threshold for
low traffic and it exceeds the threshold for high traffic scenarios.

Figure 4b clarifies that the FPLP algorithm distributes the traffic according to the
number of available core switches. Members of the download links set {(1, 17), (2, 17),
(3, 18), (4, 18)} all exceeded the threshold value except for the link, (3, 18), whose link-
utilization value fluctuated (illustrated with grey colour). Recall that the IntP model in
Section 4.2 required a long time to find the optimal solution for this type of complex set

Electronics 2021, 10, 3027 13 of 18

of flows. In contrast, the FPLF algorithm, which is a heuristic algorithm, found a feasible
solution, which explains why the link (3, 18) was not fully utilized. Tables 5 and 6 illustrate
the flows patterns, durations and the total events of the high traffic scenario along with the
responses of the FPLF algorithm to each burst of flows.

Table 5. High traffic flow details.

Source Destination Flows Description

A,B,C M
Between 0 to 11 s, started with multiple small flows,

after 140 s from the time of simulation,
burst with large flow, i.e., high traffic

D,E,F N
Between 0 to 11 s, started with multiple small flows,

after 190 s from the time of simulation,
burst with large flow, i.e., high traffic

G,H,I O
Between 9 to 30 s, started with multiple small flows,

after 190 s from the time of simulation,
burst with large flow, i.e., high traffic

G,K,L P
Between 21 to 28 s, started with multiple small flows,

after 190 s from the time of simulation,
burst with large flow, i.e., high traffic

Table 6. High traffic event details.

Events Time (s) D-L Utility (1, 18) D-L Utility (3, 18) D-L Utility (2, 17) D-L Utility (4, 18) FPLF-Action Number of the
Core Switches

0 TO 136 0 0 0 0 increased to 0.6 Install-ESP 1

136 TO 190 0 0 0 0.6 increased to 0.96 Install-ESP 1

190 TO 200 0 0.3 increased to 0.96 0 0.96 Install-ESP 2

200 TO 202 0 0.96 0 increased to 0.96 0.96 Install-ESP 3

202 TO 205 0 increasing to 0.96 0.96 0.96 0.96 Install-ESP 4

205 TO 440 0.1.8 fluctuated between 0.96 0.96 0.96 0.96 No action 4

440 TO 466 0 0.96 0.96 0.96 No action 3

466 TO 470 0 0.96 decreased to 0.57 0.96 0.96 No action 3

470 TO 486 0 0.57 decreased to 0 0.96 decreased to 0 0.96 decreased to 0 No action 0

The cumulative traffic values in Figure 3a illustrate how the switches are utilized
during the simulation time depending on the utility of the link. In the first scenario,
the sub-path nodes 2→ 17→ 20 have high cumulative values due to the energy-saving
path returned by the FPLF algorithm. Moreover, in the second scenario because the traffic
was gradually increased from low to high, Figure 3b shows different cumulative values to
core switches (T2 < T1 < T3 < T4), corresponding to link utilization values in Figure 4b,
where core switch number 4 and the download switches (i.e., switches located along the
downward path) have high cumulative values. This happened because the FPLF algorithm
selected an energy-saving path in the first 3 min of the simulation, and after that the
algorithm started to gradually open new paths to accommodate the traffic and to meet the
QoS requirement.

6.2. Performance Evaluation

In order to gauge the performance of the proposed method, we compared our work to
the ECMP approach, which is described in [22]. Two metrics were considered: (1) power
consumption and (2) number of utilized links.

The FPLF algorithm outperformed ECMP in both cases (low and high traffic). In low
traffic cases, which is illustrated in Figure 5b, the FPLF algorithm reduced the number
of links by installing energy-saving paths in DCN’s switches. Intuitively, the number
of utilized links and switches should increase proportionally with increasing traffic to
meet QoS targets. That is what happens in Figure 5a, which illustrates the low latency

Electronics 2021, 10, 3027 14 of 18

of the FPLF algorithm with a sudden spiking of traffic in a short time, compared to the
ECMP algorithm, to accommodate the increase in traffic. While the FPLF algorithm returns
16 paths with 27 links, ECMP in comparison returns 16 paths with 30 links. This suggests
that the FPLF algorithm is more traffic-aware. Since the number of downward links from
core switches is four, as shown in Figure 3, bursty high traffic from all other servers leads
to these four links being filled, and adding any new upload link is useless; therefore,
the algorithm settles on 27 links.

