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Abstract: Detection accuracy of current machine-learning approaches to intrusion detection depends
heavily on feature engineering and dimensionality-reduction techniques (e.g., variational autoen-
coder) applied to large datasets. For many use cases, a tradeoff between detection performance
and resource requirements must be considered. In this paper, we propose Loci-Constellation-based
Intrusion Detection System (LC-IDS), a general framework for network intrusion detection (detection
of already known and previously unknown routing attacks) for reconfigurable wireless networks
(e.g., vehicular ad hoc networks, unmanned aerial vehicle networks). We introduce the concept of
‘attack-constellation’, which allows us to represent all the relevant information for intrusion detection
(misuse detection and anomaly detection) on a latent 2-dimensional space that arises naturally by
considering the temporal structure of the input data. The attack/anomaly-detection performance of
LC-IDS is analyzed through simulations in a wide range of network conditions. We show that for all
the analyzed network scenarios, we can detect known attacks, with a good detection accuracy, and
anomalies with low false positive rates. We show the flexibility and scalability of LC-IDS that allow us
to consider a dynamic number of neighboring nodes and routing attacks in the ‘attack-constellation’
in a distributed fashion and with low computational requirements.

Keywords: distributed network intrusion detection; scalable intrusion detection; anomaly detection;
misuse detection; reconfigurable networks; dimensionality reduction

1. Introduction

With the advent of new technologies on the horizon, such as the fifth generation of
mobile communication (5G), the fourth industrial revolution, Intelligent Transportation
Systems (ITS), smart cities or the Internet of Things (IoT), the number of users and range of
applications for wireless communications are continuously increasing. The number of IoT
connections worldwide is expected to grow from 8.6 to 22.3 billion from 2018 to 2024 [1].
As the number and range of use case scenarios for mobile communications grows, so the
technical challenges associated with the network operation do. Some future applications
will require massive amounts of bandwidth (e.g., virtual/augmented reality) [2]; while
some other critical infrastructure applications may require Ultra-Reliable-Low-Latency-
Communication (URLLC) [3], (e.g., remote surgery, vehicular communications). In order
to meet the user and network demands for such a wide range of applications, wireless net-
works must be adaptable and reconfigurable. Reconfigurable wireless networks (RWN) [4],
represent a new paradigm that allows networks to be reconfigurable at each layer of the
communication stack. At the physical layer, cognitive radio techniques can be used to
share spectrum between primary and secondary users, and techniques such as adaptive
coding and modulation (ACM) can be used to adapt the transceivers to wireless channel
phenomena (e.g., path loss, fading, interference). At the medium access control (MAC)
layer, adaptive transmission rates can reduce the number of frame collisions, while trans-
mission and sleep scheduling are necessary for energy constrained devices. At the transport
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layer, congestion control techniques are usually implemented. At the network layer, de-
centralized topologies are considered, and the data routing must adapt to the data traffic
conditions and to the dynamic network topology caused by different network phenomena,
such as channel fading, or node mobility.

Because the routing process has great impact on network performance parameters (e.g.,
end-to-end-delay, throughput or packet delivery rate (PDR)) it is an essential mechanism
to meet the user and network application demands. Different alternatives for RWN routing
protocols have been proposed [5,6]. Most of these routing protocols were developed
assuming a cooperative network environment, free of malicious entities. However, the open
and highly dynamic nature, as well as the lack of a central organism in charge of security,
make RWN vulnerable to routing attacks. A malicious node could launch a routing
attack to control data traffic, to degrade network performance (e.g., sinkhole, worm hole),
or to deplete network resources, such as energy or bandwidth, (e.g., flooding, rushing
attack) [7,8]. For the case of critical infrastructure cyber-physical systems, network attacks
may imply potential economic and human losses, thus, it is important to protect RWN
from these threats [9,10].

Different secure routing protocols that rely on the encryption of the routing infor-
mation have been proposed to protect the routing process in RWN [11,12]. It is worth
mentioning that secure routing techniques are a necessary, but not sufficient approach
for secure RWN. This is because secure routing cannot prevent all types of routing at-
tacks, as could be the case for a selective forwarding attack, in which an attacker node
discards a fraction of the packets to be forwarded, to degrade the network’s throughput.
Complementary techniques must be considered. Intrusion detection systems (IDS) are
a set of techniques whose purpose is to identify hostile or anomalous behavior. Several
IDS have been proposed to protect RWN from routing attacks [13,14]. Depending on the
intrusion detection paradigm, IDS can be labeled in one of three main classes, anomaly
detection, misuse detection, and hybrid approaches. Misuse-detection approaches have a
good detection performance for known attacks, but are not capable of identifying unknown
attacks. Anomaly-detection techniques are good to identify previously unseen threats,
but cannot easily identify known attacks. Hybrid approaches are ensembles of techniques
with an overall improved attack-detection performance, but with increased complexity
and resource demands. It is important to mention that most proposed misuse-based and
hybrid approaches in the literature, focus on a specific attack or a small set of classes of
routing attacks, while anomaly-detection techniques tend to have a high false alarm rate.
A more general approach that combines the complementary properties of misuse and
anomaly-detection techniques is necessary to reduce the complexity of hybrid methods.
Reduced complexity is essential for the implementation of IDS in low power devices (e.g.,
sensor node powered by energy harvesting technologies).

In this paper, we focus on the complementary detection capabilities of different
IDS paradigms. Our objective is to develop a generalized mathematical framework to
create an IDS capable of misuse and anomaly detection on a two-dimensional feature
space, with a single distributed and lightweight intrusion detection technique. We intro-
duce Loci-Constellation-based Intrusion Detection System (LC-IDS), which is a general
lightweight and distributed technique for routing intrusion detection in RWN. The pro-
posed approach is inspired by the root locus -based misuse-detection approach presented
in recent literature [15], in which authors demonstrated the low computational workload
and the attack-detection capabilities of their approach. This low computational workload is
achieved by the intrinsic dimensionality-reduction capabilities of the technique. In the root
locus misuse detection, each node adaptively models their neighboring nodes behavior
as piecewise linear systems at a given instant. With this dynamic model, it is possible to
detect routing attacks from a set of known classes of attacks, by considering the location of
system poles on the Z-plane. Then, the Z-plane acts as an orthogonal two-dimensional
feature space, which implies a reduced computational workload for the attack-detection
process. This is true because malicious nodes have a dynamic behavior that is inherently
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different from a regular node behavior. The authors demonstrated that their approach can
be used to design individual distributed and lightweight attack detectors for a wide variety
of routing attacks and network scenarios [16]. In this paper, we develop further the ideas
proposed in [15], and build a framework for the attack-constellation concept. However,
instead of considering the frequency domain representation of individual piecewise linear
systems to design individual attack detectors, we obtain the general state-space equations
that model each neighboring node. Then, we use these general state-space (SS) equations to
obtain a single model that contains several attack detectors, and that has anomaly-detection
capabilities. This approach allows us to extend the misuse-detection capabilities of the
work presented in [15] to a more general and lightweight misuse and anomaly-detection
technique. The frequency domain representation of this generalized model contains all
the relevant information to represent all the known attacks on a two-dimensional feature
space, the Z-plane. Because of the fact that the Z-plane representation of each attack
considered in the general state-space model has its own root locus trajectories, we intro-
duce the concept of ‘attack-constellation’, which is a visualization tool to represent all the
relevant information on a two-dimensional space (similar to constellation representations
of modulated signals, such as quadrature amplitude modulation (QAM)). In addition,
we use this two-dimensional feature space to perform anomaly detection. This allows us
to identify unknown threats, for which we can design attack detectors to include them
in the general state-space model and the corresponding ‘attack-constellation’. The main
contributions of this paper are the following:

• We propose a general mathematical framework based on the theory of dynamical
systems, to identify routing attacks and anomalous behaviors from the local perspec-
tive of an individual node in RWN. With this mathematical framework, we present
LC-IDS, which is a general and distributed intrusion detection technique capable of
misuse and anomaly detection.

• We introduce the concept of ‘attack-constellation’, which allows us to represent all the
relevant information for intrusion detection on a latent 2-dimensional space. By this
approach, a single node can adapt to the changing network conditions by considering
a dynamic number of neighboring nodes and routing attacks to be analyzed.

• We show through simulations (including a wide range of network scenarios, including
different node densities, different locations of the attack nodes, several attack sever-
ity values for the considered routing attacks and node mobility) that the proposed
lightweight and distributed technique can detect already known routing attacks and
previously unseen anomalies with good performance.

The rest of this paper is organized as follows, Section 2 presents background informa-
tion in intrusion detection for RWN, a concise revision of relevant literature and a summary
of open challenges in the state of the art, and an introduction to the root locus-based misuse
detection. In Section 3, we present the definitions and notation of basic concepts used
to explain our approach to intrusion detection. In Section 4, we introduce the proposed
general mathematical framework for anomaly and misuse detection for routing in RWN,
and we discuss the implementation of the proposed technique. Section 5 covers the experi-
mental setup for a wide variety of network conditions simulated, we report the misuse and
anomaly-detection performance rates for each case of study. Finally, in Section 6, contains
the conclusions of this work.

2. Intrusion Detection Fundamentals and State of the Art

In this section, we present an introduction to the main issues of network intrusion de-
tection for the routing problem in RWN, including a concise literature review. Additionally,
we discuss the strengths and areas of opportunity of the main IDS paradigms and the most
relevant open research challenges, which we try to overcome with our approach, to be
explained in Section 4. Later we introduce the root locus-based misuse detection, which is
the basis for this work.
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2.1. Network Intrusion Detection Systems for RWN

The network intrusion detection problem consists of the identification of potentially
hostile or anomalous network activities, [13,14]. In order to identify malicious activities,
any IDS must perform three basic functions, data collection, intrusion detection and intru-
sion response. During the data collection phase, the IDS must collect and prepare relevant
network metrics (e.g., application logs, information from data packets and data flows) that
the intrusion detection engine will use to identify of malicious activities. The data prepa-
ration may imply techniques such as data normalization and dimensionality reduction,
which are used to improve the detection performance of the intrusion detection engine.
The intrusion detection engine is used to decide if there is any malicious or hostile network
activity. The intrusion detection problem is, in essence, a classification problem. The intru-
sion detection engine must classify a given node as malicious or not malicious given the
information previously collected and pre-processed by the data collection module. There
are different intrusion detection methodologies for routing in RWN, the most relevant are
distributed approaches, statistics-based, and machine-learning approaches. In distributed
approaches, as the name implies, network nodes cooperate with each other to distribute
the computational overhead of the intrusion detection task. Two popular approaches for
distributing the computation of intrusion detection among the network nodes are biologi-
cally inspired techniques and trust-based techniques. Biologically inspired IDS try to create
a complex global response to an attack from simple local interactions of network nodes,
as in swarm intelligence-based techniques [17–19], and artificial immune systems-based ap-
proaches [20,21]. Trust-based techniques tend to have good attack-detection performance
at the expense of increasing the bandwidth due to the required information exchange
(e.g., trust metrics) among neighboring nodes [22–24]. Statistics-based techniques rely
on statistic metrics and either static or dynamic thresholds to detect routing attacks, they
tend to have accurate attack-detection performance for static and low mobility network
scenarios, but for highly dynamic scenarios the obtaining of decision threshold becomes
a hard challenge [25–29]. Machine learning approaches are capable of learning from the
given data. For that reason, they are a good candidate for IDS in RWN because those
techniques can continuously learn and adapt to the dynamic network environment and the
changing network topology. Their main drawback is the high computational workload that
these techniques imply to be trained and executed [30–34]. The last function of an IDS is
the intrusion response, and it refers to the actions taken by the IDS after the identification of
an intruder. Those actions may imply adding the potentially malicious node to a blacklist
or triggering alerts to the network administrators.

