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Abstract: The lateral motion of an Automated Vehicle (AV) is highly affected by the model’s un-
certainties and unknown external disturbances during its navigation in adverse environmental
conditions. Among the variety of controllers, the sliding mode controller (SMC), known for its ro-
bustness towards disturbances, is considered to generate a robust control signal under uncertainties.
However, conventional SMC suffers from the issue of high frequency oscillations, called chattering.
To address the issue of chattering and reduce the effect of unknown external disturbances in the
absence of precise model information, a radial basis function neural network (RBFNN) is employed
to estimate the equivalent control. Further, a higher order sliding mode (HOSM) based switching
control is proposed in this paper to compensate for the effect of external disturbances. The effec-
tiveness of the proposed controller in terms of lane-keeping and lateral stability is demonstrated
through simulation in a high-fidelity Carsim-Matlab Simulink environment under a variety of road
and environmental conditions.

Keywords: Automated Vehicle; higher order sliding mode; radial basis function neural network;
lane-keeping; lateral stability

1. Introduction

The technological progress in the field of transportation has called for the need of a safe
and hassle free driving experience in the presence of diverse, challenging environments.
Driverless cars have proved to be a remarkable step towards automation, marking a
paradigm shift from the manual driving (MD) scenario. MD is often prone to human-
centric errors occurring due to the carelessness and inattentiveness of the driver leading to
a risk for the individual and traffic safety [1]. Automated vehicles (AV) on the other hand,
equipped with state-of-the-art sensors, are expected to reduce the driver burden along with
ensuring driver comfort and vehicle safety [2–4]. AV have shown promising progress in
path planning [5], path tracking [6–8] and decision making fields [9] that are crucial for
autonomous driving.

Lateral and longitudinal control are the two major areas regulating the overall motion
of AV. Lane-keeping and lateral stability are the two primary objectives for the lateral
control whereas the velocity control is the primary aspect for the longitudinal control
of the vehicle. For the lane-keeping purpose, the path following controllers designed
using PID [10], sliding mode [8,11] and Model Predictive Control (MPC) [7,12,13] have
been discussed in the literature. In order to address the path tracking objective involving
complex maneuvers, the design of a PID controller employing various design approaches
to adjust the controller parameters was discussed in [14]. The lateral control of autonomous
vehicles in the event of unknown road curvature using a nested PID steering control was
proposed in [10]. However, the above studies did not take into account the impact of
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aerodynamic forces on the vehicular lateral control. PID control, which is considered
one of the simplest and easily constructed controllers for lane-keeping, suffers from the
performance issues when there is a change in the external environment. A nonlinear model
predictive control (NMPC) approach for the purpose of yaw motion control by utilizing
the C/GMRES algorithm for distributed drive electric vehicles was proposed in [15]. The
key idea behind applying the C/GMRES algorithm was to address the computational cost
of NMPC for distributed drive electric vehicles. The issue of path following control by
considering the vehicle constraints such as yaw-rate, steering angle, lateral position error
and side-slip angle was addressed in [16]. However, the aforementioned papers [15,16] did
not consider the effect of external disturbances such as crosswinds and yaw-moment on the
lateral motion of the vehicle. The simultaneous control of lateral and longitudinal motion
of the vehicle by employing a neural network based adaptive controller was suggested
in [17]. The purpose of designing the proposed controller was to achieve the path following
and speed tracking control requirements. However, this paper did not consider the adverse
environmental conditions such as vehicles moving on low friction surfaces in the presence
of crosswinds. An LMI based TS Fuzzy static output feedback control scheme for the
path following of autonomous vehicles was proposed in [18]. The vehicle was subjected
to the road curvature disturbances and time-varying vehicle speed scenarios. However,
the combined road vehicle control model neglected the impact of aerodynamic forces on
the lateral motion of the vehicle under adverse road conditions. A comparative study
evaluating the performance of an unmanned surface vehicle (USV) in terms of station
keeping heading and position using a nonlinear proportional derivative, sliding mode,
and backstepping feedback controllers in the presence of wind disturbances was proposed
in [19]. However, the type of autonomous vehicles taken into consideration in this paper
was marine vehicles.

Sliding mode control (SMC) has an inherent ability to compensate for matched uncer-
tainties and unknown disturbances. However, the conventional first order SMC exhibit
high frequency chattering in its control action, which is quite undesirable. To address
the issue of chattering in the SMC, several approaches based on non-singular terminal
SMC (NT-SMC) [20] and higher order sliding mode (HOSM) [21] have been proposed.
NT-SMC and HOSM approaches can effectively suppress the chattering phenomenon and
simultaneously compensate for the effect of disturbances in finite time. However, the
control based approaches discussed in the literature are effective in implementation as long
as the perfect knowledge of the system is in place. On the contrary, in the realistic scenario,
the information regarding the model dynamics is limited. The model uncertainties and the
disturbances are time-varying and they are dependent on the change in the navigational
environment. In those cases, it becomes difficult to measure those entities and thus the
design of model based control approaches fail to achieve the objective.

