
electronics

Article

Deep Learning-Based Content Caching in the Fog Access Points

Sovit Bhandari 1 , Navin Ranjan 1 , Pervez Khan 1, Hoon Kim 1,* and Youn-Sik Hong 2

����������
�������

Citation: Bhandari, S.; Ranjan, N.;

Khan, P.; Kim, H.; Hong, Y.-S. Deep

Learning-Based Content Caching in

the Fog Access Points. Electronics

2021, 10, 512. https://doi.org/

10.3390/electronics10040512

Academic Editor: Kevin Lee

Received: 29 January 2021

Accepted: 18 February 2021

Published: 22 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 IoT and Big-Data Research Center, Department of Electronics Engineering, Incheon National University,
Yeonsu-gu, Incheon 22012, Korea; sovit198@gmail.com (S.B.); ranjannavin07@gmail.com (N.R.);
pervaizkanju@hotmail.com (P.K.)

2 Department of Computer Science and Engineering, Incheon National University, Yeonsu-gu, Incheon 22012,
Korea; yshong@inu.ac.kr

* Correspondence: hoon@inu.ac.kr

Abstract: Proactive caching of the most popular contents in the cache memory of fog-access points
(F-APs) is regarded as a promising solution for the 5G and beyond cellular communication to address
latency-related issues caused by the unprecedented demand of multimedia data traffic. However,
it is still challenging to correctly predict the user’s content and store it in the cache memory of the
F-APs efficiently as the user preference is dynamic. In this article, to solve this issue to some extent,
the deep learning-based content caching (DLCC) method is proposed due to recent advances in
deep learning. In DLCC, a 2D CNN-based method is exploited to formulate the caching model. The
simulation results in terms of deep learning (DL) accuracy, mean square error (MSE), the cache hit
ratio, and the overall system delay is displayed to show that the proposed method outperforms the
performance of known DL-based caching strategies, as well as transfer learning-based cooperative
caching (LECC) strategy, randomized replacement (RR), and the Zipf’s probability distribution.

Keywords: fog access points; cache memory; convolutional neural network; proactive caching

1. Introduction

With the blooming of IoT devices, it is expected that the demand for mobile data
traffic will grow at an unprecedented rate. To solve this issue to some extent, cisco coined
fog computing-based network architecture to address latency-related problems [1]. Fog
computing is a decentralized version of cloud computing with limited computational and
signal processing capability, which brings the benefit of cloud computing nearer to the user
side [2]. The remote radio heads with caching and signal processing capabilities in the
fog computing architecture are referred to as fog access points (F-APs) [3,4]. F-APs have
limited computational capability as compared to the cloud. So, F-APs should store popular
cache contents proactively to maintain desirable fronthaul load to provide a better quality
of service [5–7].

There has been extensive research related to caching in F-APs. Some of the related
works are worth mentioning. In [8], the learning-based optimal solution is provided to
place a cache memory content in a small cell base station based on the historical data. In [9],
based on the user’s mobility, a device-to-device optimal contents placement strategy is
introduced. Likewise, in [10], the caching problem in multiple fog-nodes is studied to
optimize delay in the large-scale cellular network. Similarly, in [11], the authors formulated;
delay minimization and content placement-based joint optimization problems.

In the aforementioned literature [8–11], the research predicted the popularity of the
contents based on Zipf’s probability distribution method. However, this method cannot
accurately predict the user content as user behavior is dynamic.

AI is likely to bring the fourth industrial revolution due to recent advances in its
field [12]. There has been increased interest in deep learning (DL) models due to their
remarkable impact in a wide variety of fields such as natural language processing, computer
vision, and so on [13,14].

Electronics 2021, 10, 512. https://doi.org/10.3390/electronics10040512 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0150-0480
https://orcid.org/0000-0002-4608-0304
https://doi.org/10.3390/electronics10040512
https://doi.org/10.3390/electronics10040512
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10040512
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/4/512?type=check_update&version=2

Electronics 2021, 10, 512 2 of 20

Recently, there has been more focused research on the DL-based approach to predict
the future popular contents to solve the prevalent cache content placement issue [15]. In
this paper, motivated by the DL-based approach, we propose a DL-based content caching
(DLCC) to proactively store cache contents in the fog computing environment.

1.1. Related Works

The concept of fog radio access network (F-RAN) architecture had been introduced to
bring cloud contents nearer to the end-users side, such that the fronthaul burden prevalent
in the cloud radio access networks can be lessened. The cloud contents can be offloaded
nearer to the end-user side by deploying the proper content caching technique in the F-APs.