The design of an IDS is a complex task, and for the particular case of IDS for routing
in RWN there are some additional difficulties due to the inherent decentralized, self-
organizing and dynamic nature of the network. The IDS for RWN must be implemented
in nodes with severe restrictions in terms of energy, processing power, memory and
bandwidth (e.g., sensor network placed at a remote location and whose nodes are powered
by small batteries and energy harvesting devices). In addition, the network topology is
highly dynamic due to channel fading, node mobility or sleeping schedules. This dynamic
topology causes regular changes in traffic profiles, which make it difficult for modeling
normal traffic behavior or the signature behavior of an attack. In the highly dynamic and
stochastic nature of RWN, network performance could be affected by possible attacker
nodes, and be degraded by ‘natural networking’ causes (e.g., node mobility, node sleep
scheduling, packet loss due to traffic congestion or wireless channel impairments such
as interference, multipath or fading). The lack of a central entity makes it hard to use a
centralized data collection, which discards IDS with centralized architectures. The ideal
IDS should be a lightweight attack-detection mechanism, capable of adapting to the rapid
changes in the network conditions, robust, scalable, the time to detect any threat should be
minimum to limit the damage produced by the attacker, and it would provide the necessary
tools to recover from an incident.
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2.2. Intrusion Detection Engine Paradigms

As stated previously, the intrusion detection process can be thought of as a classi-
fication problem, and there are three main paradigms for intrusion detection, anomaly
detection, misuse detection, and hybrid approaches. Each paradigm has its own strengths,
which we explain in this subsection and which we take advantage of, for the proposed
LC-IDS, explained in detail in Section 4.

2.2.1. Anomaly Detection

Anomaly detection is, in essence, an outlier detection approach, because it uses the
concept of normal network state and deviations from it. This normal network state is
obtained from historical records of each user’s behavior. Any deviation from the obtained
normal state is considered an outlier or an anomalous situation. Anomaly-detection
techniques do not require prior information of the attack to be detected, this implies that
there is no need for a database of known attacks. Therefore, this methodology is powerful
to detect previously unseen attacks or anomalous activities, which is a useful property,
given that cyber-attacks are continuously evolving. However, due to the dynamic nature
of the network traffic and network topology of RWN, the normal network state could be
very dynamic in time, and it could lead to a significant amount of false alarms.

2.2.2. Misuse Detection

Misuse detection or signature-based detection systems usually rely on a database that
stores the typical signature of all the known threats. This attack signature consists of the
typical impact of the considered attack on a given set of network parameters. In order
to detect a malicious node, the misuse detection system compares the behavior of each
user to each attack signature in the database. Misuse detection is, in essence, a pattern-
matching approach that tends to have good performance in detecting known attacks,
but has difficulties in detecting unknown network anomalies. Another drawback of
misuse-detection approaches is that they require a constant update of the database of
known attacks, which can be a bandwidth and energy demanding process.

2.2.3. Hybrid Approaches

Hybrid approaches, as the name implies, are typically ensembles of anomaly detection
and misuse-detection systems. Hybrid approaches tend to have an improved attack-
detection performance compared to individual approaches, this is because of the comple-
mentary detection capabilities of misuse and anomaly-detection techniques. The main
drawback of hybrid approaches is the extra complexity and computational workload that
those ensembles of techniques imply on the IDS. This extra complexity and computational
cost may limit their range of applications to powerful host nodes. In order to implement any
IDS on low power devices, it must be lightweight because of the energy and computational
power constraints that some nodes could have (e.g., sensor nodes).

2.3. Open Challenges in the Literature

From the literature review, we can identify some of the most relevant open chal-
lenges related to IDS for routing in RWN, some of which we overcome with our proposed
approach, introduced in Section 4. Those current issues can be summarized as follows:

• Network resources such as the amount of memory required, the processing work-
load, the used bandwidth and the time-to-detection are not commonly considered
to compare the performance of different IDS. The performance evaluation for IDS is
typically measured in terms of attack-detection accuracy metrics, such as the number
of false negatives, the number of false positives, and detection accuracy. However,
given the highly dynamic and resource constrained nature of RWN, memory, process-
ing and bandwidth requirements are also important to the implementation of any
IDS, which remain an open challenge for most of the use cases of IDS in RWN (e.g.,
sensor networks).
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• IDS usually sacrifice attack-detection performance to reduce the resource consumption
related to its implementation. Scalable, robust and lightweight IDS must be designed.

• Collaborative and hierarchical-based IDS effectively distribute the computational
workload of the IDS, but they consume one of the most valuable network resources,
bandwidth. This limits the scalability of some of those approaches. Hierarchical
schemes help to alleviate the bandwidth consumption issue.

• The right feature space selection is crucial to achieve good attack-detection perfor-
mance. However, it is difficult to find accurate normal traffic patterns or attack
signatures in the complex and stochastic network environment of RWN. Machine-
Learning (ML) techniques are good candidates to solve this issue, but most ML-based
IDS are computationally intensive approaches which require the use of dimensionality-
reduction techniques.

• A general approach for IDS is necessary to reduce the complexity of hybrid methods.
The majority of proposed IDS for RWN in the literature focus on a specific attack or a
small set of classes of routing attacks.

• Most of the classical machine-learning techniques do not take into consideration the
temporal changes in the input data to extract useful patterns for classification.

The root locus misuse detection presented in [15], takes advantage of dynamic models
that are well suited to study the time-varying nature of RWN. By this approach, it ad-
dresses some of the described open research challenges, such as the dynamism, scalability,
robustness and the low demands for computational resources. The main drawback of root
locus misuse detection, is that individual attack detectors must be designed for all the
known attacks, and it does not have anomaly-detection capabilities to identify previously
unseen threats. In the next subsection, we summarize the main ideas presented in [15],
which we take as a basis to develop our general approach for intrusion detection, described
in Section 4. In our approach in Section 4, we obtain the general state-space equations
that model each neighboring node from the local perspective of an individual network
node, instead of considering the frequency domain representation of individual piecewise
linear systems to design individual attack detectors as described in [15]. Then, we use
these general state-space equations to obtain a single model that contains several attack
detectors and that has anomaly-detection capabilities.

2.4. Root Locus Based Misuse Detection

The authors in [15], proposed a mathematical framework for misuse detection for
routing in RWN. This framework is based on the theory of dynamical systems, in which
they consider each node as a dynamical system that models the node’s dynamic behavior
and its individual contribution to the network performance. The system output signals are
local network performance metrics (e.g., point-to-point delay, link throughput), and the
input signals are different network metrics of the channel state and the internal state of
the node (e.g., signal-to-noise-ratio (SNR), number of collided frames, packets in queue).
Given the dynamic nature of the network, the dynamical systems that model each node
are nonlinear, but those dynamical systems can be linearized at any given instant. The au-
thors propose a simple premise, there are inherent differences in the dynamic behavior of
attacker nodes and regular nodes; and those differences will be reflected in the frequency
domain representation of the models for those nodes. They propose that each node adap-
tively models each neighboring node’s dynamic behavior as piecewise discrete-time linear
systems at a given instant. Then, they use the Z-plane representation of those models
as a two-dimensional feature space for identifying neighboring malicious nodes. This
reduced feature space arises naturally, independently of the number of input and output
signals considered, and it does not imply any loss of information; thus, the computational
workload for the attack-detection process is reduced because there is no need for addi-
tional dimensionality-reduction techniques (e.g., PCA). With this mathematical framework,
the authors proposed two different IDS, the first is based on a black box system identifica-
tion technique, the second IDS is based on root locus principle. For the black box approach,
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the authors use a black box system identification technique to model the input–output
relationship of the local performance metrics and the metrics obtained from the channel
and the node state. For the root locus-based attack-detection technique, the authors take
advantage of the root locus principle used in control theory, they propose some definitions
of the input signals in terms of delayed metrics of the channel and node state and the
relevant local performance metrics, the output signals are defined in terms of the current
local performance metrics. The authors demonstrate that with those input and output
signal definitions, the system poles move on predefined trajectories on the Z-plane. They
also proved that with their root locus-based approach, they could minimize the probability
of classification error, by adjusting the model parameters. The authors show the intrinsic
dimensionality reduction, low computational cost and good attack-detection capabilities of
both techniques through a case study. They concluded that the root locus technique can be
used to design individual attack detectors for an arbitrary number of routing attacks, at a
lower computational cost, compared to the black box technique. For that reason, in this
work, we generalize the root locus-based attack-detection approach presented in [15],
to introduce a general, scalable and robust intrusion detection technique capable of misuse
and anomaly detection for routing in RWN.

3. Basic Definitions and Notation

Let us define relevant concepts. Please note that we have modified the notation
proposed in [15] because it neither allows us to represent multiple attack detectors in a
single state-space model, nor it includes the anomaly-detection concept.

3.1. Reconfigurable Wireless Networks

RWN are dynamic entities composed of nodes connected among themselves with
wireless communication links, and continuously sharing flows of information through
those links in a point-to-point fashion. Those communication links can be lost or established
at any moment due to different network phenomena, such as node mobility, channel fading
or sleep scheduling; therefore, network topology is highly dynamic in nature.

We can describe the RWN topology at a given instant τ as a dynamic directed graph as,

Gτ = (Vτ ,Lτ), (1)

where

• Vτ = {vi : i = 1, 2, ..., Sτ} is the set of nodes. There is a total of Sτ nodes at instant τ,
• Lτ = {lij = (vi, vj) : vi, vj ∈ Vτ} is the set of ordered pairs representing communica-

tion links at the same instant τ. The subindices order in each link definition represents
the direction of that link. If for any given order pair, (vi, vj), the link lij /∈ Lτ , then @
lij, the link does not exists at that instant τ, for any given reason (e.g., nodes are out of
communication range, sleeping scheduling issues, channel fading).

Figure 1a, shows an example of a network topology Gτ1 , described at a given instant τ1;
the set of nodes is Vτ1 = {v1, v2, v3, v4} and the set of links is Lτ1 = {l12, l21, l13, l31, l34, l43}.
Please note that links l24, l42 do not exist and therefore they are not in the set of links,
l24, l42 /∈ Lτ1 .