To address the shortcomings in the model based control approaches discussed above,
model free based control approaches have been proposed for ensuring lane-keeping (LK)
and lateral stability (LS) of the vehicle [22–24]. The authors in [22] proposed an adaptive
neural network (ANN) approximator to estimate the uncertainty in the tire cornering
coefficient and laid down the design of a backstepping variable structure control (BSVC)
to compensate the lateral deviation and oscillations in the yaw-rate of the vehicle. This
paper takes into consideration the vehicle maneuvering in the low-friction surfaces where
the proposed neural network based controller was able to compensate for the undesirable
yaw-moment generating oscillations in the yaw-rate. However, the authors in [22] do not
take into consideration the effect of crosswinds and yaw-moment as external disturbances
affecting the lateral motion of the vehicle. In [23], the authors proposed a hybrid combi-
nation of a fuzzy neural network and SMC to develop a lateral control strategy to track a
desired trajectory. However, the issue associated with the fuzzy control approach is the
choice of rules in designing the control law. In the fuzzy control approach, the choice of
rules highly impact the control performance of the system. Incorrect choice of rules does
not provide an optimal control performance leading to either sub-optimal or deteriorated
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performance. Again the choice of rules highly depends on an accurate or near to accurate
knowledge of the system, which is not available every time. In addition, the choice of
membership function is also arbitrary and therefore to get an efficient control performance
in the fuzzy control approach is a challenging aspect.

Motivated by the idea of robust lateral control of the vehicle presented in [22], this
paper takes into consideration the effect of crosswinds and yaw-moment as external
disturbances affecting the lateral motion of the vehicle. The type of autonomous vehicles
taken into consideration in this paper are the car-like vehicles with an Ackermann geometry
model. The vehicle traversing with Ackermann steering states that the outer wheel steers
for a smaller angle than the inner wheel. The front left wheel serves as the outer wheel
whereas the front right wheel acts as the inner wheel. In the current study, which is based
on the path tracking objective, the vehicle model taken into consideration is the vehicle
dynamics based dynamic bicycle model equipped for higher vehicle speeds. The reason
behind not considering the kinematic bicycle model is because at higher speeds the velocity
at each wheel is not in the direction of the wheel. The main contributions related to this
research work are as follows:

• The tire cornering stiffness exhibits strong uncertainty under challenging driving
conditions in the presence of unknown external disturbances. To deal with such
types of conditions, this paper proposes a HOSMC based radial basis function neural
network (RBFNN) to maintain lateral control and yaw stability of the vehicle.

• An overall closed-loop stability of the HOSMC based RBFNN for the bicycle model of
the vehicle is established. The weights of the neural network are adjusted online with
the formulation of an adaptation law using the Lyapunov method thereby ensuring
convergence of the sliding surface error.

• Simulations are performed in the CarSim-Matlab Simulink environment to justify the
performance of the proposed neural network based controller.

This paper is organized as follows. Section 2 presents a brief description regarding the
governing dynamics affecting the lateral dynamics of the vehicle. Section 3 provides an
overview of the robust HOSM controller design whereas Section 4 lays down the detailed
procedure regarding the proposed RBFNN based HOSMC design for compensating the
effect of uncertainties and disturbances affecting the lateral motion of the vehicle. This
section also discusses the overall closed loop stability exhibited by the proposed controller.
Section 5 discusses the simulation results showing the robust performance of the vehicle
with respect to the LK and LS as performance indices. Section 6 provides a brief discussion
on the simulation results, whereas Section 7 concludes the paper.

2. Vehicle Dynamic Model

The lateral vehicle dynamics model is expressed as [25,26].

mvx β̇ = Ff + Fr −mvxn + Fy

Izṅ = l f Ff − lrFr + Mz
(1)

where m, vx, Iz, β, n, Ff , Fr represent the mass of the vehicle, longitudinal velocity, yaw
inertia, side-slip angle, yaw-rate, front and rear friction forces acting on the vehicle. l f , lr
represent the distance of the front wheel and rear wheel from the center of gravity. Fy
and Mz represent the lateral forces applied on the vehicle due to the effect of crosswinds
and the yaw-moment, respectively. The crosswinds and the yaw-moment represent the
unknown external disturbances. As far as crosswinds are concerned, a strong gust of wind
generates sufficient force and torque that can roll over or drive the vehicle out of the lane.
More specifically, the effect of crosswinds on the lateral offset and stability of the vehicle
is pronounced when the vehicle is moving at a higher longitudinal speed on low-friction
surfaces. The resulting aerodynamic forces and the moment that act on the vehicles rigid
body are represented in longitudinal, lateral and vertical directions. Since this study is
focused on the lateral control of the AV, the aerodynamic forces on the lateral direction is
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represented as Fw = 1
2 ρCF Av2

rel and Mz = 1
2 ρCM ALv2

rel where ρ, A, L and vrel represent
the air density, vehicle area, vehicle length and relative wind speed, respectively. CF and
CM represent the non-dimensional coefficients corresponding to the force and moment,
respectively. Generally, the crosswinds impact the vehicle at various incident angles and for
this study, we have assumed the wind’s impact at an incident angle of 75 degrees. For the
vehicle to satisfy the lane-keeping task, the objective is to keep the vehicle near to the center
lane with minimum lateral offset and orientation error. In addition to the lane-keeping task,
the other objective is to ensure stability of the vehicle by minimizing the oscillations in the
yaw-rate during high lateral accelerations or low frictional surfaces. In order to satisfy the
above objectives, the lane dynamics with road curvature ρ should include the lateral offset
yld and heading error φld term at look ahead distance ld. Thus the dynamics of the lane
tracking error is expressed as [25]

ẏld = vy + ldn + φldvx

˙φld = n− ρvx
(2)

Considering the linear relationship between the tire lateral forces and the slip angle,
the expression for the front and the rear axle lateral forces can be represented as

Ff = µC f α f
Fr = µCrαr

(3)

where C f , Cr represent the tire cornering coefficients. α f , and αr represent the front and
rear tire slip angles, which is expressed as

α f = δ f − β− l f n
vx

αr = −β + lrn
vx

(4)

where δ f represent the front wheel road steer angle. Figure 1 shows the combined vehicle
dynamics with the lane tracking errors considered in this study.

