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Abstract: A voltage source inverter (VSI) is the key component of grid-tied AC Microgrid (MG)
which requires a fast response, and stable, robust controllers to ensure efficient operation. In this
paper, a fuzzy logic controller (FLC)-based direct power control (DPC) method for photovoltaic
(PV) VSI was proposed, which was modelled by modulating MG’s point of common coupling (PCC)
voltage. This paper also introduces a modified grid synchronization method through the direct
power calculation of PCC voltage and current, instead of using a conventional phase-locked loop
(PLL) system. FLC is used to minimize the errors between the calculated and reference powers
to generate the required control signals for the VSI through sinusoidal pulse width modulation
(SPWM). The proposed FLC-based DPC (FLDPC) method has shown better tracking performance
with less computational time, compared with the conventional MG power control methods, due
to the elimination of PLL and the use of a single power control loop. In addition, due to the use
of FLC, the proposed FLDPC exhibited negligible steady-state oscillations in the output power of
MG’s PV-VSI. The proposed FLDPC method performance was validated by conducting real-time
simulations through real time digital simulator (RTDS). The results have demonstrated that the
proposed FLDPC method has a better reference power tracking time of 0.03 s along with reduction in
power ripples and less current total harmonic distortion (THD) of 1.59%.

Keywords: microgrid; PLL; RTDS; direct power control; fuzzy logic; voltage source inverter

1. Introduction

Fossil fuel resources are frequently used to generate power in conventional power
systems, which outcomes in the hasty diminution of fossil fuel, as well as augmented envi-
ronmental pollution. Renewable energy has arisen as an alternate solution to overcome the
environmental and fossil fuel scarcity issues around the world. As a result, modern power
systems have undergone vast changes and up-gradation to accommodate renewable energy
sources in the power system network. The microgrid (MG) is one of such revolutions,
integrating dispatchable and non-dispatchable distributed generation (DG) units through
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power electronics devices to power system networks, and providing uninterruptible power
to communities [1,2]. MG possesses benefits like low capital cost, a low payback period,
and high reliability; however, regarding their operation, there are still numerous technical
challenges, including the flexible control of power flow between the utility grid and MG
during grid-tied mode, and voltage magnitude and frequency control during islanding
operation [3]. In this study, the control strategy that governs the smooth flow of real and
reactive power between the MG and the utility grid for efficient operation of grid-tied
AC-MG, with multiple DGs, is considered.

Grid-tied voltage source inverters (VSI) are one of the key devices of a MG, which
interconnect the DG units of the MG with the main grid, and regulate power flow between
them by adopting appropriate power control methods. It has become very important for
grid-tied VSI to ensure high power quality and stability, as the penetration level of MG
renewable energy resources in modern power grids is increased. The power controllers
allow the MG system to attain a fast response and a small steady state rate of error, and
to maintain stability during drastic changes [4]. A rotating synchronous reference frame-
based trajectory current control scheme is the commonly used strategy to control the output
power of a grid-tied VSI. In this scheme, by regulating dq axes currents separately, real
and reactive powers are controlled where the decoupling-term-based linear proportional
integral (PI) controller can be applied indirectly [4].

To ensure better efficiency, reliability and safety of VSIs used in grid-tied MGs, in the
literature based on dq current control schemes (CCSs), various real and reactive power
control methods have been proposed. Worku et al. proposed a power control strategy for
photovoltaic (PV) and battery storage-based AC-MGs, based on decoupled dq CCS [5].
A rigid power controller was proposed by Safa et al. for a grid-connected VSI, to im-
prove AC-MG power quality [6]. A new power control method, based on the artificial
neural network (ANN) to control the power quality of PV-incorporated AC-MGs, was
presented by Kaushal et al. [7]. For controlling the VSI of a grid-tied AC-MG, Smadi et al.
proposed a compact control strategy based on dq CCS [8]. By cascading the voltage and
current controller, a new power control scheme was proposed by Lou et al. for an AC-
MG VSI [9]. A power control strategy, based on a sliding mode-integrated dq CCS, was
proposed by Abadlia et al. for a hybrid grid-tied PV/hydrogen system [10]. Based on
an instantaneous self-tuning technique, another power control scheme was designed by
Feng et al. for a grid-tied MG [11]. Adhikari et al., for a maximum power point tracking
(MPPT) system-integrated hybrid PV/battery system, proposed a coordinated power con-
trol strategy [12]. A coupled harmonic compensation and voltage support method was
developed by Mousavi et al., for DG-interfaced VSIs in grid-tied AC-MGs [13]. To regulate
the power flow between grid and PV/battery hybrid systems, Go et al. proposed a power
control strategy for VSI [14]. A power control and management system for a grid-tied MG
was developed by Sedaghati to ensure the optimum operation of MG [15]. For controlling
the output power of grid-tied PV-VSI in AC-MGs, a voltage-oriented power coordina-
tion strategy was proposed by Tang et al. [16]. A dq axes CCS synchronous reference
frame-based power control method was proposed by Ahmad et al. for grid-connected
AC-MG’s VSIs [17].

Since in the aforementioned methods, Park’s transformation has been used during
abc to dq transformation, there is a need for phase angle extraction from grid voltages
to ensure dq axes currents and grid voltages are in phase with each other [18]. Phase-
locked loop (PLL) systems are commonly used for the extraction of grid voltage phase
angles, based on arctangent functions [19]. However, the problems with the use of PLL
systems are their adverse impact on VSIs’ small-signal stability, along with the slowdown
of the transient response of the power system parameters, causing high ripples in real
and reactive power [20]. Moreover, at low frequencies PLL initiates negative resistance,
which deteriorates VSIs stability [21]. PLL also introduces dynamic coupling in VSIs [22].
Furthermore, the power system’s dynamic performance is also jeopardized, due to the
adoption of low-bandwidth PLLs for improving VSIs’ stability and robustness. Another
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issue associated with all these controllers is the consideration of two control loops, namely
the outer power and inner current control loops, when designing the power control scheme.
Due to the presence of two control loops, the computation burden increases. Furthermore,
the performances of the above-mentioned control methods are greatly influenced by the
accurate tuning of PI controller gains, the conditions of grid voltage, and the comprehen-
siveness of the current decoupling [23]. In addition, PI controllers cannot eliminate steady
state error for sinusoidal signals, and they cannot handle power system non-linearity effi-
ciently. Moreover, due to the existence of multivariable parameters, during dynamic-load
variations PI controllers have a poorer performance [24].