3.2. Neighboring Nodes

Given that we are defining the mathematical framework for a distributed technique,
we focus on a particular node vi and its vicinity, to explain our approach, without loss of
generality. The set of neighboring nodes to a particular node vi ∈ Vτ , at a given instant τ,
is defined as,

Ni ⊂ Vτ = {vj : lji ∈ Lτ}. (2)

In Figure 1a, the set of neighboring nodes of v3 is N3 = {v1, v4} at instant τ1.
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Figure 1. (a) RWN topology at a given instant τ1. (b) Example of a selective forwarding attack.

3.3. Routing Attacks

We assume that any malicious node vA ∈ Vτ , has access to the RWN, and that it could
launch a routing attack at a given instant. The set composed of a total of M known routing
attacks is defined as,

ΩA = {ωg : g = 1, 2, ..., M}. (3)

Each ωg, has associated an attack severity metric that is bounded between a minimum
and a maximum attack severity value. This attack severity metric is defined as,

ψg ∈ [ψmin
g , ψmax

g ]. (4)

As previously stated, routing attacks have an impact on network performance. The at-
tack severity metric is defined in such a way that a greater value of attack severity corre-
sponds to a greater impact on network performance degradation.

Figure 1b, shows an RWN in which the attacker node vA launches the g-th routing
attack, a selective forwarding attack for this particular example. In this selective forward-
ing attack, the malicious node vA, drops some of the data packets to be relayed with a
probability pD = 0.1. The attack severity of ωg can be defined as the probability of a packet
being dropped by the attacker node, ψg = pD. By this attack severity definition, any incre-
ment in attack severity will correspond to a greater degradation of network performance
(e.g., throughput). And being defined as a probability, the attack severity is bounded by
minimum and maximum values, ψg ∈ [ψmin

g = 0, ψmax
g = 1]. In this particular example,

if the attacker node vA, decides to change the attack severity, to the minimum possible
value ψmin

g = 0, this implies that not one packet will be dropped by the malicious node;
and if the decision is change to the maximum possible attack severity value ψmax

g = 1, this
represents that all the data packets are discarded by vA.

Please note that given the dynamic nature of RWN and the appearance of previously
unknown vulnerabilities in routing, the total number of known attacks M, could be varying
over time. For that reason, the use of anomaly-detection-based approaches is essential to
secure RWN.

3.4. Local Information to Detect Routing Attacks

LC-IDS uses local information to infer a global network state and to identify a po-
tential neighboring attacker vA ∈ Ni, launching a specific routing attack or having an
anomalous behavior. We classify the local information as local performance metrics and
complementary information:

• Local performance metrics. The global network performance can be thought of as a
composition of individual performance contributions of each node vi ∈ Vτ . Given
that routing attacks cause network performance degradation, some local performance
metrics could be used to identify hostile neighboring nodes. The concept of local
performance metric refers to the performance metrics that each node vi ∈ Vτ , can
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measure from its local perspective (e.g., point-to-point delay, link throughput, link
PDR). The total number of L local performance metrics that a node can measure are
defined in the set,

P = {πa : a = 1, 2, .., L}. (5)

Each local performance metric πa, is defined in such a way that any performance
degradation corresponds to an increase in the metric. Additionally, each g-th routing
attack ωg ∈ ΩA can degrade at least one local performance metric πa ∈ P and each
πa ∈ P can be affected by one or more attacks. Please note that the subindex in
each πa ∈ P is used to identify each metric in the set, but it does not indicate any
particular order.
The subset Pg, composed of a total of λp ≤ L, of local performance metrics that the
misuse detection part of LC-IDS uses to detect the g-th routing attack is defined as,

Pg = {πa ∈ P : ωg can be detected}, |Pg| = λp. (6)

• Complementary information. Given that routing attacks are one, but not the only pos-
sible cause of network performance degradation, we need to consider complementary
information that allows us to discriminate routing attacks. The set of complementary
network metrics that a node vi can measure to discard routing attacks is defined as,

X = XA ∪ XN , (7)

where

– XA = {χAb : b = 1, 2, ..., A}, is the set of local network metrics that are related
to routing attacks and performance degradation (e.g., a large number of routing
control messages may indicate a possible RREQ flooding attack), there are a total
of A elements in the set, |XA| = A,

– XN = {χNc : c = 1, 2, ..., N} is the set of local network metrics related to ‘natural’
performance degradation (e.g., a low link throughput may be caused by channel
congestion, measured with the number of colliding frames per time unit, or by
the number of packets discarded in queue per time unit). There is a total of N
elements in the set, |XN | = N.

The subindices b and c in χAb ∈ XA and χNc ∈ XN , help to identify each metric in
their respective set, those subindices do not indicate any order in the metrics.
Because a lightweight intrusion detection technique is essential for its implementation
on low power devices, we do not need to consider every network metric χAb ∈ XA,
χNc ∈ XN , to detect the g-th routing attack; but we can consider subsets of relevant
metrics to identify each routing attack ωg. Those subsets XAg ⊂ XA, and XN g ⊂
XN , are defined as, XAg = {χAb ∈ XA : ωg can be detected}, whose cardinality is
|XAg| = λag, and, XN g = {χN c ∈ XA : ωg can be detected}, whose cardinality is
|XN g| = λng.

Please note that the reduced cardinality of the subsets of complementary network
metrics, contribute to a lower computational workload of LC-IDS; |XAg| = λag < |XA| =
A; |XN g| = λng < |XN | = N.

3.5. LC-IDS Architecture

The authors in [15], take a divide and conquer strategy, in which each node vi obtains
an adaptive Linear Shift-Invariant (LSI) system model IDSij,ωg , for each neighboring node
vj ∈ Ni and for each routing attack ωg ∈ ΩA, every time period kT, k = 0, 1, 2, .... An
LSI system is a mathematical model that describes the dynamical relation between the
discrete input and output signals of the system of interest (e.g., network node). By model-
ing the dynamic behavior of network nodes at a given instant, we can identify malicious
nodes because of their inherently different dynamic behavior from the rest of the net-
work nodes. Figure 2a, shows this approach, implemented in a node vi with at least one
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neighboring node, Ni = {v1, ...}. The IDS implemented in vi can be decomposed in IDSi1,
IDSi2, ... Each IDSij, can be further decomposed in attack detectors for each routing at-
tack in ΩA = {ω1, ..., ωM}. This approach allows them to design individual robust and
lightweight misuse detectors for an arbitrary number of neighboring nodes and classes
of routing attacks; however, each IDSij is independent of each other, which implies that
anomaly detection cannot be performed directly, without considering additional tech-
niques. In Figure 2b, we show the architecture of the proposed LC-IDS, in which each
node adaptively models the dynamic behavior of its neighboring nodes; only one LC-IDS
is modeled for each neighboring node vj ∈ Ni. Each LC − IDSij, can perform anomaly
detection and misuse detection of all the known routing attacks ωg ∈ ΩA. In Section 4.2
we describe the dynamic behavior of the LSI that models each LC− IDSij, in Section 4.4
and Appendix A we explain the theoretical framework that allows us to perform misuse
and anomaly detection in the same lightweight IDS. This theoretical framework for general
intrusion detection is the main contribution of this work.

…

IDS in 𝑣𝑖
𝑣𝑖

𝑣1
⋮

𝐼𝐷𝑆𝑖1
𝐼𝐷𝑆𝑖2,𝜔1

𝐼𝐷𝑆𝑖2,𝜔2

𝐼𝐷𝑆𝑖2,𝜔𝑀

…

…

…

IDS in 𝑣𝑖
𝑣𝑖

𝑣1

𝐿𝐶 𝐼𝐷𝑆𝑖1

…

…

Misuse/ 

Anomaly

Detection

a) b)

Figure 2. (a) Root locus-based misuse detection. (b) LC-IDS anomaly and misuse-detection architecture.

Table 1 summarizes and defines the notation of the basic concepts presented in this section.

Table 1. Summary of concepts and notation.

Notation Description

Gτ Network topology graph at instant τ
Vτ Set of nodes at instant τ
vi i-th node
Lτ Set of links at instant τ
lij Link that goes from the i-th node to the j-th node
Ni Set of neighboring nodes of the i-th node
ΩA Set of known routing attacks
ωg g-th known routing attack
ψg Attack severity metric of the g-th routing attack
Pg Set of local performance metrics degraded by ωg
πa a-th performance metric
XA Set of local metrics related to ωg
χAb a-th local metric related to ωg
XN Set of local metrics not related to ωg
χNc c-th local metric not related to ωg
a(z) Polynomial in the Z-plane
a(k) Time series

a Scalar
a Vector/matrix
aᵀ Transpose operator

a−1 Inverse operator
|a| Modulus operator
||a||2 Euclidean norm operator



Electronics 2021, 10, 3053 11 of 31

4. Loci-Constellation-Based Intrusion Detection System (LC-IDS)

In this section, we define the general mathematical framework for intrusion detection
engine of our proposed technique, which uses the local data collection approach described
in Section 3.4. We discuss the implementation of online attack and anomaly detection engine
of LC-IDS. Online attack detection is performed in real time, unlike forensics approaches,
in which network data are analyzed after the network attack. Please note that local data
collection allows the method to operate without scarifying the network resources such
as bandwidth, synchronization and node power battery, which result very convenient in
dense sensor networks. Our objective is to develop a generalized mathematical framework
to create an IDS capable of misuse and anomaly detection on a two-dimensional feature
space, with a single distributed and lightweight intrusion detection technique. We will
take advantage of the state-space representation of the dynamic behavior of neighboring
nodes to detect known routing attacks and previously unseen network anomalies.

4.1. Parametric Autoregressive Model

We begin the definition of the mathematical framework for the proposed intrusion
detection technique by the misuse detection part of LC-IDS. Our objective is to obtain an
adaptive LSI system that models the dynamic behavior of each neighboring node vj ∈ Ni,
to later use the Z-plane representation of that model as a two-dimensional feature space
to detect each known attack ωg ∈ ΩA. Then, we define the methodology for anomaly
detection in the obtained feature space.

Without loss of generality, and in order to develop the LSI model for LC− IDSij, we
focus on the g-th routing attack and we consider each neighboring node vj ∈ Ni as an LSI
system, which has been linearized for a small time-window around a given instant, τ. This
approach can later be used for all the routing attacks ωg ∈ ΩA. We take periodic samples,
with a sampling period T, of the relevant local network metrics πa, χAb and χNc , to form
the time series, πa(k), χAb(k) and χNc(k); k = 0, 1, 2, .... We propose the multivariate linear
regression to model the relationship of the time series in the time domain as,

πa(k) =
A

∑
b=1

αbχAb(k)1XAg(χAb) +
N

∑
c=1

βcχNc(k)1XN g(χNc) + γg(k), (8)

where αb, ∀b, βc, ∀c, γg(k), are the model parameters to be estimated each period, 1XAg
(χAb)

and 1XNg
(χNc) are indicator functions, defined as,

1XAg
(χAb) =

{
0 if χAb /∈ XAg

1 if χAb ∈ XAg

, (9)

and,

1XNg
(χNc) =

{
0 if χNc /∈ XNc

1 if χNc ∈ XNc

. (10)

Please note that if the χAb /∈ XAg, the corresponding term in the summation is zero
and has no effect on ∑A

b=1 αbχAb(k)1XAg
(χAb). A similar argument can be made for each

χNc /∈ XN g and ∑N
c=1 βcχNc(k)1XNg

(χNc). The use of indicator functions allows us to obtain
the general state-space representation of the dynamical system, as shown in Section 4.4
and Appendix A.

