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Abstract: Generative adversarial networks (GANs) were first proposed in 2014, and have been
widely used in computer vision, such as for image generation and other tasks. However, the GANs
used for text generation have made slow progress. One of the reasons is that the discriminator’s
guidance for the generator is too weak, which means that the generator can only get a “true or false”
probability in return. Compared with the current loss function, the Wasserstein distance can provide
more information to the generator, but RelGAN does not work well with Wasserstein distance
in experiments. In this paper, we propose an improved neural network based on RelGAN and
Wasserstein loss named WRGAN. Differently from RelGAN, we modified the discriminator network
structure with 1D convolution of multiple different kernel sizes. Correspondingly, we also changed
the loss function of the network with a gradient penalty Wasserstein loss. Our experiments on
multiple public datasets show that WRGAN outperforms most of the existing state-of-the-art methods,
and the Bilingual Evaluation Understudy(BLEU) scores are improved with our novel method.

Keywords: GAN; text generation; RelGAN; Wasserstein loss; unsupervised learning; natural lan-
guage processing

1. Introduction

A generative adversarial network (GAN) [1] is an unsupervised learning method that
learns by letting two neural networks play against each other. This method was proposed
by Ian Goodfellow and his colleagues in 2014. With the improvement of the theory,
GANs have gradually shown their great potential. Moreover, GANs have produced many
fancy computer vision applications, such as image generation, image conversion, style
transfer, and image restoration. GANs have made many computer vision achievements,
but their development is relatively slow in natural language processing (NLP). There are
two main problems:

1. When a GAN faces discrete data, the discriminator cannot pass the gradient to the
generator through backward propagation [2]. For example, for continuous data, if
we will output a picture with a pixel value of 1.0, then we can change this value to
1.0001 through backward propagation. However, if the word “penguin” is output for
discrete data, the network cannot change it to “penguin + 0.001” through backward
propagation because “penguin + 0.001” is not a word.

2. The training process for GANs is unstable. We need to balance the generator and the
discriminator carefully. Moreover, the generating task is much more complicated than
discrimination. Simultaneously, the discriminator’s guidance for the generator is too
weak [3], and the direction contains too little information. For the generator, it can
only get a “true or false;’ probability in return. Furthermore, the discriminator may
even “cheat”. Since the real sample uses one-hot vectors, the discriminator does not
need to judge whether the generated data distribution is closer to the real data. It just
needs to identify whether only one item of the current data is 1, and the rest are all 0.
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For the first problem, there are currently two effective solutions.
The first solution is the combination of a GAN and reinforcement learning (RL) for

sequence generation, such as the Sequence GAN (SeqGAN) [4] proposed by Yu et al.
with the REINFORCE algorithm. This solution focuses on dealing with non-differentiable
problems caused by discrete data by considering RL methods or reformulating problems
in continuous space [5]. Using this method will make the GAN more challenging to train
and will cause the mode collapse problem.

The second solution is Gumbel–Softmax relaxation [6,7]. The most representative net-
work is RelGAN [5], which was proposed by Nie, W. et al. in 2018. RelGAN can be divided
into three parts: a relational-memory-based generator [8], Gumbel–Softmax relaxation [6,7]
for training GANs, and multiple representations embedded in the discriminator [5]. This
model performs very well on many datasets. However, RelGAN still has disadvantages in
the second problem.

For the second problem, Wasserstein GAN (WGAN) and Wasserstein GAN Gradient
Penalty(WGAN-GP), proposed by Martin Arjovsky and Ishaan Gulrajani et al. [9,10],
respectively, provide a theoretical solution. WGAN converts the discriminator from a
binary classification task into an approximately fitting Wasserstein distance. Forcing the
discriminator to calculate the distance between the distribution of the generating data and
the true data also prevents the discriminator from “cheating”. At the same time, it also
provides more accurate guidance information to the generator, not just the probability
of being “true or false”. Because the “weight clipping” strategy in WGAN will cause
most of the weights to approach two extremes, WGAN-GP was proposed, which uses a
“gradient penalty” to replace “weight clipping”. This strategy makes the training more
stable and increases the quality of the generated image.

