
electronics

Article

A Traffic-Aware Federated Imitation Learning Framework for
Motion Control at Unsignalized Intersections with Internet
of Vehicles

Tianhao Wu * , Mingzhi Jiang , Yinhui Han, Zheng Yuan, Xinhang Li and Lin Zhang

����������
�������

Citation: Wu, T.; Jiang, M.; Han, Y.;

Yuan, Z.; Li, X.; Zhang, L. A

Traffic-Aware Federated Imitation

Learning Framework for Motion

Control at Unsignalized Intersections

with Internet of Vehicles. Electronics

2021, 10, 3050. https://doi.org/

10.3390/electronics10243050

Academic Editors: Dong Seog Han,

Kalyana C. Veluvolu and Takeo Fujii

Received: 3 November 2021

Accepted: 29 November 2021

Published: 7 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Artificial Intelligence, Beijing University of Posts and Telecommunications, 10 Xitucheng Road,
Haidian District, Beijing 100876, China; mingzhijiang@bupt.edu.cn (M.J.); hanyh@bupt.edu.cn (Y.H.);
yuanzheng@bupt.edu.cn (Z.Y.); lixinhang@bupt.edu.cn (X.L.); zhanglin@bupt.edu.cn (L.Z.)
* Correspondence: wu.tianhao@bupt.edu.cn

Abstract: The wealth of data and the enhanced computation capabilities of Internet of Vehicles (IoV)
enable the optimized motion control of vehicles passing through an intersection without traffic lights.
However, more intersections and demands for privacy protection pose new challenges to motion
control optimization. Federated Learning (FL) can protect privacy via model interaction in IoV, but
traditional FL methods hardly deal with the transportation issue. To address the aforementioned
issue, this study proposes a Traffic-Aware Federated Imitation learning framework for Motion Con-
trol (TAFI-MC), consisting of Vehicle Interactors (VIs), Edge Trainers (ETs), and a Cloud Aggregator
(CA). An Imitation Learning (IL) algorithm is integrated into TAFI-MC to improve motion control.
Furthermore, a loss-aware experience selection strategy is explored to reduce communication over-
head between ETs and VIs. The experimental results show that the proposed TAFI-MC outperforms
imitated rules in the respect of collision avoidance and driving comfort, and the experience selection
strategy can reduce communication overheads while ensuring convergence.

Keywords: federated learning; imitation learning; internet of vehicle; unsignalized intersection

1. Introduction

The Internet of Vehicles (IoV) provides ubiquitous connectivity in transportation sce-
narios, allowing massive data interaction among smart vehicles, road infrastructures, and
remote computing facilities. Empowered by IoV, the issues of safety [1] and efficiency [2]
can be addressed in a cooperative manner. This study focuses on the optimization of
unsignalized intersection management [3], where motions of each vehicle are precisely
controlled to pass through an intersection without traffic lights.

Compared to traffic light controls, unsignalized intersection management promises
higher efficiency while ensuring driving safety. The process of deciding the vehicle passing
sequence is known as scheduling. Two main categories of existing scheduling policies
are negotiation-based [4] and reservation-based [5]. Because the actions taken by vehi-
cles depend on real-time driving conditions, which is a typical Markov Decision Process
(MDP), Reinforcement Learning (RL) is suitable to address this issue. Guan et al. [6] pro-
posed an RL-based method for guiding a fixed number of vehicles through an intersection.
Wu et al. [7] proposed a cooperative RL method to improve traffic efficiency while ensuring
safety. This method decoupled the relationship between identity and driving information
on vehicles. Jiang et al. [8] proposed a two-stage RL incorporating end-edge-cloud architec-
ture to achieve global optimization among multiple homogeneous intersections. However,
low sample efficiency and limited safety performance make practical applications difficult.

Compared with RL’s low sample inefficiency, Imitation Learning (IL) can accelerate
the training process and does not need to specify how the task should be performed. This
is because the expected behaviors are embedded in expert demonstrations. IL has been
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one of the popular approaches used to train control policy for many fields for efficiency
and simplicity, such as resource scheduling [9], signalized intersection control [10], and
smart manufacturing [11]. Nowadays, rule-based strategies are still the mainstream of
self-driving development in the industry because of their interpretability. To facilitate
self-driving development, many companies established huge scenario libraries [12] and
simulator [13]. Due to the existence of thresholds in various rules, there is a bottleneck in
improving driving comfort. IL can mitigate the thresholds’ impact during translating rules
into neural network knowledge.