In some studies, fuzzy logic controller (FLC)-based control methods have been pro-
posed for VSIs operating in grid-tied or autonomous modes for DG applications. Hasanien
et al. proposed an FLC-based control method to maintain the output voltage of VSI for
the islanded DG system during load variability and weather uncertainties [24]. A type-2
FLC-based control method was developed by Heydari et al. for VSIs of autonomous naval
shipboard microgrids, to damp the steady-state deviations of voltage and frequency [25].
However, in [24,25], FLC controllers were used to control the output voltage and frequency
of VSIs during an islanded operation. Thao et al. developed a power control method by
combining feedback linearization and FLC, to reduce the fluctuations in the VSI’s output
active and reactive powers at the steady state, for a grid-tied PV system [26]. Another
FLC-based power control method was proposed by Omar et al. to control the output power
of grid-connected PV-VSI [27]. Jamma et al. proposed an FLC and ANN combined DPC
for controlling the VSI output power of a grid-tied PV system [28]. For a grid-tied PV
system VSI, a control method based on FLC and the Levenberg–Marquardt optimization
method was proposed by Islam et.al. [29]. Shadoul et.al. proposed an adaptive FLC-based
control method for grid-tied PV-VSIs [30]. FLC-based active and reactive power control
was proposed by Tahri et al. for a grid-tied PV system’s neutral-point-clamped VSI [31].
Teekaraman et al. developed an FLC-based current control method for a grid-tied Z-source
VSI [32]. In all these studies [26–32], even though FLC was considered when designing the
feedback controller, all the control methods were based on dq CCS where Park Transfor-
mation was used for abc to dq transformation, and PLL was implemented to extract the
voltage angle. As mentioned earlier, due to the use of the PLL system, the control methods
performance deteriorated, and most of the control methods consisted of two control loops.
As a result, undesirable ripples were observed in the VSI output powers, and controllers
took a longer time to track the reference powers. Furthermore, the performance of all these
controllers were validated only for grid-tied PV systems, which are not connected to MGs.

To overcome the issue of double control loops, direct power control (DPC) method was
introduced for VSI, where the inner current control loop was omitted. A control method for
VSI based on a DPC, to control the output power, was introduced by Gui et al. [33,34]. How-
ever, due to the use of the variable switch frequency in this method, undesirable harmonics
occurred, which hampered the suitable design of the line filter. The DPC method based
on the sliding mode and model predictive controllers were introduced by Gui et al. [35]
and Choi et al. [36], respectively, to improve the fast tracking of power references and
DPC method robustness. Though power tracking performance was improved, undesirable
ripples still existed in real and reactive power, and their performances were not validated
for MG applications.

In this paper, to address the problems associated with the previous power controllers
of PV-VSI, an FLC-based DPC (FLDPC) method is proposed for AC-MG’s photovoltaic (PV)
VSI, through modulating MG’s point of common coupling (PCC) voltage. The advantages
of FLC over conventional PI controllers, is that their design is independent of power
system mathematical modelling, and can therefore deal with power system non-linearities
effectively, and can easily adopt the dynamic load variation of a power system [24]. For grid-
synchronization, instead of using a PLL system, in this study, the direct power calculation
of PCC voltage and current grid-synchronization takes place. The proposed FL-DPC
method also consists of a feedforward decoupled control, and a feedback FLC method
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including the non-linear voltage modulated control. Since the proposed controller excludes
Park transformation and PLL, it exhibits a faster and more transient dynamic performance,
compared with conventional PLL-PI-integrated CCS-based power control methods. In
addition, due to the use of FLC and the elimination of PLL, the steady state oscillation in
VSI output power reduced substantially, and the reference power tracking speed became
faster. Furthermore, the computational burden was also reduced, since the proposed
FLDPC had only a single power control loop, which regulated the instantaneous real and
reactive power flow, directly. Moreover, the presence of the feedforward decoupled control
eliminated the coupling terms presented in the new control inputs from the nonlinear
PCC voltage modulation (PVM), and finally, two individual dynamics of the second order
error signals of the real and reactive were obtained, using a feedback FLC strategy. For
controlling the bus voltage and frequency of the MG during islanded mode of operation, a
V-f control strategy was adopted [37].

The main contribution of this paper is unlike conventional CCS-based VSI; the PV-VSI
is modelled based on DPC and PVM theory (PVMT) to control the real and reactive power
flow between the AC-MG and the utility grid. The detailed mathematical modelling of
the grid synchronization technique, based on the direct power calculation of PCC voltage
and current was conducted. The modelling of the FLDPC strategy for PV-VSI, along with
feedforward decoupled control is also depicted extensively. Real-time simulations were
carried out using a real-time digital simulator (RTDS) for different references of real and
reactive power, to test the proposed FLDPC method’s performance. Considering real-world
scenarios, the performance of the proposed controller was verified by changing the PV
generation and load demand simultaneously, during both MG’s grid-tied and islanded
modes of operation. Finally, to demonstrate the pre-eminence of the proposed FLDPC
controller, real-time simulations of different conventional grid-tied MG power control
methods were conducted, and their performances were compared with the proposed
controller for various parameters of steady-state power oscillations, refence power tracking
time and total harmonic distortions (THD) of VSI’s output current and voltage.

The organization of the rest of the paper is as follows: in Section 2, the modelling of
AC-MG’s different components are presented. In Section 3, the mathematical modelling
of the DPC and PVMT-based VSI are presented. Section 4 presents the proposed FLDPC
method’s design strategy. Section 5 presents the results obtained through the real-time
simulations, along with a detailed discussion and comparative study. Finally, a conclusion
of this study is presented in Section 6.