1,
67

9,
36

0
3,

35
8,

72
0

5,
03

8,
08

0
6,

71
7,

44
0

8,
39

6,
80

0
10

,0
76

,1
60

11
,7

55
,5

20
13

,4
34

,8
80

15
,1

14
,2

40
16

,7
93

,6
00

18
,4

72
,9

60
20

,1
52

,3
20

20
,1

52
,3

20
20

,1
52

,3
20

20
,1

52
,3

20
20

,1
52

,3
20

20
,1

52
,3

20
20

,1
52

,3
20

20
,1

52
,3

20
20

,1
52

,3
20

20
,1

52
,3

20
20

,1
52

,3
20

21
,1

52
,3

20

1
5

10
15

20
25

30

Traffic (bit/sec)

A
ct

iv
e

lin
ks

20 40 60 80 100 120 140 160 180 200 220

Time (sec)

(a) High traffic.

40
,9

60
81

,9
20

12
2,

88
0

16
3,

84
0

20
4,

80
0

24
5,

76
0

28
6,

72
0

32
7,

68
0

36
8,

64
0

40
9,

60
0

45
0,

56
0

49
1,

52
0

98
3,

04
0

1,
47

4,
56

0
1,

96
6,

08
0

2,
45

7,
60

0
2,

94
9,

12
0

3,
44

0,
64

0
3,

93
2,

16
0

4,
42

3,
68

0
04

,9
15

,2
00

1
5

10
15

20
25

30

Traffic (bit/sec)

A
ct

iv
e

lin
ks

FPLF
ECMP

10 20 30 40 50 60 70 80 90 100 110

Time (sec)

(b) Low traffic.

Figure 5. The DCN link usage under different traffic load scenarios.

In this study, two important QoS criteria were considered: (1) the algorithm response
time, i.e., latency and (2) the number of dropped packets. Figure 5a shows FPLF has a high
response (i.e., low latency) to unexpected changes in traffic over time. We observed this
when the traffic reached the maximum value of 20 Mbps. The FPLF algorithm stabilized
with the fixed number of links (27) at simulation time, 130 s, until the end of the experiment.
In contrast, ECMP stabilized only after 190 s. That means the ECMP experienced a delay of
70 s before it achieved the same QoS as the FPLF algorithm. However, this delay decreased
to 10 s in the low traffic scenario in Figure 5b. One of the crucial metrics that describes the
performance of FPLF in the high traffic case is the number of dropped packets. Therefore,
during the same power consumption level testing, we used DITG decoder logs to record
the results in Tables 7 and 8. Overall, it can be concluded from the above tables that FPLF
has a lower percentage of dropped packets compared to ECMP. Minimizing the number of
links reduces the amount of power used by turning off the ports and switches it connects.
How the percentage of saved links is computed is described in Equations (13) and (14)

Active Links = ∑
eij∈E

Lij, (13)

Links saved =

(
1− ActiveLinks

|E|

)
· 100%. (14)

According to the above metrics, the FPLF algorithm exhibits the best energy saving in
all traffic volume scenarios. The least of the best energy saving is 15.625% in high traffic
and 65.625% in low traffic, while the state-of-the-art algorithm recorded a 6.25% energy
saving in both scenarios. Moreover, the energy-saving ratio (Equation (15)) between the
power consumption of both ECMP and FPLF in terms of active links under the same
traffic conditions is 10% in high traffic and 63.3% in low traffic. The energy-saving ratio is
defined as

Electronics 2021, 10, 3027 15 of 18

energy-saving ratio =

[
1− FPLF Active Links

ECMP Active Links

]
· 100%. (15)

We draw the following conclusions based on the results reported so far. The FPLF algorithm
can find application in the DCNs which serve various traffic patterns (i.e., various traffic
loads). For instance, during night times (e.g., when the traffic load is low), the FPLF
algorithm has the chance to save up to 65.625% of the total energy consumed, which reduces
network operating costs. During periods of large usage, such as rush hour, e.g., when
the traffic load is high, the FPLF algorithm can distribute traffic load between switches at
low latency, (i.e., the transition time between traffic patterns), which helps to maintain the
network performance.