φld

V

vx

vy
β

δf

C

lf

lr

ReferenceTrajectory

yld

ld

n

X

Y

O

Figure 1. Combined vehicle dynamics and the kinematic model.
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3. Robust HOSMC Design

Figure 2 shows the overall architecture of the proposed neural network based con-
troller for the lateral control of the vehicle.

In Figure 2 the sliding surface ρ is a function of lateral error e, which acts as the input
to the proposed RBFNN based HOSM controller. On the account of unknown external
disturbances affecting the system, the proposed RBFNN is used to estimate the equivalent
control input δ̂eq. The robust term v computed from the HOSM configuration along with
the estimated equivalent control input generates the optimal road steer angle δ f , which
acts as the control input for the vehicle model. The desired lateral offset yre f , which is
taken as the reference should be zero at look ahead distance ld. Thus the sliding surface σ
is designed as

e = yre f − yld = −yld (5)

σ = ė + λe = vy + ldn + φldvx + λyld (6)

+

-

δeq

z1

z2

z3

z4

z5

c1

w1

w2

w3

w4

w5

Adaptation

� +

+

d

yref
e

δf

Sliding Surface � ,nyld

Robust Term

Lane Tracking

Error Dynamics

RBFNN

Figure 2. Overall schematic of the closed-loop radial basis function neural network (RBFNN) based
higher order sliding mode controller (HOSMC) for the lateral control of the vehicle. yld: lateral offset
at look ahead distance ld, φld: heading error at look ahead distance ld, n: yaw-rate, β: side-slip angle,
δ f : road steer angle, d: unknown disturbances acting on the front wheel angle, ylr: reference projected error.

In the case of adverse conditions such as at the low friction surface or high lateral
acceleration, the tire cornering characteristics exhibit high uncertainty. The tire cornering
coefficients can then be expressed as C f = C f n + fc f (.) and Cr = Crn + fcr(.) where,
C f n and Crn represent the nominal values of tire cornering coefficients. fc f (.) and fcr(.)
represent the uncertainty in the tire cornering characteristics. Thus from Equations (1)–(4),
the derivative of the sliding surface is expressed as

σ̇ = ë + λė = f + λ(vy + ldn + φldvx) + gδ f + d (7)

where f = µ
m (C f n(−β− l f n

vx
)+Crn(−β− lrn

vx
))+ µld

Iz
(l f C f n(−β− l f n

vx
)− lrCrn(−β+ lrn

vx
))−

ρv2
x + ζ(.), ζ(.) = µ

m ( fc f (.)α f + fcr(.)αr) +
µld
Iz
(l f fc f α f − lr fcrαr), g =

µC f n
m +

µld l f C f n
Iz

and

d =
Fy
m + ld Mz

Iz
.

From (7), it is observed that the term f contains the tire-force uncertainty ζ(.) and d
represents the effect of crosswinds and yaw-moment on the lateral motion of the vehicle. λ
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represents the design parameter satisfying λ > 0. For the existence of second order sliding
control, σ̇ = 0 should be satisfied. Thus, for the convergence of the sliding error in the
presence of disturbances, the front wheel steering angle is then expressed as

δ f = δeq + δrob =
1
g
(− f − λ(vy + ldn + φldvx) + v) (8)

where δeq and δrob represent the equivalent road steer angle and the robust control term,
respectively. v represents the robust term, which is expressed as [27]

v = −k1‖σ‖
1
2 sign(σ)− k2

∫
sign(σ)dt− k3σ (9)

Here, k1, k2, k3 represent the positive robust term gains to be designed accordingly. For
this study, the gains associated with the HOSM controller are k1 = 0.005, k2 = 0.00002, and
k3 = 0.008, respectively. The higher the longitudinal speed, the higher the tire cornering
force. The value of tire-force uncertainty ζ(.), which is difficult to estimate, also changes
with the change in the longitudinal speed and the road surface conditions. Thus, the term
f in (8) that regulates the equivalent road steer angle δeq is also difficult to estimate as
it consists of the tire-force uncertainty term. The dynamics of crosswinds and the yaw-
moment also depend on the longitudinal speed of the vehicle. The higher the speed, the
greater the lateral force and yaw-moment impacted on the vehicle. To address the above
challenges and its impact on the lateral control of the vehicle, an adaptive HOSMC based
on RBFNN is proposed for effective lane-keeping and stability of the vehicle.