2. Configuration of AC Microgrid Testbed

The grid-tied AC-MG testbed used in this study consisted of a PV system, a battery
storage, a diesel generator and two types of load (critical and non-critical) which is rep-
resented in Figure 1. The modelling of the MG was conducted in an RSCAD platform,
using modules of different components available in the RSCAD library. In Appendix A
Table A1, the specifications of all the components used in the MG are depicted, which were
obtained from [38]. As shown in Figure 1, two VSIs are used to connect the PV and battery
storage systems with the AC bus, and the AC-MG was integrated with the grid through a
3-ph transformer.
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Figure 1. Schematic of Modelled Grid-tied AC Microgrid.

2.1. Photovoltaic (PV) System

The 0.1 MW-rated PV system used in this study, and the parameters of the system, are
depicted in Table A1. To control the output of the PV-VSI, a PVMT-based FLDPC strategy
was developed, which is described in Sections 3 and 4.

The relationship between the PV system’s current and voltage can be represented
as follows:

IPV = Iph − ID − Ish = Iph − I0[exp
q

AKT(VPV + IPV Rs)
− 1]− VPV + IPV Rs

Rsh
(1)

where cell output voltage is VPV, cell output current is IPV, diode current is ID, photocurrent
is Iph, reverse saturation current is I0, electron charge is q, shunt resistance current is Ish,
temperature of cell is T, shunt resistance Rsh, series resistance Rs and quality factor is A.

A modified incremental conductance algorithm-based MPPT controller [39] is imple-
mented to extract maximum power from the PV system. By using (2), the maximum power
can be determined:

Ppv(t) = ηpv Ac I(t)(1 − 0.005(T0(t)− 25)) (2)

where cell array area is Ac, PV system efficiency is ηpv, solar irradiation is I and ambient
temperature is T0.

2.2. Battery Storage System (BSS)

In this study, the battery storage system (BSS) is comprised of strings of lithium-ion
battery, a bidirectional DC-AC VSI, and a bidirectional DC-DC buck-boost converter. A
control technique proposed in [5] was employed in this study to control the battery VSI.
The size of the battery was chosen based on the critical load demand, so that in the case
of any contingency the battery was able to provide back up. In charging mode, battery
charged either by PV (power generation of PV is more than demand) or via the grid in
grid-tied mode. In contrast, the battery operated in discharge mode when the MG was
islanded, or the generation of PV was less than its capacity in grid-tied mode.

The crucial parameters of the battery are terminal voltage and SOC, which can be
calculated based on (3) and (4) [40]:

Vbat = ibatRbat + Voc + VeeB
∫

ibatdt − k
Ah

Ah +
∫

ibatdt
(3)

SOC =

(
1 +

∫
ibatdt
Ah

)
∗ 100 (4)
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where open circuit voltage is Voc, terminal voltage of the battery is Vbat, battery internal
resistance is Rbat, battery current is ibat, exponential voltage is Ve, polarization voltage is k
and B is the exponential capacity.

2.3. Diesel Generator

In this study, a diesel generator was used to provide backup supply to the MG when
the grid fails. It comprised a diesel engine, a synchronous machine, and for regulating
the machine’s speed and frequency, an excitation system-driven speed governor. The
modelling of the three different parts of the diesel generator was adopted from [41]. The
dynamics of each diesel generator components can be given by (5) and (8).

The governor control system transfer function:

Hc =
K1(T3s + 1)

(T1T2s2 + T1s + 1)
(5)

where, Hc is the transfer functions of governor control system, K1 is the transfer function
constants, and T1 to T3 are the time constants.

Actuator Transfer function:

Ha =
(T4s + 1)

s(T5s + 1)(T6s + 1)
(6)

where Ha is the transfer functions actuator, and T4 to T6 are the time constants.
Diesel engine transfer function:

Heng = e−TDs (7)

where governor control system transfer functions is Heng is and TD is the time constant.
Excitation system transfer function:

He =
1

(Tes + Ke)
(8)

where transfer function constant is Ke, exciter transfer function is He and time constant
is Te.

2.4. Grid

By using (3), the power absorbed or supplied by the grid can be calculated [40]:

Pg(t) = Pl(t) + ∑(Ppv(t), Pb(t)) (9)

where grid supplied/absorbed is Pg, load power is Pl, battery power is Pb, and PV power
is Ppv.

2.5. Load

To verify the performance of the proposed PLL-less FLDPC method, two types of load
were considered in this study, namely, critical and non-critical load. The load values were
chosen based on the MG generation capacity, which changed with respect to time.

3. DPC and PVMT-Based PV-VSI Modelling

In this section, the mathematical modelling of PV-VSI based on DPC and PVMT is
presented. L-filters were used at the output of PV-VSI to reduce the harmonics in current
and voltage. In Figure 2a,b, the schematics of the dq CCS-based control method with PLL
and the proposed PVMT-based FLDPC method without PLL are presented respectively.
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The dynamic realtionships between VSI’s output voltages, currents and PCC voltages
can be represented using (10):

L dipa
dt = −vpa + ua − Ripa

L
dipb
dt = −vbg + ub − Ripb

L dipc
dt = −vcg + uc − Ripc

(10)

where, vpabc, ipabc, and uabc are PCC voltages, VSI output currents and voltages, respectively.
R and L are the resistance and inductance of filter, respectively.

The stationary reference frame of the equations presented in (10) can be transformed
to (11) using Clarke’s transformation:

L dipα

dt = uα − vpα − Ripα

L
dipβ

dt = uβ − vpβ − Ripβ
(11)

where PCC voltages are uαβ, and VSI currents and voltages are ipαβ and vpαβ, respectively,
in α–β frame.