Although some progress has been made in learning-based motion control at intersec-
tions, three problems remain:

(1) Isolation: To balance motion control performance and privacy preservation, setting a
local center to assist the motion control optimization is essential, which means that
some privacy-sensitive data are delivered to the local center. However, for privacy
requirements, data exposure to cloud nodes or other peer nodes is prohibited. This
constructs data isolation among intersections;

(2) Heterogeneity: Due to vehicles’ non-uniform spatial distribution, intersections in
different areas carry different traffic flows. One of the traffic flow characteristics is the
flow rate difference. Due to different traffic flows at different intersections, generated
experience data drives obtained the RL model to demonstrate different capabilities for
motion control optimization. Therefore, conventional model parameters averaging
cannot meet the performance requirements at different intersections;

(3) Scalability: As the number of IoV-enabled unsignalized intersections grows, data
generated by the vehicles increase. Because of the incurred high computation and
communication budget, any learning-based algorithm with a centralized property
may find it challenging to handle such data.

Communication overhead is an unavoidable topic in distributed deep learning. Many
researchers try to reduce the communication overhead while ensuring model convergence.
Luo et al. [14] proposed a gradient compression method, which reduced the communication
overhead between the master node and the multiple compute nodes. Shi et al. [15] proposed
the optimal merged gradient sparsification algorithm based on SGD to solve the high
communication overhead caused by gradient sparsity in deep learning. Sattler et al. [16]
proposed a robust compression framework, sparse ternary compression, aiming at the
limited scope of existing schemes to reduce communication overhead between the server
and clients in federated learning. Many existing studies assume that data stay with a
deep learning algorithm. This paper considers a scenario in which data and algorithms
are separated. Trainers need to collect data from vehicles to generate a neural network
model. Inspired by [17], not all experience is equally helpful for model training. A loss-
aware experience selection strategy is proposed to reduce the communication overhead by
discarding low-value experiences.

In this study, Federated Learning (FL) is chosen to address the challenges mentioned
above. FL is a distributed deep learning paradigm, which enables multiple clients to learn
a shared model while storing all the training data on clients. Many researchers transfer
FL into many areas, such as communication network slicing [18], traffic classification [19],
and crowd computing [20] This paradigm strengthens the client’s data independence and
raises researchers’ extensive interest. Yu et al. [21] proposed an FL-based cooperative
hierarchical caching scheme to address content popularity prediction’s privacy issues in
IoV-enabled fog networks. Chen et al. [22] focused on client selection to improve training
efficiency in asynchronous FL with unstable connection in IoV. Zhao et al. [23] model the
training and transmission latency of a novel FL paradigm combined with blockchain and
adopt a duel deep Q-learning algorithm to minimize the system latency. To enhance the
perception of IoV applications, Lim et al. [24] activated unmanned aerial vehicles and
enabled an FL-based approach for their privacy-preserving collaboration. However, the
existing researchers hardly pay attention to transportation issues with FL-empowered IoV.
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When privacy problems are involved in vehicle motion control optimization, all
data should be kept in a vehicle. To obtain better motion control, this study relaxes the
privacy restriction to a local area, that is, a single-intersection area. Different intersections
construct independent scopes. To achieve cooperative optimization among intersections, a
Traffic-Aware Federated Imitation Learning framework for Motion Control (TAFI-MC) is
proposed for acquiring vehicle motion control policies across different intersections. The
main contributions of this study are summarized as follows.

• TAFI-MC framework is proposed to optimize motion control across multiple isolated
unsignalized intersections cooperatively. This framework contains three parts: vehicle
interactors, edge trainers, and one cloud aggregator;

• TAFI-MC integrates an IL algorithm to obtain a safety-oriented motion control policy,
which trains the model with the experience from a set of collision avoidance rules;

• A loss-aware experience selection strategy is designed, which can reduce the com-
munication overhead by extra computation. Depending on the reference loss, each
interactor generates new experiences and decides whether to upload them.

The rest of this paper is organized as follows: The system architecture is presented in
Section 2. The proposed TAFI-MC for vehicle motion control is detailed in Section 3. In
Section 4, a loss-aware experience selection strategy is presented. The experimental results
and discussions are provided in Section 5. Section 6 concludes this paper.