4. RBFNN Based HOSMC Design

The structure of RBFNN with one input and one output with a hidden layer consisting
of five nodes is shown in Figure 3. The design procedure of the proposed controller includes
the estimation of δeq using RBFNN. The input to this RBFNN structure is the sliding surface
σ and the hidden layer consists of five nodes with a gaussian kernel, each one having a
predefined center c and bias width b. The dynamics of RBFNN are expressed by

zi(x) = e
−‖x−ci‖2

2b2
i (10)

where i ranges from 1 to 5. The center and the bias considered for this study is

ci =
[
−2 −1 0 1 2

]
bi = 0.75 (11)

The ideal output δeq using the RBFNN dynamics from (10) is represented by

δeq = WTz(x) +4 f

where 4 f represents a very small approximation error satisfying 4 f ≤ 4+
f and W rep-

resents the weight vector. However, the approximated value of δeq using RBFNN is then
represented by

δ̂eq = ŴTz(x)

where Ŵ is the estimated value of W to be obtained. The approximate error in the equiva-
lent road steer angle is then represented by

δ̃eq = δ̂eq − δeq = W̃Tz(x)−4 f (12)
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Now taking into consideration that δ f = δ̂eq + δdis where δ̂eq and δdis represent the
estimated equivalent value of the steering angle and the robust term, respectively. Referring
to (7), (8) and (12) we get

σ̇ = f + λ(vy + ldn + φldvx) + g(δ̂eq + δdis) + d

= f + λ(vy + ldn + φldvx) + g(δ̃eq + δeq + δdis) + d

= f + λ(vy + ldn + φldvx) + g(δ̃eq +
1
g
(− f − λ(vy + ldn + φldvx) + v)) + d

= gδ̃eq + v + d

= g(W̃Tz(x)−4 f ) + v + d (13)

σσ δeq

z1

z2

z3

z4

z5

c1

w1

w2

w3

w4

w5

x1 +

Figure 3. Structure of the RBFNN.

Closed-Loop Stability Analysis

In order to check for the stability of the proposed RBFNN based HOSMC, the Lya-
punov candidate function selected is represented as

V =
1
2

σ2 +
1

2τ
W̃TW̃ (14)

where τ represents the adaptive learning rate satisfying τ > 0. The choice of τ greatly
impacts the overall closed-loop performance in such a way that too small or too high a
value of this parameter leads the system to the point of instability. Therefore the value of τ

chosen for this study is 0.00005. The derivative of the W̃ is represented as ˙̃W = ˙̂W− Ẇ = ˙̂W
as W represents the ideal optimal weight and so its derivative Ẇ will be zero. However, Ŵ
will get updated over the simulation interval till it reaches its optimal value. The derivative
of the Lyapunov function V is then expressed as



Electronics 2021, 10, 510 8 of 18

V̇ = σσ̇ +
1
τ

W̃T ˙̃W

= σ(gW̃Tz(x)− g4 f + v + d) +
1
τ

W̃T ˙̂W

= σ(−g4 f + v + d) + W̃T(σgz(x) +
1
τ

˙̂W) (15)

By ensuring ˙̂W = −τσgz(x), Equation (15) becomes

V̇ = σ(−g4 f + v + d) (16)

From (16), it can be observed that if ‖v‖ ≥ max(−g4 f + d), with ‖d‖ < D where D
represents the peak value of the disturbance, then the derivative of the Lyapunov function
V̇ < 0 for σ 6= 0. As the control input δ f from (8) is upper bounded such that δ f ≤ δ+f ,

so the RBF weight Ŵ is ultimately bounded and the convergence of the Ŵ to the optimal
value is achieved.

5. Simulation Results

In this section, the performance of the vehicle in terms of lane-keeping errors (lane
offset and heading error), and stability (yaw-rate and lateral acceleration) of the proposed
scheme is evaluated and compared with the pure-pursuit MPC controller in the CarSim-
Matlab Simulink environment. The Carsim vehicle simulator uses an in-built MPC for
lateral control of the Automotive Vehicle. The objective of the controller is to ensure that
the vehicle tracks a reference trajectory with minimum lateral error. The cost function
associated with this MPC to be minimized is expressed as

min
u

J =
1
T

∫ T

0
(zre f (t)− z(t))2Q(t) dt

s.t. ẋ = Ax + Bu + Lw

z = Cx + Du + Nw

where x represents the vehicle state, u represents the control input, which in our case is
the road steer angle, w represents the disturbance affecting the system, and z represents
the output of the system. The matrices A, B, C, D, L and N have constant coefficients. The
control objective is to ensure that the control input u drives the vehicle in such a way
that the output z tracks the given reference trajectory over a preview time T. The control
input u is considered optimal when it minimizes the cost function J. The vehicle used
in CarSim belongs to E-class Sedan and the tire model used in the study is the 225/60
R18 Internal tire model. The estimation of the equivalent control δ̂eq to compensate for
the uncertainty and the effect of disturbances by the proposed controller is validated
through simulation. The performance of the vehicle employing the proposed scheme is
investigated with and without the effect of disturbances. Further, to validate the robustness
of the proposed scheme, the vehicle is made to traverse on a variety of road conditions at
various longitudinal velocities. The coefficient of friction µ for those road surfaces is varied
from 0.4 to 1. The effectiveness of the proposed scheme is evaluated using a performance
metric employing statistical measures such as Root Mean Square Error (RMSE) for lane-
keeping errors and coefficient of variation (COV) for stability of the vehicle. The vehicle
specifications considered for this study are shown in Table 1.
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Table 1. Vehicle specifications.