Unfortunately, WGAN is mostly used in computer vision, and there are few ap-
plications in text generation. On the other hand, using Wasserstein loss to replace the
RSGAN [11] loss in RelGAN does not perform well for real-world data. We found that
the gradient would disappear, and the discriminator loss was almost equal to 0 during
training. A detailed description of the performance of RelGAN using Wasserstein loss can
be found in Section 4.2.2.

In this work, we propose a new architecture based on RelGAN and WGAN-GP
named WRGAN. The improved model can effectively solve the two issues identified
above. We rebuilt the discriminator architecture with a one-dimensional convolution
of multiple different kernel sizes and residual modules [12]. Correspondingly, we also
modified the generator and discriminator loss functions of the network with gradient
penalty Wasserstein loss. Then, we used the discriminator and the generator with relational
memory coordinated by Gumbel–Softmax relaxation to train the GAN model on discrete
data. We analyzed and presented the experimental results on multiple datasets and the
influence of hyperparameters on the model. The data samples generated from each dataset
can be found in Appendix A. Our experiments demonstrate that our model outperforms
most current models on real-world data. The rest of the paper is organized as follows:
Section 3 presents the methodology of the review. The obtained results are presented in
Section 4. Section 5 presents a discussion of the results and the conclusions.

2. Related Works

With the improvement of GAN theory, GANs have also made some progress in text
generation. In SeqGAN [4], the error is regarded as a reward for reinforcement learning by
training in a feed-forward manner. An exploration model of reinforcement learning is used
to update the generator network. SeqGAN created a mode for GAN in the field of text
generation. Many subsequent models also rely on reinforcement learning (RL) algorithms.
For example, MaliGAN [13] proposed a new loss function of the generator to replace the
Monte Carlo tree search [14] and got better results. RankGAN [15] changed the original
discriminator from a binary classification model to a sorting model, and changed from
a learning to a ranking problem. LeakGAN [16] leaked the characteristic information of
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the high-level discriminator to the manager module to guide the generator to generate
long texts. MaskGAN [17] used the actor–critic algorithm in reinforcement learning to
train the generator and used maximum likelihood and stochastic gradient descent to
train the discriminator. DP-GAN (Diversity-Promoting GAN) [18] was proposed with a
focus on diversified text generation. The author improved the discriminator based on
SeqGAN and proposed a discriminator based on the language model. SentiGAN [19]
has multiple generators and a multi-class discriminator. Multiple generators are trained
simultaneously, aiming to generate text with different emotion labels without supervision.
Moreover, it establishes a penalty-based goal in the generators to force them to produce
diverse examples of a specific emotional label. Matt Kusner [6] proposed a new method for
dealing with discrete data—Gumbel–Softmax—thus solving the “indifferentiable” problem.
RelGAN [5] used relational memory [20] instead of Long Short-Term Memory(LSTM) [21]
as the generator to obtain more vital expression ability and better model ability for long
texts. At the same time, RelGAN used the Gumbel–Softmax relaxation model to simplify
the model and replaced the reinforcement learning heuristic algorithm.

For GAN models that were not designed for text generation, we will first introduce a
distance measurement method called “Earth-Mover (also called Wasserstein) distance”,
W(q, p), which is informally defined as the minimum cost of transporting mass in order
to transform the distribution q into the distribution p (where the cost is the mass times
the transport distance). Under mild assumptions, W(q, p) is continuous everywhere
and differentiable almost everywhere [10]. The “Earth-Mover distance” W(q, p) can be
defined as:

W(q, p) = min
γ

E(q,p)∼γ‖q− p‖, (1)

where γ is a probability distribution that satisfies the constraints:∫
γ(q, p)dq = Pg(q),

∫
γ(q, p)dp = Pf (p). (2)

Instead, WGAN was proposed to use the Wasserstein distance as the loss to solve
the unstable problem in GAN training. WGAN theoretically points out the defects of
the original GAN. WGAN-GP was used to propose another truncation pruning strategy—
“gradient penalty”—to make the training process more stable and achieve higher-quality
generation results. The f-GAN [22] used variable dispersion to minimize the training of a
generative adversarial network of generative neural samplers. These methods also have
reference values for text generation.