For each routing attack, we select one local performance metric πa ∈ Pg, each χAb ∈
XAg , and each χNc ∈ XN g. Because |XAg | = λag and |XN g| = λng; the multivariate
regression model for the g-th routing attack, has a total number of λag + λng + 1 parameters.
In Equation (8), we make the distinction between the time series of network metrics
sensitive to routing attacks, χAb(k), and the time series of network metrics non-sensitive to
attacks, χNc(k). This distinction allows each attack detector of LC− IDSij to be sensitive
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to each routing attack ωg ∈ ΩA, and not to other factors that may cause performance
degradation (e.g., channel fading), of the a-th local performance metric πa ∈ Pg. It is worth
mentioning that in Equation (8), we do not consider the relationship between delayed
output and input signal and the current output signal, which is an essential characteristic
of dynamical systems; but, the dynamical behavior of LC− IDSij is originated from the
input and output signals, which will be defined in Section 4.2.

For the model in Equation (8), we obtain a set of parameters {αb : b = 1, ..., λa},
which relate the time series of the performance metric πa(k), and the time series of the
b-th metric sensitive to routing attacks, χAb(k). Similarly, the set of parameters {βc :
c = 1, ..., λn}, represent the relationship between the time series of the network metrics
non-sensitive to routing attacks χNc(k) and the local performance metric πa(k); γg(k) is
a free parameter, whose value is fully determined by the data, at each sampling period.
The model parameters can be obtained by linear regression, considering a number d,
of delayed measurements of the time series, in a sliding-time-window fashion. A longer
time-window length d may capture longer time trends in the data, at the expense of more
computational workload.

4.2. Desired Dynamic Response and ‘Attack-Constellation’

Let us define the concept of ‘attack-constellation’, as the two-dimensional feature
space, in which we can represent all the relevant information to perform anomaly detection,
and misuse detection of the known routing attacks ωg ∈ ΩA. At a given instant, the system
poles of the LC− IDSij, can be represented in this ‘attack-constellation’; and depending
on their location, the node vi can decide if the j-th neighboring node is an attacker. Every
attack detector for each known attack ωg ∈ ΩA, has its corresponding pair of system
poles. Given that at any particular instant, there are a total number of M known routing
attacks, and because complex poles have a conjugate pair, the system representation
of LC − IDSij is of order 2M. These poles, by definition, tend to be near the origin of
the Z-plane in absence of the attack ωg ∈ ΩA; zmin

N g = zmin
N g = 0. In addition, in the

presence of an attack ωg ∈ ΩA, one of the two system poles for that attack detector
moves closer to an arbitrary location, zmax

Ag = rg cos θg + jrg sin θg; the conjugate pole
moves to zmax

Ag = rg cos θg − jrg sin θg. Therefore, we obtain a region on the Z-plane that
represents the absence of the corresponding g-th routing attack. This region is common
for all the misuse detectors in LC− IDSij, and is located near the origin of the Z-plane.
As an example, consider Figure 3, which shows a total of four known routing attacks,
ΩA = {ω1, ω2, ω3, ω4}. Please note that a given instant, we can represent the 2M system
poles, and depending on how far they are from the origin, we can assign a probability to
identify a potential malicious neighboring node vj ∈ Ni. Later in this section, we propose
a methodology to define the decision boundary for the non-attack region.

Figure 3. ‘Attack-constellation’, representing the system poles at a given instant τ. Each pole in
the constellation is sensitive to a specific attack, ωg ∈ ΩA. The further the poles from the origin,
the greater the value of the probability of a given routing attack ωg.
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The LSI system that models the dynamic behavior of the j-th neighboring node at a
given instant, is of order 2M; thus, the characteristic equation of the dynamic model of
LC− IDSij can be stated as a 2M degree polynomial Q(z),

Q(z) =
M

∏
g=1

Qg(z); (11)

where each Qg(z) is a second-degree polynomial, given by,

Qg(z) = 1 +

(
A

∑
b=1

α
ηg
b 1XAg

(χAb)

)
(z2 − 2zrg cos θg + r2

g)

z2

= 1 +
A

∑
b=1

α
ηg
b 1XAg

(χAb)− z−1

(
2rg cos θg

A

∑
b=1

α
ηg
b 1XAg

(χAb)

)

+ z−2

(
r2

g

A

∑
b=1

α
ηg
b 1XAg

(χAb)

)
.

(12)

Please note that each Qg(z), is defined as the characteristic equation of a closed-
loop system, whose poles go from zmin

N g = zmin
N g = 0, to zmax

Ag and zmax
Ag , as the value of

∑A
b=1 α

ηg
b 1XAg

(χAb), increases from zero to infinity. Each polynomial Qg(z) has three
parameters, rg, ηg and θg. Each parameter θg is chosen arbitrarily for each routing attack,
this θg defines the trajectories that the pair of poles of Qg(z) will follow. The values of the
parameters rg and ηg must be found in such a way that optimize the detection performance
for the g-th routing attack detector. Later in this section, we propose a methodology to find
these optimal parameters values.

4.3. Input and Output Signals

As previously stated, the multivariate linear regression model in Equation (8), does
not capture the desired dynamical behavior of the system, whose poles on the Z-plane
move on the trajectories defined by the ‘attack-constellation’ diagram in Figure 3. That
desired dynamical behavior of the system comes from the input signals uAb(k) and uNc(k),
and output signal yg(k), defined as,

uAb(k) =χAb(k) + α
ηg−1
b ya(k)− 2rg cos θgα

ηg−1
b ya(k− 1) + r2

gα
ηg−1
b ya(k− 2), (13)

uNc(k) = χNc(k), (14)

yg(k) = πa(k)− γg(k), (15)

where a = 1, ..., λpg, b = 1, ..., λag and c = 1, ..., λng. Derivation of the input and output
signals that lead to the desired dynamic response of an individual attack-detection model
can be found in the Appendix in [15]. The analysis in the following sections is different
from that presented in [15].

4.4. State-Space Representation

In this subsection, we present the state-space representation of the LSI system that
models the dynamic behavior of LC− IDSij. This state-space representation is obtained
from the parametric autoregressive models introduced in Section 4.1, and the input–output
signal definitions in Section 4.3. There is one autoregressive model, and two system poles,
for each routing attack ωg ∈ ΩA, which lead to the LSI system of order 2M described in
Section 4.2. The derivation of the proposed state-space representation can be found in
Appendix A.
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The state transition equation is given by,

x(k + 1) = A(k)x(k) + B(k)u(k), (16)

where x(k + 1) represents the state vector at the next time period, x(k) is the current state
vector, u(k) is the input signal vector, A(k) is the state matrix, and B(k) is the input-to-
state matrix.

The state transition model in (16) in matrix form is,

x(1)1 (k + 1)
x(2)1 (k + 1)

x(1)2 (k + 1)
x(2)2 (k + 1)

...

x(1)M (k + 1)
x(2)M (k + 1)


︸ ︷︷ ︸

(2M×1)

=



A1(k)
(2×2)

0
(2×2)

. . . 0
(2×2)

0
(2×2)

A2(k)
(2×2)

. . . 0
(2×2)

...
...

. . .
...

0
(2×2)

0
(2×2)

. . . AM(k)
(2×2)


︸ ︷︷ ︸

(2M×2M)



x(1)1 (k)
x(2)1 (k)
x(1)2 (k)
x(2)2 (k)

...

x(1)M (k)
x(2)M (k)


︸ ︷︷ ︸

(2M×1)

+


B1(k)

(2×[A+N])

...
BM(k)

(2×[A+N])


︸ ︷︷ ︸

(2M×[A+N])



uA1(k)
...

uAA(k)
uN1(k)

...
uNN (k)


︸ ︷︷ ︸
([A+N]×1)

,

(17)

where each state variable has a subindex that relates it to a given attack ωg; similarly,
the superindex in each state variable denotes the time period from which that state variable
was derived.

Each submatrix Ag(k) in (17), is defined as,

Ag(k) =


2rg cos θg ∑A

b=1 α
ηg
b 1XAg

(χAb
)

1+∑A
b=1 α

ηg
b 1XAg

(χAb
)

1

−r2
g ∑A

b=1 α
ηg
b 1XAg

(χAb
)

1+∑A
b=1 α

ηg
b 1XAg

(χAb
)

0


︸ ︷︷ ︸

(2×2)

, (18)

and each submatrix Bg(k) is defined as,

Bg(k) =

 0 . . . 0
α11XAg

(χA1
)

1+∑A
b=1 α

ηg
b 1XAg

(χAb
)

. . .
βN1XNg

(χNN )

1+∑A
b=1 α

ηg
b 1XAg

(χAb
)


︸ ︷︷ ︸

(2×[A+N])

. (19)

Please note that the matrices A(k) and B(k) in (16), are time-varying, because each
submatrix Ag(k) and Bg(k) depend on the last estimated values of the multivariate linear
model parameters αb, and βc, from Equation (8).

The output equation is,
y(k) = Cx(k), (20)
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y1(k)
y2(k)

...
yM(k)


︸ ︷︷ ︸

(M×1)

=


1 0 0 . . . 0 0
0 0 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 0


︸ ︷︷ ︸

(M×2M)



x(1)1 (k)
x(2)1 (k)
x(1)2 (k)
x(2)2 (k)

...

x(1)M (k)
x(2)M (k)


︸ ︷︷ ︸

(2M×1)

, (21)

where y(k) is the output signal vector and C is the state-to-output matrix.
The system poles zij, which model the dynamical behavior of LC− IDSij, are obtained

from the state-space representation as,

zij = zij : |zij I − A(k)| = 0; (22)

to then, be used as features by LC− IDSij to detect anomalous network behavior or each
known routing attack ωg ∈ ΩA.

4.5. Misuse-Detection Decision Rule

The misuse detection part of LC− IDSij, performs a classification task, in which it has
to assign the current neighbor vj to a class from the set {CAg, CN g}; where CAg, corresponds
to the class in which the j-th neighboring node is identified as an ωg-attacker; and CN g,
is the class that corresponds to the non-ωg-attacker nodes. This classification is made by
considering the system poles zij, in the reduced feature space of the Z-plane, and a decision
rule hg(|z|), for each attack detector, g = 1, 2, ..., M.