Parameters Description Value

m Vehicle mass 1653 kg
l f Front axle distance from the center of gravity 1.402 m
lr Rear axle distance from the center of gravity 1.646 m

C f n Tire cornering coefficient of front tire 390,550 N
rad

Crn Tire cornering coefficient of rear tire 571,680 N
rad

ld Look-ahead distance 7 m
Iz Yaw-Inertia 2765 kg·m2

5.1. Nominal Case: Vehicle Performance without the Impact of Disturbances

In this case, the performance of the vehicle in terms of lane-keeping errors and
stability is studied when it is not impacted with any crosswinds. Here, the road friction
coefficient (µ) is taken to be equal to 1. It is observed from Figures 4–6 that the proposed
RBFNN-HOSM controller yields less lateral offset and renders better stability to the vehicle
because of comparatively lesser peak magnitude of yaw-rate and lateral acceleration than
compared to the pure pursuit in-built MPC controller in CarSim (CSM). The road steer
angle of the proposed scheme, as shown in Figure 7, shows smooth response for the
vehicle speedsvx = 60 km/h and vx = 100 km/h. It is evident from the figures that the
vehicle moving at lower longitudinal velocity vx renders more stability to the vehicle than
compared to when the vx is more.

Figure 4. Lateral offset of the pure pursuit Model Predictive Control (MPC) controller and the
proposed Neural Network controller (PNNC) for vx = 60 km/h and vx = 100 km/h.
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Figure 5. Yaw rate of the pure pursuit MPC controller (CSM) and the proposed Neural Network
controller (PNNC) for vx = 60 km/h and vx = 100 km/h.

Figure 6. Lateral acceleration of the pure pursuit MPC controller and the proposed Neural Network
controller (PNNC) for vx = 60 km/h and vx = 100 km/h.
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Figure 7. Road steer angle of the pure pursuit MPC controller and the proposed Neural Network
controller (PNNC) for vx = 60 km/h and vx = 100 km/h.

5.2. Robustness to External Disturbances and a Variety of Road Conditions: µ ∈ [0.4–0.85] and
µ = 1, vx = 100 km/h

In this first case, the vehicle is allowed to navigate on a road-surface where the friction
µ varies between 0.4 to 0.85. In the second case, the vehicle is made to move on a road-
surface where the road friction µ = 1. In the third case, the performance of the vehicle
when the road friction µ varies between 0.4 to 0.85 is simulated using the in-built MPC
controller in CarSim. For all the cases, the vehicle moving at a high longitudinal speed
vx = 100 km/h is impacted with crosswinds as a disturbance between the longitudinal
distance of 100 to 250 m. The performance of the RBFNN-HOSM controller in terms of
lane-keeping and vehicle stability is examined under these adverse scenarios for the first
two cases and is then compared with the in-built MPC controller in CarSim. Figure 8a,b
shows the global reference path and the aerodynamics forces and the yaw-moment being
impacted on the vehicle on its course. The global reference path resembles that of a double
lane change trajectory. From Figure 8c,d, it is observed that the lateral offset and the
heading error gets distorted when the vehicle is impacted with crosswinds at a longitudinal
distance between 100 to 200 m when µ ∈ [0.4–0.85] for our proposed RBFNN-HOSM
controller. However, after a distance of 200m, the effect of disturbances is compensated
by the proposed RBFNN-HOSM controller. On the contrary, when µ = 1 there is a slight
deviation in the lateral offset and heading error at a longitudinal distance of 150 m but after
the compensation provided by the proposed controller, the performance improves. The
peak value of the lateral offset and the heading error is 0.1 m and 2 degrees, respectively,
clearly signifying that the vehicle does not get deviated much even during the onset of
adverse conditions. At a longitudinal distance of 250 m when there is a lane change in the
global reference path, there is a little shift in the lateral offset and the heading error, which
is again compensated thereafter. It is observed that the lateral offset and heading error in
the case of the proposed RBFNN-HOSM controller is less than the in-built MPC controller
in Carsim. The lateral acceleration and yaw-rate are more in the case of the in-built MPC
controller in Carsim than compared to the proposed RBFNN-HOSM controller. Thus, from
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Figure 8, it is observed that the performance of the proposed controller is better than the
in-built MPC controller in Carsim.

μ = [0.4  0.85] = [0.4  0.85]μ

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 8. Lane keeping and vehicle stability performance of the proposed RBFNN-HOSM controller
for vx = 100 km/h in the presence of disturbances and a variety of road conditions and comparison
with the in-built Carsim vehicle simulator, µ ∈ [0.4–0.85] and µ = 1. (a) Global Reference Path, (b)
Aero forces, (c) Lateral Offset, (d) Heading Error, (e) Lateral Acceleration, (f) Yaw Rate, (g) Road Steer
Angle for various road conditions.

The peak value of the Lateral acceleration, as shown in Figure 8e, is 3.58 m/s2, which
states the fact that the vehicle operates in the region of the tire-road saturation limit. The
deterioration in the lateral acceleration, during the case when µ ∈ [0.4–0.85], occurs due to
the impact on the lateral force component at low friction conditions, as shown in Figure 9.
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Figure 9. The behavior of lateral force for vx = 100 km/h for a variety of road conditions,
µ ∈ [0.4–0.85] and µ = 1.