Beyond GANs, ARAEs (adversarially regularized autoencoders) [23] represent a new
method that can limit the encoded content information to an autoencoder and prevent the
autoencoder from learning the identity function. After training, the generator and encoder
parts of the autoencoder can be used as a generative model. The PHVM (planning-based
hierarchical variational model) [24] first plans a sequence of groups and then realizes each
sentence depending on the planning result and the previously generated context, thereby
decomposing long text generation into dependent sentence generation sub-tasks. These
methods provide us with new ideas for text generation.

In general, there have been many excellent variants of GANs in the field of text
generation in recent years. Nevertheless, there are still many problems to be solved in text
generation, which also means that there is excellent development potential. Based on this
point of view, we research GANs in the text generation field and improve the models.

3. WRGAN

With respect to the problem that the discriminator cannot back-propagate the gradient
to the generator after experimental testing, we believe that using the Gumbel–Softmax
relaxation technology is better than using reinforcement learning (RL). Therefore, we
choose Gumbel–Softmax relaxation. On the other hand, since the LSTM-based generator
may lack enough expressive power for text generation, relational memory is employed
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as the generator. Because the discriminator gives too little guidance information to the
generator, we choose to use Wasserstein loss to enhance the generator’s guidance. At the
same time, in order to make the loss work, we carefully design a discriminator network
corresponding to Wasserstein loss. The improved model is named WRGAN, which means
that it is an improvement of RelGAN with Wasserstein loss.

3.1. Overall Framework

The overall framework of WRGAN is shown in Figure 1. It can be divided into
three parts: a relational-memory-based generator, Gumbel–Softmax relaxation, and a
one-dimensional convolution-based discriminator. After the generator passes standard
maximum likelihood estimation (MLE) training for several epochs, the network starts
adversarial training. According to RelGAN, for each Mt at time t, we can get the updated
memory M̃t+1:

M̃t+1 = [M̃(1)
t+1 : ...M̃(H)

t+1 ] (3)

M̃(h)
t+1 = σ(

Q(h)
t (K(h)

t )T
√

dk
)V(h)

t , (4)

where σ is the Softmax function, and Q, K, and V are the query, key, and value vectors.
Then, the output of generator ot is given by:

ot = fθ(M̃t+1, Mt), (5)

where fθ is combinations of skip connections, multi-layer perceptron (MLP), gated opera-
tions, and/or pre-Softmax linear transformations [5].

Figure 1. The overall framework of WRGAN.

After getting the generator output ot, we put ot into Gumbel–Softmax; then, we can
get the generated data ŷ, defined as:

ŷ = σ(β(ot + gt)) (6)

where σ is softmax function, and gt is defined as:

gt = −log(−log(1× 10−10) + 1× 10−10), (7)
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and β is a tunable parameter; in this work, we set the value of β as 100.
Then, we put the generated data, the real data, and the mixed data into the discrimi-

nator to get the loss. The loss of the discriminator represents the relative distance between
the distribution of the generated data and the real data. Finally, the model will adjust the
network parameters through loss.

3.2. Rebuilding the Discriminator

The proposed discriminator framework is shown in Figure 2, and the parameters are
shown in Table 1. We choose one-hot as the input form, and the input shape is [Batch
size, Vocabulary size, Max length]. The first layer is a 1D convolutional [25] layer for
dimension conversion. The second layer is three groups of Resblock layers with different
one-dimensional convolution kernel sizes. The structure of Resblock [12] is shown in
Figure 3. The one-dimensional convolution kernel shapes are the same as in the Resblock.
The sizes of the three groups of convolution kernels are [1, 3, 5], and the padding is [0, 1, 2].
The Resblock [26] also contains a hyperparameter dimension (Dim). Different data sizes
correspond to different dimensions; a detailed analysis of the impact of the parameters on
the model can be found in Section 4.6.1. Then, the three channels are concatenated with
different convolution kernel sizes. One thing to note is that the two linear layers do not
add an activation function.