The stationary reference frame representation of instant reactive and real power flow
between the utility grid and VSI can be presented as (12):

P = 3
2
(
ipαvpα + ipβvpβ

)
Q = 3

2
(
−ipβvpα + ipαvpβ

) (12)

where instant real and reactive powers supplied/injected by the grid are P and Q, respectively.
By differentiating (12), P and Q dynamic equations can be obtained as follows:

dP
dt = 3

2

(
vpα

diα
dt + ipα

dvpα

dt + vpβ
dipβ

dt + ipβ
dvpβ

dt

)
dQ
dt = 3

2

(
−vpα

dipβ

dt − ipβ
dvpα

dt + vpβ
dipα

dt + iα
dvpβ

dt

) (13)

For simplifying the dynamics of P and Q in the balanced grid condition, the relation-
ship of the PCC α–β voltage can be obtained as given in (14):

vpα = Vpcc cos(ωt)

vpβ = Vpcc sin(ωt) (14)

where:
Vpcc =

√
vpα

2 + vpβ
2

ω = 2 ∏ f (15)

where PCC voltage amplitude is Vpcc, angular frequency is ω and grid voltage frequency is f.
The dynamic equations of PCC voltages are obtained as (16) by differentiating (14).

dvpα

dt = −ωVpcc sin(ωt) = −vpβω

dvpβ

dt = ωVpcc cos(ωt) = vpαω
(16)

By substituting (10) and (16) in (13), the dynamic expression of real and reactive
powers can be obtained as (17):
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dp
dt = 3

2L
(
−Vpcc

2 + uαvpα + uβvpβ

)
− ωq − p R

L

dq
dt = 3

2L
(
−uβvpα + uαvpβ

)
− ωq − q R

L

(17)

where, dynamic real and reactive power control inputs and outputs are (p and q) and (uα

and uβ), respectively.
Since both the control inputs in (17) are coupled in P and Q states, by using voltage

modulation theory [34], the dynamics of (17) can be simplified as (18) to define new voltage
modulated control inputs:

uP := uαvpα + uβvpβ

uQ := uβvpα − uαvpβ
(18)

where the new control inputs are uP and uQ, and they are transformed into DC components
as they satisfy (19):[

uP
uQ

]
= Vpcc

[
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

][
uα

uβ

]
= Vpcc

[
ud
uq

]
(19)

where ud and uq are the d-q frame VSI voltages. Though the proposed method has no PLL
system, the system is still presented in dq axis frame.

The dynamic expression of real and reactive powers presented in (17) can be expressed
as (20), by substituting the control inputs of (17) with the new control inputs (uP and uQ).

dP
dt = 3

2L
(
−Vpcc

2 + uP
)
− ωQ − P R

L

dQ
dt = 3

2L uQ − ωQ − P R
L

(20)

4. Controller Design
4.1. FLC-based Direct Power Control

In this section, for the new PVMT and DPC-based VSI model presented in (20), a
robust and simple controller consisting of feedforward and feedback control structure is
designed. In Figure 2, the FLDPC method’s schematic for the PV-VSI is depicted. In this
control, the power (real and reactive) references are tracked by controlling their actual
value using FLC.

The real and reactive power errors can be obtained using (21):

eP := Pre f − P

eQ := Qre f − Q (21)

where active and reactive power references are represented by Pref and Qref, respectively,
and real and reactive power errors are eP and eQ, respectively.

As shown in Figure 2, for obtaining zero steady state error, two error signals (eP
and eQ) and their rate of change (P-error_rate and Q-error_rate) are given as inputs to two
FLCs. The outputs of FLCs provided the control inputs FP and FQ for the feed-forward
controllers. Due to non-availability of the FLC block in the RSCAD library, FLC is built in
RSCAD software by writing codes using ANSI language in C-builder. Each FLC consisted
of two inputs and one output, as depicted in Figure 2. The two inputs were the error
and error-rates of power for each FLC. The membership functions of inputs and outputs
were named identical for both real and reactive power. The variables representing error
were NM (negative medium), ZV (zero value), and PM (positive medium). Similarly,
error-rate variables were NM1 (negative medium 1), ZV1 (zero value 1), and PM1 (positive
medium 1). The variables of output were BNE (big negative error), NME (negative medium
error), ZE (zero error) and PME (positive medium error). In Figures 3 and 4, the real and
reactive power FLCs’ membership functions for error, error-rate and outputs are shown.
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To ensure smooth control by FLC, triangular-based membership functions were considered
in this study.
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FLC (FQ).

An important part in the design of FLC is choosing the scaling factors of input
and output membership functions optimally. This can be obtained by implementing
optimization techniques to minimize the deviation between inverter output powers and
the reference powers. In this study, a black-box optimization technique known as the
nonlinear Simplex method of Nelder and Mead is adopted for obtaining the optimal scaling
factors of input and out membership functions [42]. The reason for choosing the black-box
optimization technique is that it can be easily used in conjunction with time-domain or
real-time simulation tools [24]. The process of black-box optimization entails the successive
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evaluation of the objective function for the different sets of parameters for the membership
functions. In this process, the real-time simulation program, i.e., RSCAD/RTDS, is used
to evaluate the value of the objective function. First, an initial set of parameters was used
to initialize the real-time simulation in RTDS, and the value of the objective function was
numerically evaluated. Then, based on the optimization algorithm and the value of the
objective function, a new set of parameters were obtained, and the process was repeated
until an optimal set of parameters is determined.

To assign the input and output control, fuzzy rules were formed based on IF-THEN
rules, which are summarized in Table 1. The rules were decided depending on the coopera-
tion between the estimated error and complexity of FLC. In this paper, defuzzification was
carried out by using the Sugeno-type weighted average method [43] to produce the real
crisp output of FP and FQ.

Table 1. Rule table for FLCs of real and reactive power.

ERROR RATE
Membership Functions

NM1 ZV1 PM1
NM NME NME ZE
ZV NME ZE PME

ER
R

O
R

PM ZE PME PME

4.2. Feed-Forward Controller

Due to the presence of coupling terms in the new MIMO system (20), and in this study,
to eliminate the coupling terms, a feed-forward controller was designed, as expressed
in (22):

uP = 2
3 LvP + 2

3 LωQ + 2
3 RP + Vpcc

2

uQ = − 2
3 LvQ − 2

3 RQ + 2
3 LωP (22)

where feedback controller inputs are vP and vQ and can be calculated using (23):

vP = FP +
•

Pre f

vQ = FQ +
•

Qre f
(23)

where Fp and FQ are the de-fuzzified output of the real and reactive power FLCs.
Finally, the genuine control inputs uα and uβ were obtained using (24).

uα =
−uQvpβ+uPvpα

Vpcc2

uβ =
uPvpβ+uQvpα

Vpcc2
(24)

These two control inputs using αβ-abc transformation were converted to 3-ph control
signals, which were used to generate the control signals for the VSI switches using sinu-
soidal pulse width modulation (SPWM). SPWM was chosen in this study because the har-
monics of lower and higher order can be reduced or eliminated easily using this technique.