When µ ∈ [0.4–0.85], the yaw-rate shown in Figure 8f shows the sign of distortion
during the time when the disturbance begins and reaches a peak value of 10 degrees/s in
the case of our proposed RBFNN-HOSM controller. However, due to the compensation
provided by the proposed controller, the distortion in the yaw-rate gets stabilized at a
longitudinal distance of 200 m signifying the regaining of vehicle stability. The effect
of disturbances and the road-surface friction is witnessed in the road steer angle when
µ ∈ [0.4–0.85], as shown in Figure 8g, where there is a sharp increase in the steer angle
during the time when the disturbance begins. On the contrary, when µ = 1, there is a
slight dip in the steering angle at the longitudinal distance of 150 m during the onset of
crosswinds. However, the deviation in the steering angle when µ = 1 gets compensated
due to the control action provided by the proposed controller. The peak value of the steer
angle rises to -6 degrees, but after the compensation provided by the proposed controller,
the road steer angle exhibits smoothness and uniformity afterward. The effect on sliding
surface due to the crosswinds and the different road conditions is shown in Figure 10. The
effect of low-friction is clearly evident on the sliding surface characteristics with a sharp
spike at a longitudinal distance of 150 m when µ ∈ [0.4–0.85].
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μ = [0.4 0.85]

Figure 10. The effect on sliding surface for vx = 100 km/h for a variety of road conditions,
µ ∈ [0.4–0.85] and µ = 1.

To further validate that the road-tire characteristics of the vehicle operate close to
the region of saturation, the performance of lateral force on the vehicle is examined with
respect to the tire-slip angle. In this study, the behavior of lateral force on the left front
tire is examined with respect to the tire-slip angle. From Figure 11, it is observed that the
road-tire characteristics exhibit the nonlinear behavior when the vehicle longitudinal speed
is 100 km/h. In this case, the lateral force is saturated with the increase in the slip angle.
However, at a lower longitudinal speed of 60 km/h, the tire road characteristics exhibit
linear behavior, as shown in Figure 12.
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Figure 11. The behavior of lateral force with respect to the tire slip angle for vx = 100 km/h in the
presence of disturbance and a variety of road conditions, µ ∈ [0.4–0.85].
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Figure 12. The behavior of lateral force with respect to the tire slip angle for vx = 60 km/h in the
presence of disturbance and a variety of road conditions, µ ∈ [0.2–0.85].

6. Discussion

The performance of the proposed controller is evaluated on the basis of the following categories

• Lane keeping performance and lateral stability: The ability of the proposed RBFNN-
HOSM controller to ensure the lane-keeping performance and the stability under
nominal conditions is shown in Figures 4–7. It is observed that the lateral offset and
the heading error generated by the proposed controller are comparatively less than
the inbuilt Carsim MPC pure-pursuit controller. The peak value of lateral acceleration
for vx = 60 km/h and vx = 100 km/h for the proposed scheme is 7.15% and 30.87%
less than the Carsim MPC pure-pursuit controller. However, one of the key compo-
nents in the proposed controller performance is attributed to the judicious selection of
cluster center and bias of the radial basis functions. It needs to be emphasized that
an improper selection of cluster centers and bias will generate sub-optimal controller
performance thereby degrading the lane-keeping performance.

• Disturbance Rejection: The ability of the proposed controller to compensate for the
uncertainties and disturbances due to the effect of crosswinds is shown in Figure 8.
The lane performance and the stability of the vehicle are affected in the presence of
disturbances where the road friction coefficient µ varies between 0.4 and 1. However,
due to the effect of the proposed RBFNN-HOSM controller the lane-keeping and the
stability of the vehicle is again restored.

– From Figure 12 in the presence of disturbances, it is observed that the vehicle mov-
ing at a lower longitudinal velocity vx = 60 km/h exhibits linear tire-road charac-
teristics. However, when the longitudinal velocity vx = 100 km/h is increased, as
shown in Figure 11, the tire-road characteristics approach the nonlinear region
where the lateral force is saturated.

– With the inclusion of the proposed controller, the disturbance rejection ability is
achieved, as shown in Figures 8 and 13 at a longitudinal distance of 100–250 m.

– Figures 8 and 13 show the performance of the vehicle in terms of lane-keeping
and lateral stability for the longitudinal speed vx = 100 km/h and vx = 60 km/h
in the presence of disturbances under a variety of road conditions. It is observed
that for the vehicle moving at vx = 100 km/h, the deviation in the lateral offset and
heading error when µ = 1 is comparatively much less than when µ ∈ [0.4–0.85].
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– However, if we compare the performance of the lateral offset and the heading
error for the above two longitudinal velocities, it is clearly evident that the
vehicle moving at vx = 60 km/h renders better lane-keeping control by generating
comparatively less lateral offset and heading error as compared to vx = 100 km/h.

– As far as lateral stability is concerned, the vehicle moving at vx = 60 km/h renders
more stability as the yaw-rate and the lateral acceleration has a smoother response
with a very minimum deviation in the case of µ ∈ [0.2–0.85] compared to when
µ = 1. However, for the vehicle moving at vx = 100 km/h the yaw-rate and
the lateral acceleration shows signs of degradation in the case of low-friction
µ ∈ [0.4–0.85] compared to when µ = 1.

μ = [0.2 0.85]

Figure 13. Lane keeping and vehicle stability performance of the proposed RBFNN-HOSM controller
for vx = 60 km/h in the presence of disturbances and a variety of road conditions, µ ∈ [0.2–0.85] and
µ = 1. (a) Global Reference Path, (b) Aero forces, (c) Lateral Offset, (d) Heading Error, (e) Lateral
Acceleration, (f) Yaw Rate, (g) Road Steer Angle for various road conditions.