Figure 2. The proposed discriminator framework.

Figure 3. The Resblock.

Table 1. The discriminator parameters.

Layers Input Shape Kernel Shape

Conv1D (Batch size, Vocab size, Max length) (1, Vocab size)
ResBlock (Batch size, Dim, Max length) (1, Dim), (3, Dim), (5, Dim)
Linear1 (Batch size, Dim ×Max length × 3)
Linear2 (Batch size, 1000)
Output (Batch size, 1)
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We assume that the weight of the convolutional layer is Wt
d, where d ∈ [1, 2, 3] either

for the real input [r1 : ... : rT ] or for the generated input [ŷ1 : ... : ŷT ]. For real data,
the distributed representation [27] hr is:

ht
r = Wt

drt. (8)

The distributed representation of the generated data is:

ht
y = Wt

dŷt. (9)

3.3. Network Training
3.3.1. Loss Function

In this work, we use gradient penalty Wasserstein loss. According to WGAN-GP, adding
a gradient penalty will avoid all network parameters approaching two extremes so that the
weights can be evenly distributed in a specific interval. The gradient penalty ensures the
stability of adversarial training. The discriminator loss can be defined as:

LD = E[D(x̃)]−E[D(x)] + λE[(‖5x̂D(x̂)‖2 − 1)2], (10)

where x̂ is a mixture of the real data and generated data. λ is called the penalty coefficient. All
experiments in this paper use λ = 10. The generator loss is given by:

LG = −E[D(x̃)]. (11)

If we put (6) and (7) into (8) and (9), the LD and LG will be

LD =
1

3T

3

∑
d=1

T

∑
t=1

D(ht
ŷ)−

1
3T

3

∑
d=1

T

∑
t=1

D(ht
r) +

λ

3T

3

∑
d=1

T

∑
t=1

(
∥∥5m̃D(ht

m̃)
∥∥

2 − 1)2 (12)

LG = − 1
3T

3

∑
d=1

T

∑
t=1

D(ht
ŷ), (13)

where m̃ is obtained by randomly mixing real data and generated data.

3.3.2. Training Parameters

As we were limited by hardware equipment, during the training process, we set
the batch size to 64. We used the Adam [28] optimizer during the adversarial training
process, the learning rate of the generator and the discriminator were both 1 × 10−4, the
L2 regularization weight decay was 0.01 [29], and the dropout of the discriminator was
0.25. The maximum number of iterations was 2000, and the generator embedding [30,31]
dimension was 32.

4. Experiments

To evaluate the performance of the model, we tested our model on real-world data,
including the Common Objects in Context (COCO) image captions [32], EMNLP2017 WMT
News [33], Movie Reviews [34], and Chinese poetry [35] datasets. The specific experimental
parameter settings are given in each subsection.

4.1. Evaluation Metrics

Similarly to other models, we used two metrics to evaluate models. The first was the
negative log-likelihood (NLLgen) and its counterpart (NLLoracle) [36], defined as:

NLLgen = −EY1:T∼Pr logPθ(Y1, ..., YT) (14)

NLLoracle = −Ey1:T∼Pθ
logPr(y1, ..., yT), (15)
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where Pθ is the generated data distribution and Pr is the real data distribution. We used
NLLgen to evaluate the diversity of the generated data.

The other evaluation metric for real data was bilingual evaluation understudy
(BLEU) [37]. The BLEU score was used to compare and count the number of commonly
occurring n-gram words for the quality evaluation of the generated text. One thing to note
is that in order to enable BLEU scores to evaluate the model, we also used test data [38].

4.2. COCO Image Caption Dataset
4.2.1. BLEU and NLL Scores

The Microsoft COCO dataset contains human-generated captions for images. This
dataset contains a total of 10,000 captions. After preprocessing [39], we got a dictionary with
4682 unique words, and the maximum sentence length is 37. The BLEU scores compared
with those of other models are shown in Table 2. We adopted the same evaluation settings
as other models. It can be seen in Table 2 that, except for the BLEU-5 score, which is lower
than those of other models, the other scores are better than those of the other models.
That means that the improvement of the model is very effective for the COCO dataset.
The NLLgen score shows that the improved model also performs well with respect to the
generated data diversity.