Table 7. Number of dropped packets for the ECMP algorithm.

Destination Server Total Time (S) Total Received Packets Packets Dropped-ECMP Packets Dropped %

M 429 58,614 128 0.22%

N 326.6 53,329 157 0.29%

O 335.6 53,413 206 0.38%

P 439.7 59,053 415 0.70%

Table 8. Number of dropped packets for the FPLF algorithm.

Destination Server Total Time (S) Total Received Packets Packets Dropped-FPLF Packets Dropped %

M 414 58,360 152 0.26%

N 322 56,705 117 0.21%

O 330 59,671 115 0.19%

P 423 62,706 114 0.18%

6.3. Limitations

As a result of these experiments, we discuss the disadvantages of the FPLF algorithm.
It is a heuristic algorithm and so it is unlikely to achieve the optimal solution. In addition,
in its current form, the FPLP algorithm is unable to distribute the traffic load between
switches according to the type of traffic that constitutes the flows, i.e., DNS, Ping, voice,
video and so on. Figure 6 shows the core switch 4 in the proposed framework as it forwards
different flows from the aggregation layer. It is not aware of fault-tolerance values for those
flows. Consequently, this might lead to unfair sharing of switches because of the possibility
of the FPLF algorithm combining the low or high flows’ fault-tolerance on one switch.
We believe that combining machine learning classification techniques, for example, based
on the features used in approaches such as [34] and the classifiers in [35], with the FPLF
algorithm would lead to a more fair sharing of switches. In terms of the FPLP algorithm’s
time complexity, this might be reduced if the FPLF searched subgraphs for paths instead of
the entire graph using a variant of the approach in [36]. The challenge here lies in how to
guarantee that we can obtain a path from multiple sub-graphs.

Electronics 2021, 10, 3027 16 of 18

Figure 6. Different fault-tolerance flows sharing one core switch.

7. Conclusions

In this paper, we presented an IntP model for traffic and energy-aware routing based
on link utility information for SDN-based DCNs. We tested the IntP model by using
the high-level linear programming tool LinGO. Multiple and complex flow cases were
used, which showed that the proposed model could determine more paths at a time,
although there were some limitations in the cases of high flow volumes. We also proposed a
link utility-based heuristic algorithm called FPLF that struck a compromise between energy
saving and performance. The FPLF algorithm was evaluated using a real DCN topology
with high and low traffic volumes. The experimental evaluation was executed by using the
high-quality emulator, Mininet. The FPLF algorithm was implemented as a model using
the POX controller. Comparative experimental results showed that FPLF outperformed
the existing routing algorithm, ECMP, in balancing how high traffic levels were served
across the DCN topology. It achieved up to 10% energy savings in high traffic and 63.3%
in low traffic scenarios. As future work, we will enhance the computational performance
associated with solving an IntP problem in this setting by considering some predefined
estimates of the objective value using heuristic approaches such as those outlined in [37–39].
We are also planning to build a quick definition model for the feasible solution so that we
can provide the theoretical upper bound for the objective value. This predefined bound
will be used to reduce the number of iterations required to solve the IntP problem with
a branch and bound algorithm. Moreover, we aim to develop a new flow estimation
model to enhance the FPLF performance as well as to analyze the effect of the model in
terms of energy-saving and scalability by utilizing community detection and path anatomy
techniques [36].