2. System Architecture

This section focus on a hierarchical network in an urban scenario, which includes
one Cloud Aggregator (CA), tens of Edge Trainers (ETs), and hundreds of Vehicle In-
teractors (VIs), as shown in Figure 1. The CA is deployed in the remote cloud and
connects to a set of ETs via a reliable backhaul link. These ETs are denoted by ET =
{ET1, ET2, . . . , ETn, . . . , ETN}, where N is the number of ETs. Each ET i serves its wirelessly
connected VIs, denoted by VI = {VI1, VI2, . . . , VIi, . . . , VIm(t)}. Note that, under ET, the
number of VI, m(t), varies over time t. ETs and VIs are equipped with adequate computing
power. The local model at each ET is trained by combining uploaded information from
various VIs. CA is used to create a global model by combining local information of different
ETs. There are three assumptions to support our work, which is similar to related work [25],
on the aspect of unsignalized intersection control. For simplification, this study focuses
on longitudinal control. All vehicles proceed straight through the intersection area. All
vehicles can measure kinetic information, adhere to the set acceleration, and communicate
with adjacent nodes, i.e., ETs and adjacent VIs.

The longitudinal motion of vehicles is given by

xlong(t + 1) = xlong(t)− v(t)T − 1
2

a(t)T2

v(t + 1) = v(t) + a(t)T
, (1)

where xlong is the displacement, v and a are the velocity and acceleration, respectively, and
T is the discrete-time step. The change of vehicle motion state depends on the input, i.e.,
acceleration, at the previous time step. Note that xlong(t) represents the distance to the
conflict point in intersection, so subtraction is used in the equation instead of addition.

This paper uses distributed decision-making for motion control. That is, each vehicle
constructs its cyberspace and maps adjacent vehicles to cyber objects. As a result, vehicle i
decides its action ai based on its surroundings.

ai = P(−→si |θ) (2)

where P(·|θ) is a θ-parameterized policy for decision-making. −→si is the state vector of
vehicle i and −→si = {si,

−→s−i}. si is a state of the ego-vehicle i, including position, velocity,
and acceleration. Moreover, −→s−i is a vehicle set other than vehicle i. |−→s−i|, the number of
vehicle set −→s−i is defined by a selection scheme. To simulate traffic flow, the number of
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arrived vehicles for entering each intersection during the period t is defined as Vq(t). It
follows a Poisson process with the parameter λ:

P
(
Vq(t) = g

)
=

(λt)g

g!
e−λt (3)

where g equals the number of vehicles generated in a period t. The introduction of the
Poisson process means that vehicles are dynamically created, which is similar to real traffic.

Figure 1 presents a three-layered federated deep learning architecture. The bottom
layer contains VIs, a collection surrounding the information via vehicular communication.
The middle layer includes several ETs equipped with computing servers and experience
pools. The top layer has an aggregator, which forms global models with ETs’ local models.
The multiple connected VIs interact with the environment and individually upload experi-
ence data to the local experience pool on the corresponding ETs. Each ET first generates a
local model and acquires the experience from connected VIs. Then, each ET uses the local
computing ability to compute a local model based on the received data. Next, the ET sends
the local model to the VIs for motion control and the CA for global model aggregation.
Finally, the CA aggregates the models and distributes the global model back to each ET.
The above steps are repeated until a convergent global model is achieved. The trained
model in this work is specially developed to output the vehicles’ accelerations in response
to the contextual information surrounding the VI.
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Figure 1. Federated Deep Learning Architecture for Motion Control.

3. Federated Imitation Learning Framework for Motion Control

The proposed TAFI-MC framework is elaborated in this section. First, Traffic-Aware
Federated Learning is described. Then, we introduce a set of collision avoidance rules as a
basis for further optimization. Finally, an IL algorithm for motion control is investigated
using rules.

3.1. Traffic-Aware Federated Learning

FL enables collaborative training of a deep neural network model among ETs under
CA’s orchestration by storing the training data on each ET at intersections. With FL,
privacy-related data can be kept within the scope of ET. After ET training, data is turned
into a neural network model, which makes it hard to extract raw information. These
privacy-related data include the vehicles’ identity and position, inferring their destination,
and drivers’ identity. FL not only significantly reduces the vehicle’s privacy risk but
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also significantly reduces the communication overhead caused by centralized machine
learning [26]. FL is enabled by multiple communication rounds (computing iteration). To
conduct model training, N intersections with known traffic flows and the corresponding
ETs are selected. The N ETs are indexed by n. Then, each ETs retrieves a global model from
the CA and trains it with data collection from vehicles in the intersection area using its local
model. Following the ET’s local training, the updated weights and gradients are returned
to the CA. Finally, the CA aggregates the models collected from vehicles to construct an
updated global model. Furthermore, the final-trained models are distributed to the vehicles
to ensure that they pass through the intersection.