Figure 4 is a line graph generated after 2000 iterations of training when the hyperpa-
rameter dimension was equal to 128. There were no strong fluctuations in the training pro-
cess, which shows that the model is relatively stable during the training process. The data
samples from COCO generated can be found in Appendix A.1.

Table 2. The bilingual evaluation understudy (BLEU) and NLLgen scores on COCO Image Captions
where Dimension = 128. For BLEU scores, the higher the better. For NLLgen, the lower the better.

Method BLEU-2 BLEU-3 BLEU-4 BLEU-5 NLLgen

MLE 0.731 0.497 0.305 0.189 0.718
SeqGAN 0.745 0.498 0.294 0.180 1.082

RankGAN 0.743 0.467 0.264 0.156 1.344
LeakGAN 0.746 0.528 0.355 0.230 0.679

RelGAN (100) 0.849 0.687 0.502 0.331 0.756
RelGAN (1000) 0.814 0.634 0.455 0.303 0.655

WRGAN 0.853 0.687 0.509 0.318 0.673

Figure 4. The BLEU scores for Common Objects in Context (COCO) image captions, where
Dimension = 128.
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4.2.2. Comparison of RelGAN and WRGAN on COCO

The discriminator loss when using Wasserstein loss on RelGAN is shown in Figure 5.
We found that the discriminator and generator loss are almost equal to 0 throughout the
training process (floating in the range of 0.0005 to 0.005). In this case, the discriminator has
no useful guidance information to give to the generator, and the two networks cannot form
adversarial learning. That is why it does not perform well on the datasets. Excluding some
obvious error causes, we located the problem in the discriminator structure. After many
experiments, we made the above modification to the discriminator structure.

Figure 5. The discriminator loss of RelGAN.

Figure 6 shows the BLEU-2 score of the improved model, RelGAN, and RelGAN
with Wasserstein loss on the COCO dataset with 1400 iterations. The parameters in the
figure are the parameters mentioned in the original paper. We found that RelGAN has
strong fluctuations when using Wasserstein loss, and it does not perform well on the
COCO dataset.

Figure 6. The BLEU-2 scores on the COCO image captions compared with RelGAN.

4.3. EMNLP 2017 WMT News

The BLEU and negative log-likelihood (NLL) scores on EMNLP 2017 WMT News with
Dimension = 256 are shown in Table 3. The EMNLP 2017 WMT News dataset contains about
270,000 sentences, and the test data contain 10,000 sentences. After data preprocessing,
we got a vocabulary size of 5255, and the maximum sequence length was 51. The training
curves of the BLEU scores are shown in Figure 7. The results show that, except in the
generated data diversity, which is slightly weaker than that of other models, the improved
model is better than other models in the BLEU scores. The figure also shows that the model
can have better performance and stable results, even on a large-scale dataset. The data
samples generated from EMNLP 2017 WMT News can be found in Appendix A.2.
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Table 3. The BLEU and NLL scores on EMNLP 2017 WMT News with Dimension = 256. For the
BLEU scores, the higher the better. For NLLgen, the lower the better.

Method BLEU-2 BLEU-3 BLEU-4 BLEU-5 NLLgen

MLE 0.768 0.473 0.240 0.126 2.382
SeqGAN 0.777 0.491 0.261 0.138 2.773

RankGAN 0.727 0.435 0.209 0.101 3.345
LeakGAN 0.826 0.645 0.437 0.272 2.356

RelGAN(100) 0.881 0.705 0.501 0.319 2.482
RelGAN(1000) 0.837 0.654 0.435 0.265 2.285

WRGAN 0.952 0.782 0.539 0.336 2.812

Figure 7. The BLEU scores for EMNLP2017 WMT News with Dimension = 256.