Recall that the optimal values for the parameters rg and ηg have not been defined for
any Qg(z). Given concrete values for rg and ηg, we define a probability density function
(pdf) for the modulus of the pole locations when the network is not under the g-th routing
attack, |zN g| = |zN g|, as fN g(|zN g|). Similarly, we define the pdf for the modulus of the
pole locations, |zAg| = |zAg|, when there is an attack ωg (with severity ψg), as fAg(|zAg|).
Then, we use decision theory to define each decision rule hg(|z|) that allows LC− IDSij to
detect the g-th routing attack ωg. Since we define the pdf of the pole clusters as a function
of the modulus of the poles, the decision rule hg(|z|) can be defined with the decision
threshold thg. Thus, the decision rule hg(|z|), can be expressed as,

hg(|z|) = CAg, (23)

if and only if
|z| > thg, (24)

where the decision threshold thg, is evaluated at the pole z associated with the constellation
branch of ωg, and it is defined as,

thg = z : fAg(|zAg|)|z = fN g(|zN g|)|z. (25)

Let Pg(ε) be the probability of LC− IDSij making a classification mistake. Please note
that the decision threshold thg, and the probability of error Pg(ε), depend on the selected
values of the parameters rg and ηg, for the corresponding attack detector. Thus, we state
Pg(ε) as a function of rg and ηg, Pg(ε) = fg(rg, ηg). Then, we define some constraints as
follows; the expected values of the poles modulus in absence of attack are restricted by a
small value ζg ≈ 0, E[|zN g|] ≤ ζg. Another restriction is that the modulus of the expected
value of the poles during an attack condition must be greater than ζg and smaller than an
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arbitrary value ξg; ζg < E[|zAg|] < ξg. Finally, we select the values rg and ηg that minimize
probability of error Pg(ε), i.e.,

minimize
rg ,ηg

Pg(ε) = fg(rg, ηg),

subject to

E[|zN g|] ≤ ζg,

ζg < E[|zAg|] < ξg.

(26)

4.6. Anomaly Detection

As previously stated, the ‘attack-constellation’ contains a pair of system poles that tend
to move away from the origin on the Z-plane, as the attack severity metric ψg, increases for
each corresponding routing attack ωg ∈ ΩA. Let’s assume that we know the probability
distribution for the poles in the absence of the g-th attack fN g(|zN g|), for each known
routing attack ωg ∈ ΩA considered in the ‘attack-constellation’. Then, we can obtain
the mean µg, and standard deviation σg, for each fN g(|zN g|), to form the column vector
Φ ∈ R2M, given by,

Φ = [µ1, σ1, . . . , µM, σM]ᵀ. (27)

This vector Φ contains relevant statistical information about the non-anomalous
dynamic behavior of a neighboring node vj ∈ Ni. The statistical information in Φ can
be obtained from a large set of historic non-anomalous data. Then, we can use this non-
anomalous vector Φ as a reference to perform online outlier detection. Consider that
we obtain the mean µg,dφ

, and standard deviation σg,dφ
, of the moduli of the ‘attack-

constellation’ poles; those statistic metrics are obtained from a small time-window dφ

that includes the current and previous system poles in the ‘attack-constellation’. Then,
with those statistical values, we define the vector φ ∈ R2M, as,

φ = [µ1,dφ
, σ1,dφ

. . . , µM,dφ
, σM,dφ

]ᵀ. (28)

Please note that the vector φ contains relevant temporal and statistical information
about the dynamical behavior of the neighboring node vj ∈ Ni. Therefore, for non-
anomalous data, vector φ must be similar to the reference vector Φ. We can use the
Euclidean distance sΦ, as a measure of similarity between φ and Φ, as,

sΦ = ||Φ−φ||2 =
√
(µ1 − µ1,dφ

)2 + ... + (σM − σM,dφ
)2. (29)

With historical non-anomalous data, we can obtain an empirical cumulative proba-
bility distribution (cdf) Fsφ(sφ) for non-anomalous data. With this cdf, we can obtain a
decision rule hΦ, to decide if the current dynamic behavior of the j-th neighboring node
vj ∈ Ni is anomalous, and that neighboring node belongs to the subset of neighboring
nodes with anomalous behavior NA ⊂ Ni. The decision rule for the anomaly-detection
engine of LC− IDSij is given by,

hΦ = NA (30)

if and only if
sΦ > thΦ, (31)

where the decision threshold thφ, is defined as,

thΦ = sΦ : FsΦ
(sΦ) = pΦ; (32)

pΦ ∈ [0, 1], is a design parameter that represents a probability value of the non-anomalous
data instances correctly classified as non-anomalous. The value of pΦ must be selected to
be close to one because it represents the non-anomalous detection accuracy, thus, the closer
the value of pΦ to one, the lower the number of false positives in anomaly detection.
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Figure 4a, shows an example of an ‘attack-constellation’ of one known attack, the ref-
erence vector Φ ∈ R2, and several instances of the vector φ. In Figure 4b, we present the
empirical cdf for the distance metric sΦ, from the example in Figure 4a, and the correspond-
ing decision threshold thΦ.

(a) (b)

Figure 4. (a) Example of the reference vector Φ, and several instances of φ. (b) Empirical cdf and
anomaly decision threshold thΦ.

4.7. On the Implementation

Each network node vi ∈ Vτ , must run online the LC − IDSij for each neighboring
node vj ∈ Ni; and each LC− IDSij is designed by a supervised learning approach, which
consists of a training stage and the online detection.

4.7.1. Training Stage

During the training stage, we determine the decision threshold thg and the optimal
values for the parameters rg and ηg, used to detect the g-th routing attack ωg ∈ ΩA; as
well as the anomaly decision threshold thΦ. The value of each parameter θg, can be chosen
arbitrarily; all the parameters θg must be different among each other, because each θg
defines a branch of the ‘attack-constellation’. The decision thresholds thg and thΦ, and the
optimal parameters rg and ηg are obtained from a set of training data {zAg, zN g}, which
contains a set of attack poles zAg labeled as CAg, and a set of non-attack poles zN g, labeled
as CN g.

The set of label data zAg is obtained by the i-th node vi ∈ Vτ , by collecting input and
output signals at a time when there is an ωg attack present in the network. For the misuse-
detection part of LC− IDSij, we use those measurements grouped in d delayed samples,
we obtain the system parameters of the multivariate linear regression model (8), αb and βc,
∀b and ∀c. Those parameters are valid for a time-window that starts at k− d and ends at k.
We can define some search regions for the parameters rg and ηg. After that, we take a value
of that search region (rg, ηg), to define the system input signals, uAb(k) and uNc(k), and the
output signal ya(k). Then, we find the pole clusters, |zAg|, |zN g|, the decision threshold thg
and the probability of error Pg(ε) = fg(rg, ηg) for those particular values of rg and ηg. We
repeat this process for all the pair values of values (rg, ηg) to obtain the probability of error
as a function Pg(ε) = fg(rg, ηg). Finally, we can solve the optimization problem in (26) to
find the optimal parameters rg, ηg and their respective thg and P(ε).

To obtain the anomaly-detection threshold thΦ, we use the non-attack data {zN g :
g = 1, ..., M} to obtain the vector Φ. This vector Φ, is a point of reference to characterize
non-anomalous neighboring nodes. Then, we compare each instance of the vector φ with
the reference vector Φ. It is worth mentioning that the mean and standard deviation values
that compose each instance of the vector φ, are obtained in a sliding-time-window fashion
from the non-anomalous training data {zN g : g = 1, ..., M}. Those statistic parameters
obtained from the time-window that starts at the time period k − dΦ, and ends at the
k-th period. With each instance of φ and the reference vector Φ, we can obtain a set of
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distance metrics sΦ, and their respective cdf FsΦ
(sΦ), to finally obtain the anomaly decision

threshold thΦ.
Figure 5, shows the training process to find the decision thresholds thg, thΦ and the

optimal parameters rg and ηg.

Training data

Linear model fitting

Decision

theory and 

optimization

SS modeling

Online data

Linear model fitting

SS modeling

poles

Misue

detection

Training stage Online detection

Anomaly

detectionOutlier

detection
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Figure 5. Training and online detection stages of LC− IDSij, during the training stage we obtain the
state-space (SS) model and the respective optimal parameters and the optimal parameters rg, ηg, thg,
thΦ, Φ that minimize the classification error probability. For online detection we obtain and compare
the instantaneous system poles to the optimal threshold value, thg, to detect each routing attack; and
we use the reference vector Φ, and the threshold thΦ, to detect anomalies.

4.7.2. Online Misuse and Anomaly Detection

Figure 5, describes online attack-detection process of LC− IDSij to identify each g-th
routing attack, or anomalous dynamic behavior of each j-th neighboring node vj ∈ Ni.
The online attack-detection starts with the misuse decision threshold thg, the anomaly
decision threshold thΦ, and the optimal parameters rg and ηg, obtained during the training
stage. We form the input signals uAb(k) and uN c(k), and the output signal ya(k) from the
multivariate linear regression model parameters and variables in (8). Then, we obtain the
system poles of the ‘attack-constellation’ for that sampling period, and we compare the
modulus of those poles to the decision threshold thg to decide if the neighboring node
vj ∈ Ni is an attacker. To find anomalous neighboring nodes, we compare the current
value of the vector φ, to the reference vector Φ. Then, we obtain the current distance sΦ,
and compare it with the decision threshold thΦ. Once an attacker has been identified,
it can be added to a blacklist and the network administrator will receive an alert of the
event. Please note that the data collection and the computation for intrusion detection
is performed locally and individually by each network node to save network resources;
however, by adding the attacker to a blacklist, each individual action causes a global impact
as the attacker node is isolated from the network.

4.7.3. On the Computational Workload

In this subsection, we discuss on the computational workload required to imple-
ment the proposed technique, LC− IDSij, on a network node, to identify attackers and
anomalous behaviors online, for each neighboring node vj ∈ Ni.

For each misuse detector in LC− IDSij, there exists a branch in the ‘attack-constellation’,
and a modeling process that starts with a multivariate regression model. The number n,
of parameters of the multivariate regression model in (8) equals the number of input signals
considered. Please note that n = λag + λng + 1 < A + N + 1, because |XAg| = λag <
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|XA| = A; |XN g| = λng < |XN | = N. For each attack detector considered, LC− IDSij has
to estimate the parameters αb, βc and γg, by the least squares method, given the previous
d, delayed measurements of the time series, πa(k), χAb(k) and χN c(k). The least squares
method requires three matrix multiplications and an inverse matrix operation. It begins by
multiplying two matrices, with dimensions n× d and d× n, respectively, to obtain an n× n
matrix. Then, we need to perform the most expensive operation in the least squares method
that consists of calculating the inverse of the obtained matrix, whose dimensions are n× n.
The result must be multiplied for a matrix, whose dimensions are n× d. Then, the obtained
matrix has dimensions n× d, and must be multiplied by a d× 1 vector, to obtain the model
parameters in a vector of dimensions n× 1. The same operation must be repeated for each
known routing attack detector in LC− IDSij.

Recall that the characteristic equation from which the model in LC− IDSij originates,
Q(z) is of order 2M by definition, and it is composed of a total number M of second order
polynomials, Qg(z) : g = 1, ..., M. To find the system poles of the ‘attack-constellation’,
we need to find the roots of each second-degree polynomial Qg(z), which have a closed
solution. This implies a potential computational cost reduction when compared to the
calculation of the eigenvalues of the characteristic equation in (22).

The misuse-detection component of LC− IDSij, uses a decision rule hg(|z|) to make a
decision about the j-th neighboring node. This decision rule compares the estimated poles
of the ‘attack-constellation’ to the corresponding decision threshold thg.