The details of the designed FL iteration consists of the following steps:

(1) Model Distribution: A set of ETs at intersections participate in FL training. The CA
distributed the global model ωr to ETs. The ET n trains the global model with local
data for a new model ωn

r . The index of communication rounds is represented by r.
(2) Experience Upload: To improve motion control performance, each vehicle should

consider other vehicles’ states for inference. However, the efficiency of vehicular
distributed training is significantly low because of the insufficient number of collected
samples and non-uniform distribution. Under the above setting, it is essential to
use centralized training and distributed execution [26]. Then, each vehicle interacts
with the environment, i.e., other vehicles, and generates enormous experience data to
upload. The corresponding ET uses this data to train the local model.

(3) FL Model Training: The proposed FL’s third step is to train the model by using local
data uploaded by vehicles. Let Exp = {Exp1, Exp2, . . . , Expn, . . . , ExpN} represent
the experience data stored in selected ETs. Expn denotes a local experience of the nth
ET with a length dn, dn = |Expn|. d is the size of the entire data among the selected
ETs. The goal of the FL is to minimize the loss function L(ω):

min
ω

L(ω) =
N

∑
n=1

dn

d
Ln(ω) where

Ln(ω) =
1
dj

∑
j∈Hk

lj(ω),
(4)

where lj(ω) is a loss of the motion control on the jth experience batch in Expn with the
parameters of model ω, and dj is the experience number in the jth batch. n denotes
the index of total selected ETs N. Ln(ω) represents the local loss function of ET n.
Then, minimizing the weighted average of the local loss function Ln(ω) is equal to
optimizing the loss function l(ω) of FL. With this step, the experience with sensitive
information is transformed into a neural network model, which is hard to extract
sensitive information from.

(4) Upload Updated Model: The fourth step is to upload the local model ωn
t+1 from ETs to the

CA. The communication overhead exceeds the computing overhead [27]. The model can
be compressed before being uploaded to the CA to reduce communication overhead.

(5) Weighted Aggregation: After ETs upload their models, the fifth step is to produce a
new global model ωr+1 by computing a weighted sum of all received models ωn

r .
For the next training iteration, the newly generated global model is used. Federated
Averaging (FedAVG), which is commonly used in FL, increases the proportion of local
computing and decreases mini-batch sizes. In FedAVG, each ET adds computation
by iterating the local updates wn

r ← wn
r − η∇Ln(wn

r ) multiple times before the aggre-
gation step in the CA. To aggregate the model, the weighted averaging algorithm is
implemented. The weights for parameter aggregation are determined by the traffic
flow of each intersection, which is γn = Fn/F. Fn and F denote the traffic flow on
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nth intersections and the flow sum of all intersections, respectively. The aggregate
method can then be re-written as

wr+1 ← wr − η
N

∑
n=1

γn
dn

d
wn

r+1. (5)

Selected intersections with a higher traffic flow contribute more and are given greater
weight in model aggregation.

3.2. Imitation Learning for Motion Control

IL model for motion control is trained in the above FL framework. It is used to
obtain the motion control ability from collision avoidance rules. IL and RL both depend
on environment interaction. Unlike RL, which obtains the desired behaviors based on
the hidden objectives, IL directly clones the desired behaviors. IL can overcome RL’s
highly uncertain initial state and the sparse reward, which can lead to an exploration trap.
Therefore, this section explains how to imitate the end-to-end motion control policy using
existing rules.

As shown in Figure 2, two modules are presented to support motion control policy
acquisition in ET. The upper module is a set of collision avoidance rules to output expert
experience, a deterministic action with fixed experience input. As the final motion control
policy carrier, a deep neural network is continuously updated in the lower module. The
network is updated with loss, which comes from the difference between the output action
from the two modules. The proposed IL is shown in Algorithm 1.

Algorithm 1: Imitation learning for motion control.