4.4. Chinese Poetry

The Chinese poetry dataset includes a total of 16,394 Tang poems. Each poem contains
five Chinese words per sentence. Since we used the BLEU score as the evaluation metric,
we randomly selected 8197 poems as the training data. The remaining 8197 poems were the
test data. After data preprocessing, we got a vocabulary with a size of 4140. Table 4 shows
the BLEU-2 scores for this dataset. The improved model also achieved good results on the
Chinese poetry dataset. The data samples generated from the Chinese poetry dataset can
be found in Appendix A.3.

Table 4. The BLEU-2 scores on the Chinese poetry dataset with Dimension = 128. For BLEU scores,
the higher the better.

Method SeqGAN RankGAN RelGAN LeakGAN WRGAN

BLEU-2 0.738 0.812 0.817 0.456 0.835

4.5. Movie Reviews (MR)

The Movie Reviews (MR) dataset has two sentiment classes (negative and
positive [40,41]). MR has 4503 samples, including 3152 training samples and 1351 testing
samples. After data preprocessing, we got a vocabulary with a size of 6216. Moreover,
the maximum sentence length was 15. Table 5 shows the BLEU and NLL scores for the
dataset. On MR, the BLEU-5 score of the improved model was also lower than that of other
models, and the other items were able to get good scores. The data samples generated from
the Movie Reviews dataset can be found in Appendix A.4.



Electronics 2021, 10, 275 10 of 14

Table 5. The BLEU and NLL scores for the Movie Reviews dataset with Dimension = 128. For BLEU
scores and NLLdiv, the higher the better. For NLLgen, the lower the better.

Method SentiGAN CSGAN CatGAN [42] WRGAN

BLEU-2 0.532 0.452 0.589 0.623
BLEU-3 0.285 0.204 0.335 0.337
BLEU-4 0.167 0.112 0.194 0.193
BLEU-5 0.143 0.082 0.144 0.128

NLLgen 2.436 2.912 1.619 0.8061
NLLdiv 0.484 0.254 0.535 0.9097

4.6. Impact of Hyperparameters
4.6.1. Impact of Dimension

In this session, we discuss the impact of the hyperparameter dimension (Dim) on the
model. As shown in Figure 8, the BLEU-2 scores of the model on the COCO dataset are
plotted when Dim = 128 and Dim = 64, respectively. When Dim = 128, and when the model
is around the 1000th iteration, it is not difficult to see that the model is overfitting. However,
when Dim = 64, there is no obvious overfitting. After the experiments, we found that
the hyperparameter should be proportional to the amount of training data. The training
curve of the EMNLP 2017 WMT News dataset can also confirm this view. When Dim = 256
on the EMNLP 2017 WMT News dataset, we did not find obvious overfitting during the
training process. In addition, the parameter Dim is not as small as possible. When Dim
is too small, the model may not fully get the characteristics of the sentence vector on the
current dataset. This will reduce the quality of the generated data. Therefore, we tend to
set Dim a little higher.

Figure 8. The BLEU-2 scores for the COCO image captions with Dimension = 64 and 128.

4.6.2. Impact of k

The hyperparameter k is the generator step/discriminator step. As shown in Figure 9,
as k increases, the model gradually deteriorates and becomes unstable. We think that the
reason for this situation is that the time taken for discriminator training is too short, and the
generator is too “experienced” for adversarial training. Perhaps, as the amount of training
increases, the training will gradually become stable again. Currently, this view is a guess.
However, k cannot be as small as possible. A smaller k means more training time for the
discriminator. Increased training time for the discriminator will make the model overfit
faster. Therefore, after many experiments, we set k = 1/5.
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Figure 9. The BLEU-2 scores for the COCO image captions with k = 5, 1, 1/3, and 1/5.

5. Discussion and Conclusions
5.1. Discussion

Compared with other models, there are still some questions to be solved. The first is
about improving the BLEU-5 score. Secondly, the model does not perform well on synthetic
data. We still need to change the model’s structure to make it better.