Author Contributions: Conceptualization, M.N.; Methodology, A.M. and R.d.F.; software of FPLF
algorithm, M.N. and A.M.; software of InP model, A.R.; Formal analysis, A.R. and M.N.; Investigation,
M.N. and G.K.; writing—original draft preparation, M.N. and A.M.; writing—review and editing,
R.d.F. and G.K.; supervision, G.K.; project administration, G.K. and R.d.F.; funding acquisition, R.d.F.
All authors have read and agreed to the published version of the manuscript.

Funding: This publication has emanated from research conducted with the financial support of
Science Foundation Ireland (SFI) under the Grant Number 15/SIRG/3459.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2021, 10, 3027 17 of 18

References
1. Choumas, K.; Giatsios, D.; Flegkas, P.; Korakis, T. SDN Controller Placement and Switch Assignment for Low Power IoT.

Electronics 2020, 9, 325. [CrossRef]
2. Nsaif, M.R.; Al-Haboobi, A.S.; Rabee, F.; Alasadi, F.A. Reliable Compression Route Protocol for Mobile Crowd Sensing (RCR-MSC).

J. Commun. 2019, 14, 170–178. [CrossRef]
3. Rabee, F.; Al-Haboobi, A.; Nsaif, M.R. Parallel three-way handshaking route in mobile crowd sensing (PT-MCS). J. Eng. Appl. Sci.

2019, 14, 3200–3209. [CrossRef]
4. Heller, B.; Seetharaman, S.; Mahadevan, P.; Yiakoumis, Y.; Sharma, P.; Banerjee, S.; McKeown, N. Elastictree: Saving energy in

data center networks. In Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation, San
Jose, CA, USA, 28–30 April 2010; Volume 10, pp. 249–264.

5. Assefa, B.G.; Özkasap, Ö. A survey of energy efficiency in SDN: Software-based methods and optimization models. J. Netw.
Comput. Appl. 2019, 137, 127–143. [CrossRef]

6. Bertoldi, P. A market transformation programme for improving energy efficiency in data centres. In Proceedings of the ACEEE
Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, 17–22 August 2014.

7. Avgerinou, M.; Bertoldi, P.; Castellazzi, L. Trends in data centre energy consumption under the european code of conduct for
data centre energy efficiency. Energies 2017, 10, 1470. [CrossRef]

8. Tatchell-Evans, M.; Kapur, N.; Summers, J.; Thompson, H.; Oldham, D. An experimental and theoretical investigation of the
extent of bypass air within data centres employing aisle containment, and its impact on power consumption. Appl. Energy 2017,
186, 457–469. [CrossRef]

9. Staessens, D.; Sharma, S.; Colle, D.; Pickavet, M.; Demeester, P. Software defined networking: Meeting carrier grade requirements.
In Proceedings of the 2011 18th IEEE Workshop on Local & Metropolitan Area Networks (LANMAN), Chapel Hill, NC, USA,
13–14 October 2011; pp. 1–6.

10. Thanh, N.H.; Nam, P.N.; Truong, T.H.; Hung, N.T.; Doanh, L.K.; Pries, R. Enabling experiments for energy-efficient data center
networks on openflow-based platform. In Proceedings of the 2012 Fourth International Conference on Communications and
Electronics (ICCE), Hue Royal City, Vietnam, 1–3 August 2012; pp. 239–244.

11. Riekstin, A.C.; Januário, G.C.; Rodrigues, B.B.; Nascimento, V.T.; Carvalho, T.C.; Meirosu, C. Orchestration of energy efficiency
capabilities in networks. J. Netw. Comput. Appl. 2016, 59, 74–87. [CrossRef]

12. Shirayanagi, H.; Yamada, H.; Kono, K. Honeyguide: A vm migration-aware network topology for saving energy consumption in
data center networks. IEICE Trans. Inf. Syst. 2013, 96, 2055–2064. [CrossRef]

13. Galán-Jiménez, J.; Polverini, M.; Cianfrani, A. Reducing the reconfiguration cost of flow tables in energy-efficient software-defined
networks. Comput. Commun. 2018, 128, 95–105. [CrossRef]

14. Wang, S.H.; Huang, P.P.W.; Wen, C.H.P.; Wang, L.C. EQVMP: Energy-efficient and QoS-aware virtual machine placement for
software defined datacenter networks. In Proceedings of the The International Conference on Information Networking 2014
(ICOIN2014), Phuket, Thailand, 10–12 February 2014; pp. 220–225.