1: Collision avoidance rules guide vehicles to make actions a
2: The state s and action a are recorded as expert experience (s, a) to upload to the

corresponding ET’s experience buffer
3: ET samples a batch of experience

−−→
Exp from the pool

4:
−−→
Exp is simultaneously forwarded to two modules, collision avoidance rules, and deep
neural network

5: The loss is calculated with the output of the two modules, πθ(
−→si ) and ai

6: The deep neural network is updated by minimizing the loss

L(
−−→
Exp)=

1
B

B

∑
i=1

∣∣πθ

(−→si
)
− ai

∣∣2. (6)

In Equation (6),
−−→
Exp is a batch of experience, and the batch size is B, given in the

experiment part. πθ(·) is a θ-parameterized policy, and each iteration updates parameter
θ. The state vector −→si including the state of current vehicle and surrounding vehicles,
i.e., −→si = {si,

−→s−i} = {si, si,1, · · · , si,n}. n is the number of the closest vehicles to be con-
sidered into a state vector. Each state s∗ includes position, velocity, and acceleration, i.e.,
s∗ = {xlong, v, a}. The definition of closest vehicles relies on the cyber-lane, which is de-
scribed in Section 3.3. The loss function can drive the deep neural network to produce
safety-oriented strategies.
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Figure 2. Imitation Learning for Motion Control.

3.3. Collision Avoidance Rules

In this section, the concept of Cyber-Lane (CL) is introduced to reconstruct vehicles’
relationships. Vehicles in different trajectories travel in different Physical-Lanes (PLs), and
these trajectories intersect at conflict points. As presented in Figure 3, lane-A is taken as
an example. The generation of CL-A is based on PL-A, and vehicles on the conflict lane
are projected to CL-A centered on the conflict point. In other words, the PL number is
equal to the CL number. After being projected, D1 → A and B1 → A appear on CL-A.
From the standpoint of CL, the position relationship of all vehicles is reorganized. Vehicle
A2 appears between vehicles B1 and D1 on CL-A, and vehicle A2 treats vehicle B1 or D1,
instead of vehicle A1, as the closest vehicle. The action of vehicle B1 and D1 will naturally
be considered by vehicle A1.

Physical Lane-C

Physical Lane-A

Physical Lane-D

Physical Lane-B

Cyber Lane-A

Cyber Lane-D

Cyber Lane-B

Projection

Figure 3. Vehicle projection from a physical lane to a cyber lane.

The set of rules considers three factors, including space, time, and acceleration. Space
is the first factor, which can directly determine whether the collision has occurred. As
a second-order factor, time considers whether the vehicle will collide in the future. The
acceleration indicates whether the collision will be avoided. In this paper, the above factors
are quantified as Safety Value (SV).

The first factor is space. The safety value for space SVj,s is calculated as below,

SVj,s = log((
dj,nearest

αs
)βs), (7)

where dj,nearest denotes the distance between vehicle j and its nearest vehicle on the virtual
lane. αs normalizes dj,nearest, and it can be treated as the expected headway distance. βs
increases the offset to improve the log(·) effect. The SV and nearest inter-vehicle space
distance have a positive correlation.

The second factor is time. The SV for time SVj,t is calculated as below,

SVj,t =

 −
[

αt
tanh(−tj,nearest)

]βt
0 < tj,nearest < 1

2 otherwise
, (8)

where ti,nearest denotes Time To Collision (TTC) between vehicle j and its nearest vehicle.
The function tanh(·) is used to mark the nearby collision risk in the sensitive range, where
ti,nearest is less than 1. TTC and SV have a negative correlation.
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The third factor is acceleration. The SV for acceleration SVj,acc is calculated as below,

SVj,acc = λacc × accj, f ront × log

(
min

( dj, f ront

dthreshold
, αacc

)βacc
)

, (9)

where dj, f ront is the distance from vehicle j to its front vehicle, accj, f is the acceleration of
the vehicle in front of vehicle j, and dthreshold is the space distance safety threshold. min(·)
is used to control the range of

dj, f ront
dthreshold

within [0, αacc]. Discount factor λacc is introduced to
limit the influence of acceleration in the calculation of SV.

The combination of SV is calculated as follows,

SVj = Comb
(
SVj,s, SVj,t, SVj,acc|SVmax, SVmin

)
= clip

((
SVj,d + SVj,t + SVj,acc

)
, SVmax, SVmin

)
,

(10)

where SVj,d, SVj,t, and SVj,acc are defined above. To obtain a proper acceleration value in
Equation (11), clip(·) is used to limit the maximum and minimum values. A larger SVj
indicates that the vehicle j is driving in a safer environment. Based on the above SV, the
ego vehicle’s action can be calculated as follows,

aexe =

{ ∣∣∣ SV
η

∣∣∣ d f ≤ db
SV
η d f > db

, (11)

where d f is the distance to the vehicle in front, db is the distance to the vehicle behind, and
η is used to convert safety value to action, i.e. ego vehicle’s acceleration. The experimental
results shown in Section 5 demonstrate that rules can achieve collision avoidance under
different traffic flows.