In recent years, there has been enormous investigation to address content caching
problems for wireless networks. The work of [16] discussed a joint routing and caching
problem to maximize the portion of contents served locally by the small base stations in
the cellular networks. In [17], femtocell caching followed by D2D-based content sharing
idea is put forward to improve cellular throughput. The work of [18] focused on the
latency-centric analysis of the degree of freedom of an F-RAN system for optimal caching
and edge transmission policies. The works in [16–18] did not consider taking popular
contents into account to address caching problem.

Since the F-APs have limited storage as well as signal processing capabilities, the
highly preferred user contents should be placed in the cache memory of the fog nodes.
The traditional approach of allocating cache contents in the wireless networks includes;
least recently used, least frequently used, first-in-first-out, random replacement (RR), and
time-to-live [19]. These methods have become impractical to use in the live network
as user requirement changes over time. To mitigate the traditional approach of solving
caching problems, some authors recommended placing the cache contents by analyzing the
user’s social information. In [20], social-aware edge caching techniques have been studied
to minimize bandwidth consumption. In [21], social information and edge computing
environment have been fully exploited to alleviate the end-to-end latency. However,
social ties alone cannot be a sole deterministic factor to determine the dynamic nature of
user preference.

Lately, there has been a marked increment in the utilization of big-data analytics,
ML, and deep learning (DL) in academia, as well as in industry. They have been used to
solve problems related to diverse domains such as autonomous driving, medical diagnosis,
road traffic prediction, radio-resource management, caching, and so on, due to their
high prediction accuracy [22–24]. Due to promising solutions provided by the artificial
intelligence (AI) technology in various domains, a trend to exploit ML-based and DL-based
models to the pre-determined future requirement of the user content has been set-up.

For instance, the works which have used an ML-based approach to determine the
cache contents proactively are listed in [25,26]. In [25], a collaborative filtering (CF)-based
technique is introduced to estimate the file popularity matrix in a small cellular network.
However, the CF algorithm provides the sub-optimal solution when the training data are
sparse. To solve the caching problem without undergoing any data sparseness problem,
the authors in [26] proposed a transfer learning (TL)-based approach. However, in this
approach, if similar content is migrated improperly, the prediction accuracy becomes worse.

Likewise, some of the papers, which have used DL-based models to forecast popular
contents for caching are listed in [15,27–29]. In [15], an auto-encoder-based model is used
to forecast the popularity of the contents. Likewise, in [27], a bidirectional recurrent neural
network is used to determine content request distribution. In [28], a convolutional neural
network-based caching strategy is presented. Moreover, in [29], the authors used different
DL-based models such as a recurrent neural network, convolutional neural network (CNN),
and convolutional recurrent neural network (CRNN) to determine the best cache contents
and increase the cache hit ratio. However, in the above works, the DL-based model could
not achieve validation accuracy greater than 77%. Therefore, accurately predicting F-APs
cache contents with DL-models has become a challenging task.

Electronics 2021, 10, 512 3 of 20

1.2. Contribution and Organization

In this paper, to minimize the delay while accessing users’ content, a DLCC strategy
is introduced to store the most popular users’ contents in the F-APs. In DLCC policy,
we introduced a supervised learning-based 2D CNN model to train using 1D real-world
datasets. We identified key features and key labels of the datasets by different data pre-
processing techniques such as data cleaning, one-hot encoding, principal component
analysis (PCA), k-means clustering, correlation analysis, and so on. The goal of our DLCC
algorithm is to predict the popularity of contents in terms of different categorical classes.
Then, based on the prediction result, the data of the most popular class will be stored in
the cache memory of the nearby F-APs. We quantified the performance of the proposed
caching policy on F-APs by showing DL accuracy, cache-hit ratio, and overall system delay.

The methodology of this article is shown in Figure 1 and summarized as follows:

1. An optimization problem to minimize content access delay in the future time is
introduced.

2. DLCC strategy is proposed.
3. Open access real-life large dataset, such as MovieLens dataset [30] is analyzed and

formatted using different data pre-processing techniques for the proper use for super-
vised DL-based approach.

4. 2D CNN model is trained using 1D dataset to obtain the most popular future data.
5. The most popular data are then stored in the cache memory of the F-APs.
6. The performance is shown in terms of mean square error (MSE), DL-accuracy, cache

hit ratio, and overall system delay.

Electronics 2020, 9, x FOR PEER REVIEW 3 of 20

model could not achieve validation accuracy greater than 77%. Therefore, accurately pre-
dicting F-APs cache contents with DL-models has become a challenging task.