15. Dalvandi, A.; Gurusamy, M.; Chua, K.C. Power-efficient resource-guaranteed VM placement and routing for time-aware data
center applications. Comput. Netw. 2015, 88, 249–268. [CrossRef]

16. Kang, N.; Liu, Z.; Rexford, J.; Walker, D. Optimizing the “one big switch” abstraction in software-defined networks. In
Proceedings of the Ninth ACM Conference on Emerging Networking Experiments and Technologies, Santa, Barbara, CA, USA,
9–12 December 2013; pp. 13–24.

17. Kanizo, Y.; Hay, D.; Keslassy, I. Palette: Distributing tables in software-defined networks. In Proceedings of the 2013 Proceedings
IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 545–549.

18. Rifai, M.; Huin, N.; Caillouet, C.; Giroire, F.; Lopez-Pacheco, D.; Moulierac, J.; Urvoy-Keller, G. Too many SDN rules? Compress
them with MINNIE. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA,
6–10 December 2015; pp. 1–7.

19. Izima, O.; de Fréin, R.; Malik, A. A Survey of Machine Learning Techniques for Video Quality Prediction from Quality of Delivery
Metrics. Electronics 2021, 10, 2851. [CrossRef]

20. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling
innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]

21. Hopps, C. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2000, 2992, 1–8.
22. Al-Fares, M.; Radhakrishnan, S.; Raghavan, B.; Huang, N.; Vahdat, A. Hedera: Dynamic flow scheduling for data center networks.

In Proceedings of the 7th USENIX conference on Networked systems design and implementation, San Jose, CA, USA, 28–30 April
2010; Volume 10, pp. 89–92.

23. Luo, J.; Zhang, S.; Yin, L.; Guo, Y. Dynamic flow scheduling for power optimization of data center networks. In Proceedings of
the 2017 Fifth International Conference on Advanced Cloud and Big Data (CBD), Shanghai, China, 13–16 August 2017; pp. 57–62.

24. Vu, T.H.; Luc, V.C.; Quan, N.T.; Nam, T.M.; Thanh, N.H.; Nam, P.N. The new method to save energy for Openflow Switch based
on traffic engineering. In Proceedings of the 2014 2nd International Conference on Electronic Design (ICED), Penang, Malaysia,
19–21 August 2014; pp. 309–314.

http://doi.org/10.3390/electronics9020325
http://dx.doi.org/10.12720/jcm.14.3.170-178
http://dx.doi.org/10.36478/jeasci.2019.3200.3209
http://dx.doi.org/10.1016/j.jnca.2019.04.001
http://dx.doi.org/10.3390/en10101470
http://dx.doi.org/10.1016/j.apenergy.2016.03.076
http://dx.doi.org/10.1016/j.jnca.2015.06.015
http://dx.doi.org/10.1587/transinf.E96.D.2055
http://dx.doi.org/10.1016/j.comcom.2018.07.022
http://dx.doi.org/10.1016/j.comnet.2015.06.017
http://dx.doi.org/10.3390/electronics10222851
http://dx.doi.org/10.1145/1355734.1355746

Electronics 2021, 10, 3027 18 of 18

25. Assefa, B.G.; Ozkasap, O. Link utility and traffic aware energy saving in software defined networks. In Proceedings of the 2017
IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Istanbul, Turkey, 5–8 June 2017;
pp. 1–5.