For the anomaly-detection engine of LC− IDSij, we need to calculate the mean values
µg,dΦ

, and standard deviations σg,dΦ
, of the moduli of the ‘attack-constellation’ poles,

considering the current and previous dΦ − 1 calculated poles. Then, we obtain the current
distance metric sΦ, between two vectors Φ ∈ R2M and φ ∈ R2M, and compare it to the
anomaly decision threshold thΦ.

From the previous analysis, we can conclude that as the number of known routing
attacks increases, the computational cost of LC− IDSij increases as well. In order to keep
the computational workload required by LC− IDSij at a minimum, small models, with a
small number of parameters, are desirable.

4.7.4. On the Time-to-Attack Detection

Please note that the time required by LC − IDSij to identify an attack ωg ∈ ΩA
launched by the j-th neighboring node, depends on the time-window length d, used to
estimate the model parameters. The multivariate linear regression model in (8) has a total
of n = λa + λn + 1 parameters; d ≥ n. By increasing the number of input signal used
for the parameter estimation, we may improve the attack-detection performance, but at
the same time, the necessary time to detect the attack ωg increases. Similarly, the time
to detect anomalies, depends on the length of the time-window dΦ. A larger length of
dΦ reduces the number of false alarms, at the expense of increasing the time required to
detect anomalies.

4.8. On Unknown Attacks

As previously stated, as new vulnerabilities are discovered in routing protocols,
the number of known routing attacks would be continuously increasing. The anomaly-
detection capabilities of LC− IDSij can help us detect these new vulnerabilities, to then
design the proper attack detectors, and include them into the ‘attack-constellation’. Please
note that because the system poles of the model in each LC− IDSij move on predefined
trajectories, they do not interfere with each other. Thus, we can repeat the training stage
described in Section 4.7 to train as many new branches as necessary and include them
to the ‘attack-constellation’, without affecting the attack-detection performance of the
previously designed misuse detectors. The main drawback of this approach is the increas-
ing complexity of the required computational resources of the technique. Collaborative
approaches, in which different nodes detect a given subset of known attacks, might help
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mitigate the increasing complexity problem of the technique, and are a possible future
research direction.

5. Study Cases

To test the attack-detection performance of the proposed technique, a series of sim-
ulations were performed on an in-house developed event driven simulator, described
in [15]. It is worth mentioning that to present a fair comparison of the proposed method
with the prior [16], we are replicating the simulations presented in [16], comparing the
misuse-detection results and obtaining anomaly-detection results of LC-IDS.

5.1. Simulation Parameters

We performed a series of 56 simulations for a wide variety of network scenarios.
The simulation parameters are summarized in Table 2. The simulation period used is
T = 0.05 s. The total simulated time was 20 s per each simulation. Each simulated scenario
contains one attacker node, which launched the corresponding routing attack after the first
10 s of attack-free simulation. Four routing attacks were considered in the experiments, ω1
= route request flooding (RREQF), ω2 = selective forwarding (SF), ω3 = black hole (BH)
and ω4 = worm hole (WH); ΩA = {ω1, ω2, ω3, ω4}.

The simulations are divided in three experiments, the Node Density Experiment,
the Attack Severity Experiment, and the Mobility Experiment. For the first experiment, we
study the effects of node density and the position of the attacker on the attack-detection
and anomaly-detection performance. We simulated the nodes at a random fixed position.
The attack severity was fixed for all the attacks, ψg = 0.1. The total number of nodes in the
scenario increased from the set, {65, 75, 85}. To assess the attacker’s location impact, we
repeat those experiments varying the attacker node position for each node density, first,
the malicious node was set at the center of the scenario, then, it was set at the edge of the
scenario. For the second experiment, we analyze the effects of different attack severity
values on the misuse and anomaly-detection performance for each routing attack ωg ∈ ΩA.
No mobility was considered for this experiment. The attack severity was modified from the
set {0, 0.1, 0.3, 0.5, 0.7}. For the RREQ flooding attack, the attack severity, ψg, was defined
as the bandwidth consumption by the RREQ messages, normalized by the maximum
channel capacity of the attacker’s links. For the selective forwarding, black hole and worm
hole attacks, the attack severity was defined as the probability of the attacker discarding
data packets. For each routing attack, ωg, the attack severity, ψg ∈ [0, 1). The third
experiment compares the effects of mobility on the attack-detection and anomaly-detection
performance, attack severity is fixed for all the attacks, ψg = 0.1, the number of simulated
nodes is also fixed at 65. The mobility model used for this experiment is the random way
point model, where each node speed is limited by a maximum speed value from the set,
{2, 3, 4, 5}m/s.

Table 2. Simulation parameters.

Simulation Parameter Parameter Value

Type of RWN Ad hoc/Mobile ad hoc
Scenario dimensions 80 × 80 m.

Total duration 20 s.
Simulation period, T 0.05 s.

Number of nodes 65/{65, 75, 85}
Mobility model Static/Random Waypoint

Node speed 0/{2, 3, 4, 5} m/s.
Number of attackers 1
Attack severity, ψg {0, 0.1}/{0, 0.1, 0.3, 0.5, 0.7}

Node tx range 15 m.
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Table 2. Cont.

Simulation Parameter Parameter Value

Floor noise −27 dBm
Modulation QPSK

MAC protocol CSMA/CA
Routing protocol AODV

Transport protocol UDP
Traffic model CBR

{RREQ Flooding,
Type of attack Selective Forwarding,

Worm Hole, Black Hole}

5.2. Simulation Results

Each attack detector LC − IDSij, is obtained by the methodology described
in Section 4.7, to detect each routing attack ωg ∈ ΩA, and to perform anomaly detec-
tion, for the three experiments.

The attack-detection performance of the misuse-detection component of each LC−
IDSij, is evaluated in terms of detection accuracy (DAg), the number of false positives (FPg)
and the number of false negatives (FNg), for all the simulated scenarios. We are interested
in testing the robustness of the proposed technique to a wide variety of network conditions,
so that it could be implemented in low power devices. Thus, the time-to-attack-detection
and computational requirements are minimal for all the analyzed scenarios. To achieve
this minimization of computational resources, we consider the smallest possible detection
model for each case. This smallest possible model consists of only one input signal and
one output signal per routing attack; and those models are parameterized each time period
using the minimum length possible for the misuse-detection time-window d = 1, and the
minimum time-window for the anomaly detection dΦ = 2. The optimal parameters of the
‘attack-constellation’, rg and ηg, are presented for each case. Please note that by considering
only one input signal per attack detector and a minimum length of the window size d = 1,
the parameter estimation of the autoregressive model in (8) can be obtained by a simple
division, eliminating the expensive operation of matrix inversion in the least squares
approach proposed in Section 4.1. As mentioned in Section 4.7.3, we can obtain the roots
of M = 3 second-degree polynomials by solving the general quadratic equation, which
significantly reduces computation when compared to finding the roots of the characteristic
polynomial in Equation (22).

To test the anomaly-detection performance of LC− IDSij, for each simulated scenario,
we design an ‘attack-constellation’ that does not include the simulated routing attack in
that particular scenario. For example, if the malicious node in one scenario launches the
routing attack ω3, we design the attack-constellation to include the set of known attacks
ΩA = {ω1, ω2, ω4}. For each experiment we are considering a total of three known attacks.
The fourth attack class is considered to be unknown to the IDS and is used to test the
anomaly-detection performance of LC-IDS. Then we use the anomaly-detection accuracy
(DAΦ), the number of false positive (FPΦ), and the number of false negatives (FPΦ), for that
‘attack-constellation’ and the previously unknown routing attack.

In Table 3, we show the input and output signals that were considered to obtain the
multivariate linear regression parameters, for each LC− IDSij.
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Table 3. Input and output signals used for each LC− IDSij model.

RREQF SF BH WH

πa(k)
received

header bits
received bits

per link

routing
frequency

of link

routing
frequency

of link

χNc (k) ∅ ∅ ∅ ∅

χAb (k)
total

received
bits

bits sent
per link

received
packets

received
packets

The network metrics used to define the input and output signals of the LSI system,
constitute the time series πa(k), χAb(k) and χNc(k) in Table 3, and are defined as,

• The received header bits, is a metric that measures the number of packet header bits
received from the neighboring node’s link to the attacker node at each simulation
period, k.

• The total received bits, refers to the total number of received bits during one simula-
tion period.

• The received bits per link, sent bits per link and received packets focus on the link of
interest between the neighboring node and the attacker.

• The routing frequency of the link, measures the number of times that the link of interest
appears as next hop in the routing tables normalized by the number of active routes.

To reduce the time-window length d used to obtain the model parameters, we include
a pre-processing of the input and output signals before the adaptive fitting of the linear
models. In this pre-processing stage, we filter the signals by a Butterworth low-pass filter.
The main function of the low-pass filter, is to smooth the signals and to improve the signal-
to-noise ratio. The Butterworth filter was designed as an analog low-pass filter with a cut
off frequency ωc = 0.24 Hz and then it was converted to its digital form by the Tustin’s
bilinear transform with a sampling period T = 0.05 s. The transfer function in the Z-plane,
of the digital low-pass filter is,

HBttr(z) =
0.000346z2 + 0.00069217z + 0.000346

z2 − 1.947z + 0.9481
. (33)

The second order filter was used to smoothen all the input and output signals for each
simulated scenario. Please note that the misuse-detection evaluation parameters presented
in Tables 4–7 are similar to those presented in [16].

5.2.1. Node Density Experiment

In Table 4, we present the attack-detection performance for the node density experi-
ments, in which the attack node was placed at the center of the scenario. In general, we
achieve good attack-detection performance for all the simulated scenarios, and for all the
known attacks. The worst attack-detection performance (DA = 97.346%) was obtained for
the ω2 attack, for the 85-node scenario; the rest of misuse-detection accuracy results are
>99.000%. Please note that this misuse-detection performance results were obtained consid-
ering only one input signal per known attack, and a minimum length of the time-window
d = 1. This implies that the model parameters, αb, can be found by a single floating-point
operation (a division), for each attack detector in LC − IDSij, every simulation period,
T. Thus, in case it is necessary, we could improve the misuse-detection performance by
considering more input signals or by increasing the time-window length d, at the expense
of a higher computational workload. The optimal ‘attack-constellation’ parameters rg,
ηg and thg, were different for each simulated scenario, which implies that if the network
conditions change significantly, it is necessary to obtain new optimal parameters for the
‘attack-constellation’.
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The anomaly-detection performance results are shown at the bottom of the misuse-
detection results, for each simulated scenario. Most of the anomaly-detection accuracy
results are good (DA > 99.000%), even for the small time-window length dΦ. Please note
that for all the anomaly-detection results, the number of false positives FPΦ < 0.001%,
and the number of false negatives FNΦ contribute to most of the anomaly-detection error.
The worst anomaly-detection accuracy (DAΦ = 50.001%), was obtained for the case of
85 simulated node and an ω2 attack. This implies that in the presence of an ω2 attack,
the attack-constellation composed of three branches, corresponding to ω1, ω3 and ω4; the
anomaly detection component of LC− IDSij will detect the anomalous behavior of the j-th
neighboring node roughly one of every two sampling periods. This alert triggering rate
might be sufficient to be noticed.