5.2. Conclusions

This paper proposes a new and improved model for text generation based on RelGAN
and WGAN-GP called WRGAN. We rebuilt the model’s structure to allow various modules
to operate in coordination. We applied the Wasserstein distance in text generation to
provide more useful information for the generator, and we used the relational memory
as the generator architecture to reduce the mode collapse. Then, we tested the improved
model on multiple real datasets. Compared with other models, our model has a higher
evaluation score and sample quality. In the comparative experiment with RelGAN, our
model achieved better results. Finally, we analyzed the influence of hyperparameters on
the model. We plan to continue to improve this network for future work and to apply this
network to more natural language processing applications.

Author Contributions: Conceptualization, all authors; methodology, all authors; software, Z.J.; data
preprocessing, Z.J.; data analysis, all authors; supervision, F.R.; writing—original draft preparation,
Z.J. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the NSFC-Shenzhen Joint Foundation (Key Project)
(Grant No. U1613217).

Data Availability Statement: Data available in a publicly accessible repository. Publicly available
datasets were analyzed in this study. This data can be found here: [32–35].

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2021, 10, 275 12 of 14

Abbreviations
The following abbreviations are used in this manuscript:

GAN generative adversarial networks
NLP natural language processing
SeqGAN Sequence GAN
RL reinforcement learning
WGAN Wasserstein GAN
GP gradient penalty
BLEU bilingual evaluation understudy
NLL negative log-likelihood
MLE maximum likelihood estimation
LSTM Long Short-Term Memory

Appendix A. The Data Samples Generated from Each Dataset

Appendix A.1. COCO Image Caption Dataset

Table A1. The data samples generated from the COCO image caption dataset.

a yellow bicycle parked next to a red wall.
a white and blue plane flying in the blue sky.
a white cat has caught a bird on its tail.
a woman in the kitchen is holding a dog.
a man is looking at motorcycle in the road by the building.
two wet young boys on a table.
a bathroom with a toilet and a sink.
many motorcyclists gather in front of a bus.
a young girl sitting on top of a bike near the ocean.
some people on the snow covered field.

Appendix A.2. EMNLP 2017 WMT News

Table A2. The data samples generated from the EMNLP 2017 WMT News dataset.

the security services, an independent has already said: “there is a need to follow up the
process of the project in 2017.

i have been together with russia, because we just don’t know if that is the need to make
it,” he said.

he will tell the player he didn’t want to continue to make his opinion on that.

we are making sure that we will better understand that we need to strengthen our order
for the next 18—and we will get ourselves into our future.

in some cases, it is the first time in the past three years, a few of them needed to be with
other. 1% of the population is even more within the trump administration.

after the festival, his wife, who was in contact with a police in the UK.

now, it is amazing when people on the court, including a man from the police.

“I’m really concerned, because it was a very careful in my life,” she said.

he has had to quit from the hospital after a 13-year-old who had been on three years.

“we are back with this, and we are not about that,” he said in a statement for
several years.
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Appendix A.3. Chinese Poetry

Table A3. The data samples generated from the Chinese poetry dataset.

步屦一朝来，乘流处入天。云峰十字巷，月落翠屏中。
一骑来相应，烟片开林下。散发故人至，色含野水闲。
北风吹五岭，寒月断寒猿。风光千万阵，霜薄香台中。
今朝明月居，陇头复何极。仙郎日相见，江树正朝归。
卧病南国月，孤舟无端倪。浮云过云气，伯牙道为心。
昔年顾虎丘，恩荣奉旧居。诏书收骥子，才贤气初荣。
江水将孤帆，楼兰尚郁蒸。清风千里叶，百雪二湖平。
游此闲门道，双旌到上游。忽入灵洞骨，秋骑发华林。
画舸下金华，悲歌犹意无。所以终日子，怀山有异方。
朝日上林隐，苍茫解朝衣。公声何在意，有愧为 人乡。

Appendix A.4. Movie Reviews (MR)

Table A4. The data samples generated from the Movie Reviews dataset.

a very good film sits in the place.
the movie doesn’t have to see.
most fun ride of the place.
a good documentary on the what begins that never gets.
the film is smart, sweet and playful point.
if you’re a comic fan.
a very capable nailbiter.
could use a little more humanity and delight.
so boring and meandering.
a pleasant, but it’s also extremely effective.
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