26. Orlowski, S.; Wessäly, R.; Pióro, M.; Tomaszewski, A. SNDlib 1.0—Survivable network design library. Netw. Int. J. 2010, 55,
276–286. [CrossRef]

27. Assefa, B.G.; Özkasap, Ö. Resdn: A novel metric and method for energy efficient routing in software defined networks. IEEE
Trans. Netw. Serv. Manag. 2020, 17, 736–749. [CrossRef]

28. Malik, A.; Fréin, R.d.; Ke, C.H.; Alyasiri, H.; Izima, O. Bayesian Adaptive Path Allocation Techniques for Intra-Datacenter
Workloads. In Proceedings of the 2021 International Conference on Computer Communications and Networks (ICCCN), Athens,
Greece, 19–22 July 2021; pp. 1–8. [CrossRef]

29. Kaup, F.; Melnikowitsch, S.; Hausheer, D. Measuring and modeling the power consumption of OpenFlow switches. In
Proceedings of the 10th International Conference on Network and Service Management (CNSM) and Workshop, Rio de Janeiro,
Brazil, 17–21 November 2014; pp. 181–186.

30. Inc, L.S. LINGO the Modeling Language and Optimizer; Technical Support; LINDO Systems Inc.: Chicago, IL, USA, 2020. Available
online: http://www.lindo.com (accessed on 1 August 2021).

31. Lantz, B.; Heller, B.; McKeown, N. A network in a laptop: Rapid prototyping for software-defined networks. In Proceedings of
the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, New York, NY, USA, 20–21 October 2010; pp. 1–6.

32. Saino, L.; Cocora, C.; Pavlou, G. A Toolchain for Simplifying Network Simulation Setup. In Proceedings of the 6th International
ICST Conference on Simulation Tools and Techniques, Cannes, France, 5–7 March 2013; SIMUTOOLS ’13; ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering): Brussels, Belgium, 2013.

33. de Donato, M.; Dainotti, A.; Avallone, S.; Pescap, A. D-ITG 2.8.1 Manual; COMICS (COMputer for Interaction and Communica-
tionS). Available online: http://www.traffic.comics.unina.it/software/ITG/ (accessed on 1 August 2021).

34. De Fréin, R. Source Separation Approach to Video Quality Prediction in Computer Networks. IEEE Commun. Lett. 2016,
20, 1333–1336. [CrossRef]

35. de Fréin, R.; Izima, O.; Malik, A. Detecting Network State in the Presence of Varying Levels of Congestion. In Proceedings of the
IEEE International Workshop on Machine Learning for Signal Processing, Gold Coast, Australia, 25–28 October 2021; pp. 1–6.

36. Malik, A.; de Fréin, R.; Aziz, B. Rapid restoration techniques for software-defined networks. Appl. Sci. 2020, 10, 3411. [CrossRef]
37. Savelsbergh, M.W.; Sigismondi, G.C.; Nemhauser, G.L. Functional Description of MINTO, a Mixed Integer Optimizer; Eindhoven

University of Technology: Eindhoven, The Netherlands, 1991.
38. Woodruff, D.L. A chunking based selection strategy for integrating meta-heuristics with branch and bound. In Meta-Heuristics;

Springer: Berlin/Heidelberg, Germany, 1999; pp. 499–511.
39. Septién, J.; Mozos, D.; Tirado, F.; Hermida, R.; Fernández, M. Heuristics for branch-and-bound global allocation. In EURO-DAC;

IEEE Computer Society Press: Washington, DC, USA, 1992; pp. 334–340.

http://dx.doi.org/10.1002/net.20371
http://dx.doi.org/10.1109/TNSM.2020.2973621
http://dx.doi.org/10.1109/ICCCN52240.2021.9522253
 http://www.lindo.com
 http://www.traffic.comics.unina.it/software/ITG/
http://dx.doi.org/10.1109/LCOMM.2016.2563418
http://dx.doi.org/10.3390/app10103411

	Introduction
	Related Work
	Problem Statement and Proposed Solutions
	Proposed Model
	Network Model
	Optimization Model
	IntP formulation

	Proposed Power Consumption Method
	Monitoring Model
	FPLF-Adaptive Algorithm Components

	Proposed Framework and Implementation
	Experiment Design and Simulation Results
	Performance Evaluation
	Limitations

	Conclusions
	References