Table 4. Results for the number of nodes in the experiment. DAg, FPg, and FNg are given as
a percentage.

Nodes ω1 ω2 ω3 ω4

rg 0.1 0.3 0.1 0.1
ηg 1.2 1.9 0.2 2.1

DAg >99.999 >99.999 >99.999 >99.999
FPg <0.001 <0.001 <0.001 <0.001

65 FNg <0.001 <0.001 <0.001 <0.001
thg 0.0524 0.0930 0.0322 0.0605

DAΦ 79.496 >99.999 >99.999 >99.999
FPΦ 0.001 <0.001 <0.001 <0.001
FNΦ 20.503 <0.001 <0.001 <0.001
thΦ 0.0173 0.0080 0.1190 0.0075

rg 0.1 0.6 0.1 0.1
ηg 2.3 35 0.2 2.5

DAg 99.440 >99.999 >99.999 >99.999
FPg 0.137 <0.001 <0.001 <0.001

75 FNg 0.423 <0.001 <0.001 <0.001
thg 0.0518 0.4795 0.0735 0.0936

DAΦ >99.999 >99.999 89.859 99.960
FPΦ <0.001 <0.001 0.001 <0.001
FNΦ <0.001 <0.001 10.140 0.039
thΦ 0.0047 0.0036 0.0069 0.0073

rg 0.1 2.7 0.1 0.1
ηg 3.8 7.4 0.1 34.8

DAg 99.974 97.346 >99.999 >99.999
FPg 0.003 2.302 <0.001 <0.001

85 FNg 0.023 0.352 <0.001 <0.001
thg 0.0516 0.0645 0.0485 0.1

DAΦ >99.999 50.001 >99.999 94.990
FPΦ <0.001 <0.001 <0.001 0.001
FNΦ <0.001 49.998 <0.001 5.009
thΦ 0.4032 0.0246 0.0026 0.0066

In Table 5 we show the results for the simulated scenarios, in which we placed the
attacker node at the edge of the scenario. Please note that we obtain better attack-detection
performance for the cases in which the attacker node is placed at the center of the scenario
than for the cases in which the attacker was placed at the edge of the scenario. This is due
to the fact that when the attacker is at the center of the scenario, it has a larger number of
neighboring nodes; thus, the attack has a larger impact on network performance. A larger
impact on network performance, implies that it is easier to detect the routing attack.
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Table 5. Results for the number of nodes in the experiment (Attacker at the edge of scenario, indicated
by *). DAg, FPg, and FNg are given as a percentage.

Nodes ω1 ω2 ω3 ω4

rg 0.5 0.1 20.7 0.1
ηg 7.6 0.3 1.5 4.9

DAg 97.242 94.653 >99.999 >99.999
FPg 0.966 2.811 <0.001 <0.001

65 * FNg 1.792 2.536 <0.001 <0.001
thg 0.0637 0.0527 0.0391 0.0948

DAΦ 84.335 50.493 >99.999 >99.999
FPΦ <0.001 <0.001 <0.001 <0.001
FNΦ 15.664 49.506 <0.001 <0.001
thΦ 0.0036 0.0311 0.0110 0.0033

rg 0.1 0.1 0.1 0.1
ηg 1.1 0.6 0.2 23.7

DAg >99.999 99.955 >99.999 >99.999
FPg <0.001 0.023 <0.001 <0.001

75 *
FNg <0.001 0.022 <0.001 <0.001
thg 0.0544 0.0391 0.0348 0.0073

DAΦ >99.999 >99.999 >99.999 50.237
FPΦ <0.001 <0.001 <0.001 <0.001
FNΦ <0.001 <0.001 <0.001 49.762
thΦ 0.0760 0.0034 0.0081 0.0184

rg 16.3 0.1 9.5 0.6
ηg 35 9.3 1.3 35

DAg 85.006 99.969 >99.999 >99.999
FPg 0.654 0.028 <0.001 <0.001

85 *
FNg 14.340 0.003 <0.001 <0.001
thg 0.0027 0.1005 0.0083 0.600

DAΦ 80.667 >99.999 >99.999 >99.999
FPΦ <0.001 <0.001 <0.001 <0.001
FNΦ 19.332 <0.001 <0.001 <0.001
thΦ 0.0472 6.0319 0.0013 0.0074

5.2.2. Attack Severity Experiment

Table 6, summarizes the misuse-detection and anomaly-detection performance for the
different attack severity experiments. Please note that we achieve better results, compared
to the node density experiments. Most of the DA > 99.000% for most of the simulated
scenarios. The worst detection accuracy (DA = 88.162%) was obtained for the ω4 and
ψ3 = 0.3 scenario. This is because, the greater attack severity values ψg, are associated
with a higher impact on network performance degradation, making easier for the misuse-
detection engine of LC− IDSij to identify those attacks. As with the previous case, the time-
window length for the adaptive fitting of the model parameters was d = 1. Thus, the model
parameters, αb, can be found by a division for each attack-detection model IDSij,ωg , every
simulation period, kT. This implies a minimum computational workload of LC− IDSij,
and a minimum time-to-misuse-detection-time. Better misuse-detection results could be
obtained by increasing the time-window length d, or by considering more input signals
into the dynamical model of LC− IDSij. The optimal ‘attack-constellation’ parameters rg,
ηg and thg, are different for each simulated scenario.

As with the number of nodes experiment, the worst anomaly-detection results
(DAΦ = 50.001%), will produce a triggering alarm rate sufficient to be noticed. In addition,
the majority of the anomaly-detection error is produced by the number of false negatives
FNΦ, i.e., anomalous neighboring nodes detected as non-anomalous. The number of
false positives is minimum, because of the way that the anomaly decision threshold thΦ

is defined.
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Table 6. Results for the attack severity (ψg) experiment. DAg, FPg, and FNg are given as a percentage.

ψg ω1 ω2 ω3 ω4

rg 0.7 0.1 12.9 0.1
ηg 4.2 35 4.2 2.1

DAg >99.999 >99.999 99.930 >99.999
FPg <0.001 <0.001 0.024 <0.001

10 FNg <0.001 <0.001 0.046 <0.001
thg 0.1084 0.1056 3.6× 10−9 0.0605

DAΦ 77.641 >99.999 99.947 >99.999
FPΦ <0.001 <0.001 <0.001 <0.001
FNΦ 22.328 <0.001 0.052 <0.001
thΦ 0.0179 0.0067 0.0376 0.0156

rg 0.7 0.1 0.1 0.1
ηg 3.8 35 0.1 0.1

DAg >99.999 >99.999 >99.999 88.162
FPg <0.001 <0.001 <0.001 0.370

30 FNg <0.001 <0.001 <0.001 11.468
thg 0.1492 0.1056 0.0498 0.0716

DAΦ 50.001 99.858 84.613 >99.999
FPΦ <0.001 <0.001 <0.001 <0.001
FNΦ 49.999 0.141 15.386 <0.001
thΦ 0.0874 0.0059 0.0265 0.0069

rg 0.6 0.5 0.1 0.1
ηg 2.7 1.6 0.1 9.4

DAg >99.999 >99.999 >99.999 >99.999
FPg <0.001 <0.001 <0.001 <0.001

50
FNg <0.001 <0.001 <0.001 <0.001
thg 0.1426 0.1316 0.0491 0.100

DAΦ 50.915 99.858 >99.999 >99.999
FPΦ <0.001 <0.001 <0.001 <0.001
FNΦ 49.084 0.141 <0.001 <0.001
thΦ 0.0816 0.0105 0.012 0.0024

rg 0.1 0.1 9.5 0.1
ηg 3.5 14.1 31.5 11

DAg >99.999 >99.999 88.990 >99.999
FPg <0.001 <0.001 0.178 <0.001

70
FNg <0.001 <0.001 10.832 <0.001
thg 0.0305 0.1049 6× 10−67 0.1

DAΦ 97.900 99.983 >99.999 99.08
FPΦ <0.001 <0.001 <0.001 <0.001
FNΦ 1.999 0.016 <0.001 0.917
thΦ 0.0002 0.0101 0.0064 0.06469

5.2.3. Mobility Experiment

In Table 7, we summarize the attack-detection performance for the different mobility
simulations. Please note that the mobility experiment results are not as good as for the
previous experiments. This is originated from the highly dynamic network topology, which
resulted in high uncertainty and dispersion of the model parameters, αb. For the misuse-
detection case, most of the DA > 90%, the worst DAg = 80.539% was obtained for ω4 and
a node speed of 4 m/s. Most of the anomaly-detection results DAΦ > 98.000%, with the
worst case DAΦ = 50.001%, for the ω1 and 5 m/s case. However, better attack-detection
results could be achieved by increasing the time-window length, d, or by considering more
input signals in the dynamical models of LC − IDSij. Please note that similarly to the
previous experiments results, the optimal ‘attack-constellation’ parameters rg, ηg and thg,
are different for each simulated scenario.
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Table 7. Results for the mobility experiment. DAg, FPg, and FNg are given as a percentage. The first
column represents the maximum node speed in (m/s).

(m/s) ω1 ω2 ω3 ω4
rg 0.1 21.7 0.1 0.3
ηg 2.1 4.1 0.1 35

DAg 93.923 90.746 >99.999 >99.999
FPg 5.128 0.349 <0.001 <0.001

2 FNg 0.949 9.254 <0.001 <0.001
thg 0.0361 0.0234 0.0505 0.300

DAΦ 99.580 53.557 >99.999 >99.999
FPΦ <0.001 <0.001 <0.001 <0.001
FNΦ 0.419 46.442 <0.001 <0.001
thΦ 0.0669 0.2404 0.0356 0.3388

rg 0.1 0.1 0.1 0.1
ηg 2.2 1.3 0.1 3.8

DAg 98.540 99.947 98.433 >99.999
FPg 0.285 0.016 0.431 <0.001

3 FNg 1.175 0.037 1.136 <0.001
thg 0.051 0.0345 0.0491 0.0914

DAΦ >99.999 50.287 99.477 >99.999
FPΦ <0.001 <0.001 <0.001 <0.001
FNΦ <0.001 49.712 0.522 <0.001
thΦ 0.0167 0.4856 0.0279 0.0026

rg 0.7 0.1 0.1 0.1
ηg 6.9 1.5 0.1 0.8

DAg 99.500 >99.999 86.946 80.539
FPg 0.257 <0.001 11.465 17.993

4 FNg 0.243 <0.001 1.589 1.468
thg 0.0860 0.0324 0.0483 0.065

DAΦ >99.999 98.791 50.082 99.851
FPΦ <0.001 <0.001 <0.001 <0.001
FNΦ <0.001 1.208 49.917 0.148
thΦ 0.0046 0.0147 0.1183 0.0459

rg 0.3 0.1 0.5 2.9
ηg 5.6 1.4 0.4 16.2

DAg 99.381 85.820 99.868 >99.999
FPg 0.197 1.122 0.049 <0.001

5 FNg 0.422 3.058 0.083 <0.001
thg 0.0616 0.0119 0.0555 0.1901

DAΦ 50.001 >99.999 >99.999 99.973
FPΦ <0.001 <0.001 <0.001 <0.001
FNΦ 49.998 <0.001 <0.001 0.026
thΦ 2.1646 2.1342 0.0287 0.0131

6. Conclusions and Future Work

In this work, we have developed a general mathematical framework based on the
theory of dynamical systems, to identify routing attacks and anomalous behaviors from
the local perspective of an individual node in RWN. We expand the main idea of the
root locus-misuse-detection technique presented in recent literature. By this dynamical
systems perspective, we take advantage of the causal and temporal dependencies in the
network data used to identify routing attacks. This allows us to overcome some of the open
challenges in the state of the art of IDS for RWN described in Section 2.3, which are listed
as follows,

• By modeling the dynamic behavior of neighboring nodes as a piecewise LSI sys-
tem, we can represent all the relevant information to identify routing attacks on a
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two-dimensional feature space, the Z-plane. This can be thought of as an intrinsic
dimensionality-reduction capability of the proposed technique. This reduction in the
number of feature space dimensions does not require any additional dimensionality-
reduction techniques as could be the case of Principal Component Analysis (PCA) or
an autoencoder.