4.3. Control of DC-Link Voltage

In Figure 5, the DC-link voltage controller is depicted, which aims to maintain a
constant DC-link voltage during any disturbances or instabilities.



Electronics 2021, 10, 3095 12 of 27

Electronics 2021, 10, x FOR PEER REVIEW 12 of 28 
 

 

4.2. Feed-Forward Controller 
Due to the presence of coupling terms in the new MIMO system (20), and in this 

study, to eliminate the coupling terms, a feed-forward controller was designed, as ex-
pressed in (22): 

22 2 2
3 3 3P P pccu Lv L Q RP Vω= + + +  

2 2 2
3 3 3Q Qu Lv RQ L Pω= − − +  

(22)

where feedback controller inputs are Pv  and Qv  and can be calculated using (23):  

P P refv F P
•

= +  

Q Q refv F Q
•

= +  
(23)

where Fp and FQ are the de-fuzzified output of the real and reactive power FLCs. 
Finally, the genuine control inputs uα and uβ were obtained using (24). 

2
Q p P p

pcc

u v u v
u

V
β α

α

− +
=  

2
P p Q p

pcc

u v u v
u

V
β α

β

+
=  

(24)

These two control inputs using αβ-abc transformation were converted to 3-ph control 
signals, which were used to generate the control signals for the VSI switches using sinus-
oidal pulse width modulation (SPWM). SPWM was chosen in this study because the har-
monics of lower and higher order can be reduced or eliminated easily using this tech-
nique. 

4.3. Control of DC-Link Voltage 
In Figure 5, the DC-link voltage controller is depicted, which aims to maintain a 

constant DC-link voltage during any disturbances or instabilities. 

PI x

Vdc

Vdc* Idcref
x2

x2

Pref
 

Figure 5. Schematic of controller of DC-link voltage. 

The DC-link voltage error can be given by: 

( ) ( )2 2*
_dc error dc dcV V V= −  (25)

where, Vdc* is the reference of Vdc. 
To generate the DC current reference Idcref, this error signal was sent to the PI control-

ler to the ensure DC bus voltage constant value. The DC current reference Idcref is given by: 

( ) ( )( ) ( ) ( )( )2 22 2* *
, ,

0

t

dcref p dc dc dc i dc dc dcI K V V K V V dt= − + −  

 

(26)

Figure 5. Schematic of controller of DC-link voltage.

The DC-link voltage error can be given by:

Vdc_error = (Vdc
∗)2 − (Vdc)

2 (25)

where, Vdc
* is the reference of Vdc.

To generate the DC current reference Idcref, this error signal was sent to the PI controller
to the ensure DC bus voltage constant value. The DC current reference Idcref is given by:

Idcre f = Kp,dc

(
(Vdc

∗)2 − (Vdc)
2
)
+ Ki,dc

t∫
0

(
(Vdc

∗)2 − (Vdc)
2
)

dt (26)

where, Kp,dc and Ki,dc are the PI controller gains. In Appendix A Table A2, the PI controller
gain values for DC-link voltage controller are presented.

5. Results

The real-time simulation results obtained through the implementation of the proposed
PLL-less PVMT-based FLDPC method for PV-VSI of grid-tied MG are presented in this
section. The real-time simulations were carried out on RTDS, and the laboratory setup to
validate the performance of the proposed power controller is shown in Figure 6.
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Two case studies were conducted in this study to validate the performance of the
proposed power controller. For the first case study, the steady-state and transient response
of the proposed controller for PV-VSI was validated by changing both real and reactive
power references, and by changing only real power references. The results were com-
pared with those of the conventional PLL-PI-integrated dq CCS-based control method,
proposed in [6]. For the second case study, load demand and solar irradiation were var-
ied to test the proposed controller performance during MG’s different operating modes.
Finally, a comparative study was conducted to prove the preeminence of the proposed
FLDPC method.



Electronics 2021, 10, 3095 13 of 27

5.1. Case 1: Change of Both Real and Reactive Power References

This section presents the results related to the power tracking performance of the
proposed FLDPC method, and subsequently compares its performance with the PLL-PI-
integrated dq CCS-based control method for both real and reactive power reference change.

5.1.1. Tracking Performance Analysis of the Proposed Controller

The results obtained for both the controllers tracking performance analysis are de-
picted in Figures 7 and 8. To test the tracking performance of the controller’s real power,
references were varied between 0 MW and 0.1 MW (PV output is non-linear), whereas
reactive power references were changed between 0 MVar and 0.02 MVar, respectively.
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From Figure 7a, it is seen that, initially, real power reference was set to 0 MW, which
was increased from 0 MW to 0.05 MW after 1 s. Then, it was set to 0.1 MW between
2.97 and 4.969 s, and the final reference was set to 0 MW again, between 4.97 and 7 s. For
all the real power references, it was observed that the PV-VSI output real power, controlled
by the proposed PVMT-based FLDPC, was tracking the real power references accurately.
On the other hand, though from Figure 7b it seems that the conventional dq CCS-based
power controller also tracked the reference powers, from the zoomed portion it is clear to
see that the tracking speed of the proposed PLL-less PVMT-based FLDPC method is 0.03 s.
This was 0.19 s faster than that of the conventional dq CCS-based power control method,
whose real power reference tracking speed was 0.22 s. For reactive power, the reference
power was kept to 0 MVar, initially, which increased to 0.01 MVar and 0.02 MVar at 1 s
and 3 s, respectively. Finally, at 1 s reference reactive power decreased to 0 MVar. It can
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be observed from Figure 8a that the VSI output reactive power controlled by the PVMT-
based FLDPC method was following the reference reactive power accurately at different
time intervals. In addition, the proposed PVMT-based FLDPC showed better tracking
performance than that of CCS-based power controller, though the conventional CCS-based
controller was able to track the reference reactive power, as shown in Figure 8b. According
to the zoomed portion of Figure 8a,b, the time taken to reach a steady-state of reactive
power by the proposed PVMT-based FLDPC was 0.03 s, where the conventional CCS-based
power controller tracked it at 0.23 s. This was 0.20 s slower than the proposed controller.
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5.1.2. Proposed Controller Steady-State Performance Analysis