4. Loss-Aware Experience Selection Strategy

In the setting of the proposed IL in Section 3, the experience, i.e., (s, a) tuple, is gener-
ated by each vehicle and uploaded to ETs for training at 10 Hz. This will consume many
communication resources when the number of vehicles near an intersection is enormous.
This section introduces computing for communication, where additional computation is
performed to reduce communication overhead. In this section, the extra computation is
placed on vehicles and edge nodes. Vehicles calculate the loss and compare it to thresholds
given by edge nodes. Edge nodes produce a threshold for loss comparison. Therefore,
combined with the concept of computing for communication, a loss-aware experience
selection strategy is proposed to discard experience that helps in model training.

As displayed in Figure 4, the proposed strategy is applied between vehicle interactors
and edge trainers. When a vehicle enters an intersection area, it requests edge trainers
for the most recent model and threshold. Then, using vehicular collision avoidance rules,
all vehicles interact with the environment and generate experience (s, a). The vehicle acts
with other vehicles and outputs action loss between the rules and the model. The loss is
compared with loss threshold Th. If the action loss is larger than Th., the corresponding
experience (s, a) can be uploaded to the edge trainers, and vice versa. Finally, the acquired
experiences enable the edge trainers to perform IL training and output a new threshold.
The threshold is calculated on ETs as follows,

Th. = sort(
−−→
Exp, ”loss”)[p× B][”loss”] (12)

where
−−→
Exp is a batch of experience for training, and its size is B. The function sort(·, ”loss”)

sorts experiences in ascending order of loss value. p is the discard rate. According to
Equation (12), the threshold is the (p× B)th smallest loss in the experience batch. Because
the experience will be partly discarded, the communication overhead is reduced.
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Figure 4. Loss-aware experience selection strategy.

5. Results and Discussion
5.1. Simulation Settings

The proposed algorithm is trained and evaluated in a self-designed intersection motion
control platform, developed with Python 3.5. The platform contains four of the same
intersections, but they differ in traffic flow rates. Considering that different intersections
have different traffic flow characteristics, isolated intersections with different traffic flows
are set up to verify the motion control brought by TAFI-MC. In this experiment, the traffic
flows are 300/900/1500/2100 veh/lane/hour, where veh means the number of vehicles.
According to different traffic flow rates, vehicles are generated using the Poisson process
and allowed to go straight without steering. The related motion control parameters are
listed in Table 1. All source codes about the proposed TAFI-MC framework are provided
on GitHub (https://github.com/shogun2015/TAFI-MC (accessed on 3 December 2021)).

Table 1. Experimental Parameters.

Parameter Value

Simulator
Lane length (m) 150
Vehicle size (m) 2
Velocity (m/s) [6, 13]
Initial velocity (m/s) 10
Acceleration (m/s2) [−3, 3]
Discrete-time step T (s) 0.1

Safety Value
Space normalization factor αs 10
Space exponetial factor βs 10
Time linear factor αt 1.5
Time exponetial factor βt 2
Acceleration exponetial factor αacc 1.5
Acceleration exponetial factor βacc 12
Acceleration linear factor λacc 0.2
Safety value upper bound SVmax 20
Safety value lower bound SVmin −20
Conversion factor η 3
Fusion factor ω 0.2
Weighting factor ε 0.5

Vehicle Selection
Number of the closest vehicle n 5

https://github.com/shogun2015/TAFI-MC


Electronics 2021, 10, 3050 10 of 16

The starting point of this study is to balance model performance and privacy protec-
tion. Therefore, this study allows ETs to collect vehicle information in their corresponding
intersections to complete IL training. In other words, each IL training only handles a single
flow-rate traffic. In the proposed schemes, the neural network (NN) is used to imitate the
collision-free rules by minimizing the action loss between the NN and the rules. There
is only one NN, containing three dense layers and two normalization layers, and ReLU
is used as the activation function in the hidden layers. The output layer is activated by
tanh(·). To fit the acceleration range, the NN output is multiplied by 3. The complete hyper-
parameters are listed in Table 2. However, because of poor interpretability and limited
safety performance of end-to-end NN inference, a weighted operation is added below,

aexe = ε× aNN + (1− ε)× arule, (13)

where ε is a factor for smoothing the NN output aNN with a rule output arule to ensure safe
driving. In the following experiment results, Model denotes action output using NN only,
Model+Rule represents mixed output using NN and rules.