• By obtaining the state-space model for each LC− IDSij, we can represent the system
poles for all the attack detectors on the same feature space, Z-plane. This allows
us to derive the ‘attack-constellation’ concept, which we use to perform misuse and
anomaly detection.

• We develop a framework in which we can consider as many neighboring nodes and
routing attacks, as necessary. In the case of the appearance of an unknown routing
attack, we can repeat the training stage described in Section 4.7 to design a new attack
detector and add a new branch to the current ‘attack-constellation’, without affecting
the detection performance of the already considered attack detector. This property
makes LC-IDS a flexible and scalable technique.

• The proposed intrusion detection technique is robust to a wide range of network
conditions and is capable of online attack-detection and anomaly-detection with-
out imposing excessive computing overhead and without consuming any network
bandwidth, as can be noted from the detection accuracy and time-to-attack-detection
results, and from the fact that each LC− IDSij uses local information obtained from
received data packets and incoming links to detect malicious neighboring nodes.

Please note that the experimental evidence suggests that the proposed technique can
overcome some of the open challenges of the alternative approaches to intrusion detection
mentioned in Section 2.1. Due to the local data collection and computation, LC-IDS does not
consume network bandwidth, unlike collaborative approaches. Because LC-IDS models
the dynamical behavior of neighboring nodes as linear systems for a given instant, each
neighboring node can be represented by a quasi-static pole distribution on the Z-plane,
independently of the number of input signals considered; this dimensionally reduced
feature space in which attack/anomaly detection takes place simplifies the problem of
dynamic probability distributions and decision thresholds of statistical approaches. This
dimensionality-reduction property that arises naturally in LC-IDS also implies a simplifica-
tion when compared to machine-learning approaches that make use of feature extraction
and dimensionality-reduction techniques in addition to the classification approach required
for intrusion detection. By the other hand, our approach cannot overcome some of the
open challenges in the literature; in the case of a network scenario with many nodes and
high node mobility, LC-IDS will need to consider more than one input signal per attack
detector, increasing significantly the computational requirements of the technique, as can
be noted from Section 4.7.3.

As future work, we could explore the idea of using control theory to not just identify
malicious neighboring nodes, but to allow an intelligent controller to take action on the
network. This controller could take advantage of the two-dimensional latent space obtained
by each LC− IDSij that represents the dynamic behavior of neighboring nodes to control
individual nodes behavior and their respective impact on global network performance
to adaptively optimize the global network performance parameters (e.g., throughput,
end-to-end delay).
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Appendix A. Derivation of the State-Space Representation

In this appendix, we obtain the state-space representation of the LSI system that
models the dynamic behavior of the j-th neighboring node, LC− IDSij. We start from the
set of multivariate linear regression equations. There is one equation per known attack
ωg ∈ ΩA, g = 1, 2, ..., M. The set of multivariate linear regression equations is,

π1(k) =
A

∑
b=1

αbχAb(k)1XA1
(χAb) +

N

∑
c=1

βcχNc(k)1XN1
(χNc) + γ1(k), (A1)

...

πM(k) =
A

∑
b=1

αbχAb(k)1XAM
(χAb) +

N

∑
c=1

βcχNc(k)1XNM
(χNc) + γM(k). (A2)

By substituting each uAb(k), uNc(k) and yg(k), from Equations (13)–(15), we obtain,

y1(k) =
A

∑
b=1

αbuAb(k)1XA1
(χAb) +

A

∑
b=1

α
η1
b y1(k)1XA1

(χAb)

+ 2r1cosθ1

A

∑
b=1

α
η1
b y1(k− 1)1XA1

(χAb)

− r2
1

A

∑
b=1

α
η1
b y1(k− 2)1XA1

(χAb) +
N

∑
c=1

βcuNc(k)1XN1
(χNc),

(A3)

...

yM(k) =
A

∑
b=1

αbuAb(k)1XAM
(χAb) +

A

∑
b=1

α
ηM
b yM(k)1XAM

(χAb)

+ 2rMcosθM

A

∑
b=1

α
ηM
b yM(k− 1)1XAM

(χAb)

− r2
M

A

∑
b=1

α
ηM
b yM(k− 2)1XAM

(χAb) +
N

∑
c=1

βcuNc(k)1XNM
(χNc).

(A4)

Applying the Z-transform, and then solving for each yg(k), we obtain,

Y1(z) = z−1Y1(z)
2r1 cos θ1 ∑A

b=1 α
η1
b 1XA1

(χAb )

1 + ∑A
b=1 α

η1
b 1XA1

(χAb )
− z−2Y1(z)

r2
1 ∑A

b=1 α
η1
b 1XA1

(χAb )

1 + ∑A
b=1 α

η1
b 1XA1

(χAb )

+ UAb(z)
∑A

b=1 αb1XA1
(χAb )

1 + ∑A
b=1 α

η1
b 1XA1

(χAb )
+ UN c(z)

∑N
c=1 βc1XN1

(χNc )

1 + ∑A
b=1 α

η1
b 1XA1

(χAb )
,

(A5)
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...

YM(z) = z−1YM(z)
2rM cos θM ∑A

b=1 α
ηM
b 1XAM

(χAb )

1 + ∑A
b=1 α

ηM
b 1XAM

(χAb )
− z−2YM(z)

r2
M ∑A

b=1 α
ηM
b 1XAM

(χAb )

1 + ∑A
b=1 α

ηM
b 1XAM

(χAb )

+ UAb(z)
∑A

b=1 αb1XAM
(χAb )

1 + ∑A
b=1 α

ηM
b 1XAM

(χAb )
+ UN c(z)

∑N
c=1 βc1XNM

(χNc )

1 + ∑A
b=1 α

ηM
b 1XAM

(χAb )
.

(A6)

Regrouping terms,

Y1(z) = z−1

{
Y1(z)

2r1 cos θ1 ∑A
b=1 α

η1
b 1XA1

(χAb )

1 + ∑A
b=1 α

η1
b 1XA1

(χAb )
+ z−1

[
−Y1(z)

r2
1 ∑A

b=1 α
η1
b 1XA1

(χAb )

1 + ∑A
b=1 α

η1
b 1XA1

(χAb )

]}

+ UAb(z)
∑A

b=1 αb1XA1
(χAb )

1 + ∑A
b=1 α

η1
b 1XA1

(χAb )
+ UN c(z)

∑N
c=1 βc1XN1

(χNc )

1 + ∑A
b=1 α

η1
b 1XA1

(χAb )
,

(A7)

...

YM(z) = z−1

{
YM(z)

2rM cos θM ∑A
b=1 α

ηM
b 1XAM

(χAb )

1 + ∑A
b=1 α

ηM
b 1XAM

(χAb )
+ z−1

[
−YM(z)

r2
M ∑A

b=1 α
ηM
b 1XAM

(χAb )

1 + ∑A
b=1 α

ηM
b 1XAM

(χAb )

]}

+ UAb(z)
∑A

b=1 αb1XAM
(χAb )

1 + ∑A
b=1 α

ηM
b 1XAM

(χAb )
+ UN c(z)

∑N
c=1 βc1XNM

(χNc )

1 + ∑A
b=1 α

ηM
b 1XAM

(χAb )
.

(A8)

The state variable can be defined as,

X(1)
1 (z) = Y1(z), (A9)

X(2)
1 (z) = −z−1X(1)

1 (z)
r2

1 ∑A
b=1 α

η1
b 1XA1

(χAb)

1 + ∑A
b=1 α

η1
b 1XA1

(χAb)
, (A10)

...

X(1)
M (z) = YM(z), (A11)

X(2)
M (z) = −z−1X(1)

M (z)
r2

M ∑A
b=1 α

ηM
b 1XAM

(χAb)

1 + ∑A
b=1 α

ηM
b 1XAM

(χAb)
. (A12)

Thus, the state transition equations are,

zX(1)
1 (z) = X(1)

1 (z)
2r1 cos θ1 ∑A

b=1 α
η1
b 1XA1

(χAb)

1 + ∑A
b=1 α

η1
b 1XA1

(χAb)
+ X(2)

1 , (A13)

zX(2)
1 (z) = −X(1)

1 (z)
r2

1 ∑A
b=1 α

η1
b 1XA1

(χAb)

1 + ∑A
b=1 α

η1
b 1XA1

(χAb)
+ UAb(z)

∑A
b=1 αb1XAM

(χAb)

1 + ∑A
b=1 α

ηM
b 1XAM

(χAb)

+ UN c(z)
∑N

c=1 βc1XN1
(χNc)

1 + ∑A
b=1 α

η1
b 1XA1

(χAb)
,

(A14)

...

zX(1)
M (z) = X(1)

M (z)
2rM cos θM ∑A

b=1 α
ηM
b 1XAM

(χAb)

1 + ∑A
b=1 α

ηM
b 1XAM

(χAb)
+ X(2)

M , (A15)
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zX(2)
M (z) = −X(1)

M (z)
r2

M ∑A
b=1 α

ηM
b 1XAM

(χAb)

1 + ∑A
b=1 α

ηM
b 1XAM

(χAb)
+ UAb(z)

∑A
b=1 αb1XAM

(χAb)

1 + ∑A
b=1 α

ηM
b 1XAM

(χAb)

+ UN c(z)
∑N

c=1 βc1XNM
(χNc)

1 + ∑A
b=1 α

ηM
b 1XAM

(χAb)
.

(A16)

The output equations are,
Y1(z) = X(1)

1 (z), (A17)

...

YM(z) = X(1)
M (z). (A18)

Applying the inverse Z-transform, and arranging in matrix form the obtained state
transition equations, we obtain the state equations in the time domain, as in Equation (16).
Similarly, the output equations in the time domain and in matrix form are the same as the
ones in Equation (20).
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