In this section, the steady-state performance of the proposed PVMT-based FLDPC
method is validated. From the results shown in Figures 9 and 10, it is clear that due to the
use of the proposed PVMT-based FLDPC method, the ripples at VSI output power were
significantly reduced. The time range considered for viewing the ripples in VSI output real
and reactive power was 2.88–5 s. From Figure 9a, it can be observed that for the proposed
PVMT-based FLDPC, very low ripple existed in the VSI real power output. However, a
higher ripple was observed in the VSI real power output for the conventional PLL-based
power controller, which ranged between 0.0984 and 0.1006 MW. Real power also did not
follow the reference accurately, as seen from Figure 9b. For reactive power, it can be seen
from Figure 10b that the ripple was very high for the conventional CCS-based power
controller and it ranged from 0.019 to 0.0208 MVar. On the other hand, for the proposed
PVMT-based FLDPC method, reactive power also had very low power ripple, as shown in
Figure 10a.
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Figure 10. Reactive power steady-state performance of (a) FLDPC and (b) dq CCS-based power
control method with PLL.

In Figures 11 and 12, the waveforms of the PV-VSI’s output current and voltage are
presented for both the controllers. From Figures 11a and 12a, it can be seen that for PLL-less
PVMT-based FLDPC, the PV-VSI output voltage and current were sinusoidal in shape, and
had negligible noises. In comparison, even though the PV-VSI output voltage and current
for PLL-integrated CCS-based power controller were sinusoidal in shape, large distortion
was observed, as shown in Figures 11b and 12b.

Further from Figure 13, it was observed that for both the controllers, the THD of the
PV-VSI currents was less than 5%, which is in line with the IEC standard [44]; however,
the current THD (4.967%) obtained by the PLL-CCS-based power control method was
very high, compared with the PVMT-based FLDPC method’s current THD (1.59%). As
a result, oscillations in PV-VSI output power and current during steady-state were very
low for PLL-less PVMT-based FLDPC, compared with the power control method based on
PLL-integrated dq CCS.
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Figure 13. VSI output current THD for FLDPC and dq CCS-based power control method.

5.2. Case 2: Proposed Controllers Performance Analysis in Grid-Tied AC MG Application

It was essential to analyze the performance of the proposed PVMT-based FLDPC in
grid-tied AC-MGs, to ensure that the controller was performing well in MG’s different
operating modes. In addition, the controller should be capable of operating in different
real-world conditions such as varying load, and solar irradiation in MG. To verify these
features in this section, the performance of the proposed PVMT-based FLDPC method was
validated by varying both solar irradiation and load demand. Finally, a comparison is
presented at the end of this section, to prove the superiority of the proposed FLDPC method
over conventional MG power control methods for grid-tied VSIs. The results obtained after
implementing the proposed controller for active power flow between different sources and
loads are depicted in Figure 14 and Table 2. To regulate the power flow between different
sources and load, a power management algorithm was adopted from [17].
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The initial values of solar irradiation and varying load were set to 1000 W/m2 and
0.14 MW (critical 0.02 MW + non-critical 0.12 MW, respectively). In between 0 and 2 s,
PV was generating full power of 0.1 MW, which fulfilled 0.1 MW of the total load, and
the remaining 0.04 MW demand was supplied by grid. At this period, the power from
battery and diesel generator were nil. The solar irradiation was dropped to 850 W/m2

between 2 and 4 s and, in contrast, load demand was increased to 0.15 MW. During this
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period, PV provided a maximum of 0.078 MW power support to the load. Since PV power
went down from the nominal value, the battery came into operation. In this case, the
battery and grid supplied 0.025 MW and 0.047 MW power to fulfil the rest of the load
demand. From 4 to 6 s, solar irradiation and load demand reduced to 700 W/m2 and
0.115 MW, respectively. This situation compelled the grid to supply power of 0.024 MW to
the load, since PV (0.066 MW) and battery (0.025 MW) together can support a maximum of
0.091 MW power. During 6–8 s, load demand decreased (0.089 MW) and solar irradiation
increased (1000 W/m2). Since the total load demand (0.089 MW) was less than the PV
generation (0.1 MW), the remaining power (0.011 MW) from MG was delivered towards
grid, and power from battery became zero. At 8 s, solar irradiation level reached 800 W/m2

and the PV system generated a power of 0.074 MW. During 8–10 s, the load demand was
0.068 MW, which was supplied by the PV system fully, and remaining power (0.006 MW)
of MG was supplied to the grid. For this period, power obtained from battery was nil and
from 0 to 10 s, since MG was operating in grid-tied mode; therefore, the diesel generator did
not provide any power support. The MG started operating in islanded mode at 10 s when
the grid disconnected from the MG. During islanding, according to the power management
algorithm, if PV and battery cannot fulfill the load demand, then the diesel generator will
be activated. From 10 to 12 s, the generation of the PV system was 0.085 MW while the load
demand was higher than the PV generation, i.e., 0.097 MW. As the battery had enough
power (0.012 MW) to fulfil the remaining load demand, the diesel generator remained
inactive during this duration. After 12 s, solar irradiation was reduced to 800 W/m2

and load demand increased to 0.13 MW. During 12–14 s, the total generation (0.096 MW)
from solar and battery (0.071 MW + 0.025 MW) was not sufficient to support the load
demand. As a result, diesel generation turned on and supplied 0.034 MW power to fulfil
the remaining load demand. Lastly, between 14 and 16 s, the PV generation further reduced
to 0.056 MW. However, load demand did not reduce much (0.122 MW), which compelled
the diesel generator to continue the power supply as PV, and the battery could not fulfill
the total load demand.