Table 2. Parameters for Neural Networks.

Parameter Value

Discounted factor γ 0.8
Batch Size B 48
Soft update factor τ 0.99
Episode 50
Learning rate 0.001→ 0
Optimizer Adam

Network Architecture
Dense layer 1# 64
Dense layer 2# 64
Dense layer 3# 1

5.2. Metric

Three indicators are chosen to comprehensively evaluate the performance of the
proposed motion control methods at intersections, i.e., collision rate, average jerk, and
average velocity.

Collision rate is the first metric to evaluate the motion control safety, which is shown below,

rcollision =
ncollision

Nveh
, (14)

where ncollision is the number of collisions, and Nveh is the total number of vehicles. A larger
rcollision means the motion control algorithm is incapable of achieving collision avoidance.
The algorithm in this study is designed to reduce the metric value to 0.

Average jerk is an important metric to evaluate motion control comfort. As presented
in [28,29], the average jerk can be defined as below,

Javg =
1

Nveh

Nveh

∑
i=1

∑
t

j2i,t, (15)

where ji,t is the ith vehicle’s jerk. The jerk is defined by ji,t = ȧi,t, and ai,t is the ith vehicle’s
acceleration at the time step t. A larger Javg indicates more frequent or sharp acceleration
and deceleration, resulting in more severe driving discomfort.
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While ensuring a low collision rate, average velocity is a metric that must be improved.
It can be defined as below,

vavg =
1

Nveh

Nveh

∑
i=1

llane
ti

, (16)

where ti is the ith vehicle’s travel time and llane is the lane length, which is given in
Table 1. A larger vavg represents vehicles with the proposed algorithm that will drive faster,
resulting in high throughput for the transportation system.

5.3. Discussion

The entire experiment is divided into two parts. In the first part, the benchmark
Reinforcement Learning (RL), the proposed IL, and TAFI-MC are evaluated from the three
metrics: collision rate, average jerk, average velocity, as described in Section 3.3. The IL
and RL are trained in four traffic flows (i.e., 300/900/1500/2100 veh/lane/hour), and
verified in seven traffic flows (i.e., 300/600/900/1200/1500/1800/2100 veh/lane/hour).
The set of collision avoidance rules described in Section 3.3 is represented by a black line
in Figures 5a, 6a, and 7a. TAFI-MC is evaluated with two aggregation methods (same-
proportion and traffic-aware). Same-proportion means the four models have the same
weight, whereas traffic-aware means the weight is 1 : 3 : 5 : 7. The second part verifies
the performance of the proposed loss-aware experience selection strategy with different
discard factors p.
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Figure 5. The comparison of collision rate rcollision.