7. Conclusions

The present study is based on the estimation of the equivalent control by the proposed
RBFNN on the account of unmeasured uncertainties and crosswinds as disturbances. The
switching control or the discontinuous control is designed by the HOSM control. The
combined effect of the equivalent and the switching control resulted in compensating
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the effect of uncertainties and the disturbances on the lateral control and the stability of
the vehicle. The increase in the longitudinal velocity of the vehicle in the presence of
disturbances resulted in making the tire-road characteristics approach the nonlinear region.
In the nominal scenario, it is observed that the lane-keeping performance and the lateral
stability of the vehicle is enhanced by the use of the proposed controller compared to the
inbuilt MPC based pure-pursuit controller in CarSim. During low-friction conditions in
the presence of disturbances, the lateral stability and the lane offset errors were affected.
However, the control action exhibited by the proposed controller ensured that the lane-
keeping performance and the lateral stability of the vehicle is restored. In the future
versions of the research work, the effect of longitudinal vehicle dynamics with other
unmeasured suspension non-linearities will be integrated with the lateral dynamics to
study the performance of the proposed RBFNN based HOSM controller on the overall
lane-keeping and the lateral stability of the vehicle.

Author Contributions: The contributions made by the authors are as follows: S.K.S.; Overall Design
Framework and methodology: S.K.S.; Simulation: S.K.S., J.J.R.; Result analysis and interpretation:
S.K.S., J.J.R. and K.C.V.; Draft and Manuscript Preparation: K.C.V.; Overall supervision. All authors
have read and agreed to the published version of the manuscript.

Funding: The research is supported by the National Research Foundation (NRF) of Korea through
the Ministry of Education, Science and Technology under Grants NRF-2018R1A6A1A03025109.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Noy, I.Y.; Shinar, D.; Horrey, W.J. Automated driving: Safety blind spots. Saf. Sci. 2018, 102, 68–78. [CrossRef]
2. Brown, M.; Funke, J.; Erlien, S.; Gerdes, J.C. Safe driving envelopes for path tracking in autonomous vehicles. Control Eng. Pract.

2017, 61, 307–316. [CrossRef]
3. Lam, A.Y.S.; Leung, Y.; Chu, X. Autonomous-Vehicle Public Transportation System: Scheduling and Admission Control. IEEE

Trans. Intell. Transp. Syst. 2016, 17, 1210–1226. [CrossRef]
4. Petrov, P.; Nashashibi, F. Modeling and Nonlinear Adaptive Control for Autonomous Vehicle Overtaking. IEEE Trans. Intell.

Transp. Syst. 2014, 15, 1643–1656. [CrossRef]
5. Claussmann, L.; Revilloud, M.; Gruyer, D.; Glaser, S. A Review of Motion Planning for Highway Autonomous Driving. IEEE

Trans. Intell. Transp. Syst. 2020, 21, 1826–1848. [CrossRef]
6. Guo, J.; Hu, P.; Li, L.; Wang, R. Design of Automatic Steering Controller for Trajectory Tracking of Unmanned Vehicles Using

Genetic Algorithms. IEEE Trans. Veh. Technol. 2012, 61, 2913–2924. [CrossRef]
7. Liang, Y.; Li, Y.; Khajepour, A.; Ni, J.; Zheng, L. Holistic Adaptive Multi-Model Predictive Control for the path following of 4WID

autonomous vehicles. IEEE Trans. Veh. Technol. 2020, 70, 69–81. [CrossRef]
8. Liang, Z.; Zhao, J.; Liu, B.; Wang, Y.; Ding, Z. Velocity-Based Path Following Control for Autonomous Vehicles to Avoid Exceeding

Road Friction Limits Using Sliding Mode Method. IEEE Trans. Intell. Transp. Syst. 2020, 1–12. [CrossRef]
9. Noh, S. Decision-Making Framework for Autonomous Driving at Road Intersections: Safeguarding Against Collision, Overly

Conservative Behavior, and Violation Vehicles. IEEE Trans. Ind. Electron. 2019, 66, 3275–3286. [CrossRef]
10. Marino, R.; Scalzi, S.; Netto, M. Nested PID steering control for lane keeping in autonomous vehicles. Control Eng. Pract. 2011,

19, 1459–1467. [CrossRef]
11. Akermi, K.; Chouraqui, S.; Boudaa, B. Novel SMC control design for path following of autonomous vehicles with uncertainties

and mismatched disturbances. Int. J. Dyn. Control 2020, 8, 254–268. [CrossRef]
12. Yuan, X.; Huang, G.; Shi, K. Improved Adaptive Path Following Control System for Autonomous Vehicle in Different Velocities.