Table 2. Summary of active power flow from different power sources to loads.

Duration
(s)

Variables Demand Generation

Solar Irradiaion
(W/m2)

Total Load
(MW)

Critical Load, PLc
(MW)

Non-Critical Load, PLnc
(MW)

Grid, Pgr
(MW)

Solar, Ppv
(MW)

Diesel Genrator, Pdg
(MW)

Battery, Pb
(MW)

0–2 1000 0.14
0.02 0.12 0.04 0.1 0 0

Total = 0.14 Total = 0.14

2–4 850 0.15
0.015 0.135 0.047 0.078 0 0.025

Total = 0.15 Total = 0.15

4–6 700 0.115
0.015 0.1 0.024 0.066 0 0.025

Total = 0.115 Total = 0.115

6–8 1000 0.089
0.009 0.08 −0.011 0.1 0 0

Total = 0.089 Total = 0.089

8–10 800 0.068
0.008 0.06 −0.006 0.074 0 0

Total = 0.068 Total = 0.068

10–12 900 0.097
0.007 0.09 0 0.085 0 0.012

Total = 0.097 Total = 0.097

12–14 750 0.13
0.01 0.12 0 0.071 0.034 0.025

Total = 0.13 Total = 0.13

14–16 600 0.122
0.012 0.11 0 0.056 0.041 0.025

Total = 0.122 Total = 0.122

In Figures 15 and 16, the output power, current and voltages of PV and battery VSIs
are presented. Figure 15a shows that through the PV-VSI, the amount of delivered power
was almost same as the power supplied by the PV with low ripple. In addition, the PV-VSI
output current also had less distortion, as shown in Figure 15b, because the PVMT-based
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FLDPC was implemented to control the PV-VSI. Similarly, from Figure 15c, it can be
observed that the PV-VSI output voltage also had a pure sine wave shape, and negligible
ripple. On the other hand, due to the use of PLL-integrated CCS-based controller battery
VSI output power, current and voltage had high steady-state oscillations and distortions,
which are presented in Figure 16a–c, respectively.
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The THD of PV and battery VSIs’ output currents and voltages are depicted in
Figure 17a–c, respectively. From the figures, it can be seen that the THD of PV-VSI output
current was only 1.585%, whereas battery VSI output current THD was 4.718%, which was
higher compared with PV-VSI current THD. In the case of voltages, battery VSI output
voltage THD (2.592%) was higher than the PV-VSI output voltage THD (1.44%). The THDs
were measured by considering three cycles (5.95–6 s) of current and voltage waveforms,
as shown in the zoomed portion of Figure 15b,c and Figure 16b,c. Finally, in Figure 18a–c,
grid power, current and voltage are presented, respectively. From the figures, it is clear that
the power delivered or absorbed by the grid was according to the MG’s requirement, and
there were negligible ripples observed in the power. Furthermore, the shape of grid current
and voltage were sinusoidal, which maintained 60 Hz frequency and had no distortions.
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5.3. Comparison of the Proposed PVMT-Based FLDPC with Other MG Power Controllers

In this section, a comparative study is conducted between the proposed PLL-less
PVMT-based FLDPC method and other grid-tied MG power control methods from [5–7,9,11].
The controllers were modelled in RSCAD, and their performances were tested by imple-
menting them for controlling PV-VSI, as shown in Figure 1. The results were obtained by
conducting real-time simulations in RTDS, and to make a fair comparison during simula-
tions, all the parameters of MG were set similarly. The results of the comparative study are
presented in Table 3 which shows that the proposed PVMT-based FLDPC method exhibited
better performance than the other MG power control methods.

All the results are presented for the period of 1–2 s, when AC-MG was operating
in grid-tied mode. For instance, the reference power tracking time of the proposed DPC
controller was 0.20 s, 0.195 s, 0.185 s, 0.12 s, 0.14 s and 0.19 s faster than the controllers
proposed in [5–7,9,11], respectively. Moreover, the PV-VSI output current THD was ob-
served as 1.585%, approximately in the range of 2.264% to 3.289% lesser compared with the
controllers in [5–7,9,11]. Furthermore, the power ripple in the output of PV-VSI controller
by the proposed FLDPC was very low compared with the ripples that existed in the output
power of PV-VSIs regulated by the controllers proposed in [5–7,9,11].
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Table 3. Comparative analysis of the proposed PVMT-based FLDPC with other MG power controllers.

# MG Power
Controller

PLL System
Presence

Active Power
Ripples Range

Reference Power
Tacking Time (s)

THD of VSI
Output Voltage (%)

THD of VSI
Output Current (%)

1
Proposed

PVMT-based
FLDPC

No Very small
(0.09999–0.10 MW) 0.03 1.44 1.585

2 Ref [5] Yes Large
(0.0983–0.101 MW) 0.23 3.91 4.975

3 Ref [6] Yes Large
(0.098–0.102 MW) 0.225 3.85 4.967

4 Ref [7] Yes Large
(0.0985–0.1009 MW) 0.215 3.83 4.87

5 Ref [9] Yes Medium
(0.0994–0.1003 MW) 0.15 2.59 3.95

6 Ref [11] Yes Large
(0.0986–0.1009 MW) 0.22 3.80 4.76

7 Ref [27] Yes Medium
(0.0993–0.1004 MW) 0.14 2.55 3.92

6. Discussion

From the real-time simulation results, it can be realized that the proposed PLL-less
PVMT-based FLDPC method is capable of controlling the real and reactive power, ir-
respective of the load variability and solar irradiation variations. For different power
references, it was observed that the PV-VSI output real power controlled by the proposed
PVMT-based FLDPC was tracking the reference real and reactive powers accurately. On
the other hand, though the conventional dq CCS-based power controller was also tracking
the reference powers, the tracking speed of the proposed PLL-less PVMT-based FLDPC
method was found to be faster than that of the conventional dq CCS-based power control
method, because the proposed power control method PLL system and park transformation
was omitted and the PCC voltage modulated the DPC method. Moreover, in the feed-
back controller, FLC was applied to minimize the errors between the reference powers
and VSI output power, to ensure PV-VSI output powers were following the reference
powers accurately.