Figure 5 depicts the comparison of collision rate with the three algorithms, IL, RL, and
TAFI-MC. In Figure 5a, the black line remains at zero collision, which means that the rules
have good collision avoidance ability at all experimental flow rates. This is because the
rules are safety oriented and avoid all collisions from the perspective of position, speed,
and acceleration. In addition, the results demonstrate that the proposed IL scheme can
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help the model learn collision avoidance from the rules. Only in high flow evaluation
environment will the model trained in low flow produce some collisions. This is because,
in the low traffic flow, the experience samples come from large inter-vehicle distances.
The model trained by this experience has difficulties guiding a vehicle to handle a small
inter-vehicle distance. As shown in Figure 5b, the single traffic flow training makes RL
show unacceptable collision rates, because RL is more dependent on interaction samples,
which is low efficiency. RL’s low safety performance exceeds the correction ability of rules.
In Figure 5c, traffic-aware model aggregation method outperforms the same-proportion
method. The traffic-aware method does not need rules correction. To sum up, IL can obtain
stronger collision avoidance ability than RL to greatly reduce the collision rate, and TAFI-
MC with the proposed traffic-aware model aggregation can enhance collision avoidance.
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Figure 6 shows the comparison of average jerks with the three algorithms. In Figure 6a,
collision avoidance rules show the highest average jerk, because rule-making inevitably
adopts the threshold trigger mechanism. Only considered states can be mapped to actions.
Compared with rules, IL significantly reduces jerks than rules. The model training process
helps IL complete the state-action mapping by gradually approaching the rules with a low
learning rate. Note that, although rules can reduce collision rates, their threshold trigger
mechanism will increase jerks inevitably. As discussed in the collision rate, the model
trained in high traffic is also slightly insufficient when it comes to dealing with low traffic.
This is mainly reflected in that the high-traffic model has higher average jerk than the
low-traffic model. The performance of RL, in Figure 6b, is similar to IL. This demonstrates
that the control policies based on interaction experiences have similar effects on driving
comfort. As shown in Figure 6c, TAFI-MC with traffic-aware model aggregation can further
reduce average jerks by up to 41.37% than IL trained models at any single traffic flow.
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Taking a comprehensive view at the three figures in Figure 7, we can see that the three
algorithms achieve high average velocity, which also means high traffic efficiency and
throughput. With the increase in traffic flow, the average velocity has decreased slightly.
This is because more vehicles rise the collision probability of vehicles, and the collision
avoidance motions of vehicles reduce the average velocity. In Figure 7a,b, models trained
under sparse traffic flows show relatively high velocity, because a small number of vehicles
makes it hard to cause the collision avoidance motion of vehicles. In Figure 7c, FL aggre-
gates the gap of different models’ motion control. Furthermore, traffic-awareness brings
slightly lower velocity, but ensures zero collision rate. In combination with Figures 5–7,
the reduction of collision rates inevitably leads to the increase of average jerks. The most
obvious ones are the models trained in the most sparse traffic flow, i.e., 300 veh/lane/hour.
Fortunately, FL introduced by TAFI-MC makes up for this deficiency and keeps different
metrics at better values.
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In Figure 8, the convergent loss curves are represented by solid lines and the non-
convergent curves are represented by dotted lines. The results demonstrate that, with the
number of discarded experiences increasing, the IL model is more difficult to converge. It
shows the loss curves with different discard factors p. When p is no more than 10% and
the training step exceeds 4000, the trained models can be convergent and stable. It can be
easily found that the models converge and stabilize from 6000 training steps, thus only the
communication overheads before convergence is counted. In addition, the loss curves peak
at about 2000 training steps. Since that, losses and models have been gradually stable. In
the following analysis, only the convergent model (i.e., models with p = 1%, 2%, 5%, 10%)
is considered.
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Figure 8. The loss value with different discard factor p.

In Figure 9, the cumulative communication reduction rate is presented. A higher p
brings less communication overhead. At the beginning of model training, the VIs’ model
parameters are random. As a threshold, the reference loss discards more experience,
which leads to a greater reduction in communication overhead. After the loss curves
peak at 2000 training steps, the communication reduction rates gradually decrease with the
training progress. When the model converges, the cumulative communication overhead
can be reduced by 0.44%, 1.65%, 5.6%, and 12.80% with different discard factors.

Figure 9. Cumulative communication reduction rate with a different discard factor p.

According to the performance in Table 3, the reduction of experience did not lead to
performance degradation. In short, the proposed loss-aware experience selection strategy
reduces the communication overhead while ensuring model performance.
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Table 3. Performance with discard factors.

Discard Factor 1% 2% 5% 10%

Collision Rate
rcollision

Model 36% 39% 44% 42%
Model+Rule 0% 0% 0% 0%

Average Jerk
Javg

Model 21.55 13.08 11.11 23.85
Model+Rule 137.15 113.23 108.83 130.83

Average Velocity
vavg

Model 12.22 12.06 12.06 12.24
Model+Rule 12.21 12.21 12.19 12.26

6. Conclusions

A Traffic-Aware Federated Imitation Learning Framework for Motion Control was
proposed to optimize motion control across multiple isolated unsignalized intersections.
The framework contains vehicle interactors, edge trainers, and a cloud aggregator. Data
privacy restriction is relaxed from vehicle interactors to edge trainers at intersections to
balance privacy-preserving and motion control. The framework integrated a traffic-aware
model aggregation for intersections with different traffic flows. Then, an IL algorithm
was proposed for action cloning from a set of collision avoidance rules to improve the
safety capability of end-to-end learning. Furthermore, this paper explored a loss-aware
experience selection strategy to reduce the communication overhead through additional
computation on interactors and trainers. The extensive experiment revealed that the
proposed IL algorithm could achieve collision avoidance and improve the driving comfort.
The TAFI-MC framework meets the privacy demand and further improves driving comfort.
The proposed experience selection strategy can reduce the communication overhead while
ensuring convergence.

Our future work will focus on the modeling and theoretical analysis of the relationship
between the interactors and trainers in terms of communication and model training. Based
on this analysis, we believe it will help accelerate model training while significantly
reducing the communication overhead.
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