IEEE Trans. Intell. Transp. Syst. 2020, 21, 3247–3256. [CrossRef]
13. Matute-Peaspan, J.A.; Marcano, M.; Diaz, S.; Zubizarreta, A.; Perez, J. Lateral-Acceleration-Based Vehicle-Models-Blending for

Automated Driving Controllers. Electronics 2020, 9, 1674. [CrossRef]
14. Farag, W. Complex Trajectory Tracking Using PID Control for Autonomous Driving. Int. J. Intell. Transp. Syst. Res. 2020,

18, 356–366. [CrossRef]
15. Guo, N.; Lenzo, B.; Zhang, X.; Zou, Y.; Zhai, R.; Zhang, T. A Real-Time Nonlinear Model Predictive Controller for Yaw Motion

Optimization of Distributed Drive Electric Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 4935–4946. [CrossRef]
16. Guo, N.; Zhang, X.; Zou, Y.; Lenzo, B.; Zhang, T. A Computationally Efficient Path-Following Control Strategy of Autonomous

Electric Vehicles With Yaw Motion Stabilization. IEEE Trans. Transp. Electrif. 2020, 6, 728–739. [CrossRef]
17. Tork, N.; Amirkhani, A.; Shokouhi, S.B. An adaptive modified neural lateral-longitudinal control system for path following of

autonomous vehicles. Eng. Sci. Technol. Int. J. 2021, 24, 126–137.

http://doi.org/10.1016/j.ssci.2017.07.018
http://dx.doi.org/10.1016/j.conengprac.2016.04.013
http://dx.doi.org/10.1109/TITS.2015.2513071
http://dx.doi.org/10.1109/TITS.2014.2303995
http://dx.doi.org/10.1109/TITS.2019.2913998
http://dx.doi.org/10.1109/TVT.2012.2201513
http://dx.doi.org/10.1109/TVT.2020.3046052
http://dx.doi.org/10.1109/TITS.2020.3030087
http://dx.doi.org/10.1109/TIE.2018.2840530
http://dx.doi.org/10.1016/j.conengprac.2011.08.005
http://dx.doi.org/10.1007/s40435-018-0478-z
http://dx.doi.org/10.1109/TITS.2019.2925026
http://dx.doi.org/10.3390/electronics9101674
http://dx.doi.org/10.1007/s13177-019-00204-2
http://dx.doi.org/10.1109/TVT.2020.2980169
http://dx.doi.org/10.1109/TTE.2020.2993862


Electronics 2021, 10, 510 18 of 18

18. Nguyen, A.; Sentouh, C.; Zhang, H.; Popieul, J. Fuzzy Static Output Feedback Control for Path Following of Autonomous
Vehicles With Transient Performance Improvements. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3069–3079. [CrossRef]

19. Sarda, E.I.; Qu, H.; Bertaska, I.R.; von Ellenrieder, K.D. Station-keeping control of an unmanned surface vehicle exposed to
current and wind disturbances. Ocean Eng. 2016, 127, 305–324. [CrossRef]

20. Wu, Y.; Wang, L.; Zhang, J.; Li, F. Path Following Control of Autonomous Ground Vehicle Based on Nonsingular Terminal Sliding
Mode and Active Disturbance Rejection Control. IEEE Trans. Veh. Technol. 2019, 68, 6379–6390. [CrossRef]

21. Liu, J.; Gao, L.; Zhang, J.; Yan, F. Super-twisting algorithm second-order sliding mode control for collision avoidance system
based on active front steering and direct yaw moment control. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 43–54.
[CrossRef]

22. Ji, X.; He, X.; Lv, C.; Liu, Y.; Wu, J. Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at
driving limits. Control Eng. Pract. 2018, 76, 41–53. [CrossRef]

23. Li, L.; Wang, H.; Lian, J.; Ding, X.; Cao, W. A Lateral Control Method of Intelligent Vehicle Based on Fuzzy Neural Network. Adv.
Mech. Eng. 2015. [CrossRef] [PubMed]

24. Hongbo, W.; Li, C.; Weihua, Z. Lane Keeping control based on an improved artificial potential method and coordination of
steering/braking systems. IET Intell. Transp. Syst. 2019, 13, 1832–1842. [CrossRef]

25. Rath, J.J.; Senouth, C.; Popieul, J.C. Personalised lane keeping assist strategy: Adaptation to driving style. IET Control Theory
Appl. 2019, 13, 106–115. [CrossRef]

26. Borroni, F.; Tanelli, M. A weighting approach to the shared-control of lateral vehicle dynamics. IFAC-PapersOnLine 2018,
51, 305–310. [CrossRef]

27. Rath, J.J.; Veluvolu, K.C.; Defoort, M.; Soh, Y.C. Higher-order sliding mode observer for estimation of tyre friction in ground
vehicles. IET Control Theory Appl. 2014, 8, 399–408. [CrossRef]

http://dx.doi.org/10.1109/TITS.2019.2924705
http://dx.doi.org/10.1016/j.oceaneng.2016.09.037
http://dx.doi.org/10.1109/TVT.2019.2916982
http://dx.doi.org/10.1177/0954407020948298
http://dx.doi.org/10.1016/j.conengprac.2018.04.007
http://dx.doi.org/10.1155/2014/296209
http://www.ncbi.nlm.nih.gov/pubmed/25322119
http://dx.doi.org/10.1049/iet-its.2019.0045
http://dx.doi.org/10.1049/iet-cta.2018.5941
http://dx.doi.org/10.1016/j.ifacol.2018.07.050
http://dx.doi.org/10.1049/iet-cta.2013.0593

	Introduction
	Vehicle Dynamic Model
	Robust HOSMC Design
	RBFNN Based HOSMC Design
	Simulation Results
	Nominal Case: Vehicle Performance without the Impact of Disturbances
	Robustness to External Disturbances and a Variety of Road Conditions: [0.4–0.85] and =1, vx=100 km/h

	Discussion
	Conclusions
	References