Similar to the tracking performance the proposed PLL-less PVMT-based FLDPC
method exhibited excellent performance during a steady-state. The proposed PVMT-based
FLDPC overcame the steady-state oscillations issue, due to acquirement of an exponentially
stable decoupled linear time invariant error dynamic by the proposed controller. It was
observed that for the proposed PVMT-based FLDPC, there was very low ripple in the VSI
real and reactive power output. However, there was higher ripple observed in the VSI
power outputs for the conventional PLL-based power controller, and powers were also not
following the reference accurately.

From the results presented in Table 2, it can be seen that the proposed controller
also performed as outstanding while transferring power among different sources of MG,
grid and load during MG’s grid-tied, and islanding operating modes. From the real time
simulation results, it was observed that during grid-tied mode the proposed PVMT-DPC
method performed excellently by maintaining the required power flow between the MG
and grid, as the PV system was capable of providing the power according to the solar
irradiation changes. In addition, during the transition from grid-connected to islanded
mode, the proposed PVMT-DPC method also showed a robust performance. Finally, from
the comparison results presented in Table 3, it was observed that the proposed PLL-less
PVMT-based FLDPC method integrated PV-VSI showed a better performance during both
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the transient-state and the steady-state compared with the conventional power controller-
integrated PV-VSIs connected to AC-MGs.

7. Conclusions

In this paper, a FLDPC scheme based on PVMT for a grid-tied MG’s PV-VSI was
introduced. The performance of the proposed power controller was validated by con-
ducting real-time simulations using RTDS for two cases varying in both real and reactive
power references, and in AC-MGs different operating modes. For case-1, the tracking and
steady-state performance of the proposed FLDPC for a grid-tied PV-VSI was validated
by changing real and reactive power references. On the other hand, for case-2 the perfor-
mance of the proposed controller was validated for AC-MG’s PV-VSI by varying the solar
irradiation and load demand.

For case-1, real-time simulation results show that the proposed FLDPC method was
able to track both real and reactive power to their reference powers accurately and quickly.
The reference power tracking time required by the proposed FLDPC method for both real
and reactive power was only 0.03 s, whereas the conventional PLL-integrated dq CCS-
based power controller took 0.23 s, which was 0.20 s slower than the proposed controller.
The proposed controller during steady-state also demonstrated outstanding performance
as the ripples in the PV-VSI output power significantly reduced, and the THD of VSI
output current achieved was 1.59%, which was well below the 5% set by the IEC standard.
On the contrary, for a conventional PLL-integrated dq CCS-based power controller, the
THD of VSI output current obtained was very high (4.975%) compared with the proposed
FLDPC method.

Furthermore, for case-2, in MG application (grid-tied, and islanded operating modes),
the proposed FLDPC method of PV-VSI showed an outstanding performance during the
variation of solar irradiance and load. From the real-time simulation results, it was observed
that during the grid-tied mode the proposed PVMT-based FLDPC method has performed
excellently, by maintaining the required power flow between the MG and grid. Finally,
a comparative study was conducted to prove the superiority of the proposed FLDPC
method, with respect to other grid-tied MG power control methods. It was observed that
the proposed FLDPC method outperformed all the other controllers, having a PI-based
feedback controller and PLL-based synchronization methods, along with two control loops
for parameters such as power ripples, THD and reference power tracking time.

In this work, the performance of the proposed FLDPC method was validated on
AC-MG, which was connected to a healthy utility grid. In future, the performance of the
FLDPC will also be validated for distorted grid conditions. Furthermore, for the grid
re-synchronization process, the performance of the proposed FLDPC method was not
validated. This will be conducted in the future.
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Nomenclature

VSI Voltage source inverter
MG Microgrid
PLL Phase locked loop
DPC Direct power control
FLC Fuzzy logic controller
RTDS Real time digital simulator
CCS Current control scheme
PI Proportional Integral
SOC State of Charge
PVM PCC voltage modulation
FLDPC Fuzzy logic direct power control
PV Photovoltaic
MPPT Maximum power point tracker
BSS Battery storage system
THD Total harmonic distortion
SPWM Sinusoidal pulse width modulation
MI Modulation index
PCC Point of common coupling
PVMT PCC voltage modulation theory
ANN Artificial neural network

Appendix A

Table A1. Parameters of AC MG components [38].

Parameters Value

PV System (0.1 MW)

PV modules connected in series 28

PV modules connected in parallel 68

Solar irradiation reference value 1000 W/m2

Voltage at maximum power 17.3 V

Voltage at open circuit 21.5 V

Current at maximum power 3.05 A

PV module Temperature 25 ◦C

Current during short circuit (Isc) 3.33 A

Battery Storage (25 kWh)

Nominal voltage per cell 3.6 V

Initial SOC of each cell 90%

Capacity of each cell 0.85 AH

State of charge (SOC) of battery Greater than 60%

Cells connected in parallel 290

Cells connected in series 135

Diesel Generator (0.15 MVA)

Machine power rating 0.15 MVA

Line to line voltage 0.48 kV
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Table A1. Cont.

Parameters Value

Grid

Transformer primary/secondary voltage 0.48 kV/13.2 kV

Grid Voltage 13.2 kV

Frequency 60 Hz

Load

Non-critical load 0.05–0.14 MW

Critical Load 0.005–0.015 MW

PV-VSI

Voltage at DC link 975 V

PV-VSI switching frequency 2 kHz

DC-link capacitor 500 µF

Ra,b,c 0.1 Ω

La,b,c 5 mH

Battery VSI

Voltage at DC link 975 V

PV-VSI switching frequency 2 kHz

DC-link capacitor 450 µF

Ra,b,c 0.01 Ω

La,b,c 5.5 mH

DC-DC Buck-Boost Converter (Battery Storage)

Switching frequency 20 kHz

Capacitance 74 µF

Inductance 6 mH

DC-DC Boost Converter (PV System)

Switching frequency 20 kHz

Capacitance 85 µF

Inductance 8 mH

Table A2. Values of PI controller coefficients for DC-link control.

Coefficients Value

K i, dc 0.015

K p, dc 10
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