1.2. Contribution and Organization
In this paper, to minimize the delay while accessing users’ content, a DLCC strategy

is introduced to store the most popular users’ contents in the F-APs. In DLCC policy, we
introduced a supervised learning-based 2D CNN model to train using 1D real-world da-
tasets. We identified key features and key labels of the datasets by different data pre-pro-
cessing techniques such as data cleaning, one-hot encoding, principal component analysis
(PCA), k-means clustering, correlation analysis, and so on. The goal of our DLCC algo-
rithm is to predict the popularity of contents in terms of different categorical classes. Then,
based on the prediction result, the data of the most popular class will be stored in the
cache memory of the nearby F-APs. We quantified the performance of the proposed cach-
ing policy on F-APs by showing DL accuracy, cache-hit ratio, and overall system delay.

The methodology of this article is shown in Figure 1 and summarized as follows:
1. An optimization problem to minimize content access delay in the future time is in-

troduced.
2. DLCC strategy is proposed.
3. Open access real-life large dataset, such as MovieLens dataset [30] is analyzed and

formatted using different data pre-processing techniques for the proper use for su-
pervised DL-based approach.

4. 2D CNN model is trained using 1D dataset to obtain the most popular future data.
5. The most popular data are then stored in the cache memory of the F-APs.
6. The performance is shown in terms of mean square error (MSE), DL-accuracy, cache

hit ratio, and overall system delay.

Figure 1. Methodology for deep learning-based content caching (DLCC).

The remainder of this paper is organized as follows; In Section 2, the system model
is described. In Section 3, the DLCC policy is presented. Then, in Section 4, the perfor-
mance of the proposed scheme is evaluated. Finally, in Section 5, conclusions are drawn.

2. System Model
In this section, a caching scenario for 𝑁 × 𝑀 fog radio access network (F-RAN) sys-

tem having 𝑁 user equipment (UEs), 𝑀 F-APs, and one centralized base-band unit
(BBU) cloud is modeled, as shown in Figure 2. In the system model diagram, we have 𝒰 = {1,2,3, … , 𝑁} as the set of 𝑁 users requesting data from ℱ = {1,2,3, … 𝑀} as the set
of 𝑀 F-APs. In the diagram, the solid line connecting the BBU cloud to the access points
represents the common public radio interface (CPRI) cable; whereas, the dashed-lines con-
necting the end-users to the access points denote the air-interface link.

Figure 1. Methodology for deep learning-based content caching (DLCC).

The remainder of this paper is organized as follows; In Section 2, the system model is
described. In Section 3, the DLCC policy is presented. Then, in Section 4, the performance
of the proposed scheme is evaluated. Finally, in Section 5, conclusions are drawn.

2. System Model

In this section, a caching scenario for N × M fog radio access network (F-RAN)
system having N user equipment (UEs), M F-APs, and one centralized base-band unit
(BBU) cloud is modeled, as shown in Figure 2. In the system model diagram, we have
U = {1, 2, 3, . . . , N} as the set of N users requesting data from F = {1, 2, 3, . . . M} as the
set of M F-APs. In the diagram, the solid line connecting the BBU cloud to the access points
represents the common public radio interface (CPRI) cable; whereas, the dashed-lines
connecting the end-users to the access points denote the air-interface link.

Electronics 2021, 10, 512 4 of 20

Electronics 2020, 9, x FOR PEER REVIEW 4 of 20

Figure 2. DL-based content caching in the fog-access points (F-APs).

As per the system model diagram, the DL-based training is done on the centralized
cloud (CC) considering the proactive as well as the reactive caching case. The testing re-
sults provided by the DL-based model on the CC are used to send the most popular con-
tents to the F-APs. Since the computational capabilities of the F-APs are way lesser than
that of the cloud, only the top most popular contents are stored in it. The contents stored
in the F-APs are based on location-based user preference. Based on the proactive and re-
active caching scenario in an F-RAN system, the delay system is formulated and is shown
in part 2.1.

2.1. Delay Formulation
In this part, we are interested in formulating overall system delay for the 𝑁 × 𝑀 F-

RAN system, for some time instance 𝑡 + 1. We assumed that the air-interface link capacity
connecting the UE 𝑖 (𝑖 ∈ 𝒰) to F-AP 𝑗 (𝑗 ∈ ℱ) as 𝐶௜,௝஺௜ , and the fronthaul link capacity
connecting F-AP 𝑗 to the CC as 𝐶௝,ଵி௛ . For simplicity, we considered that the cache
memory of all the F-APs has the same capacity to store the files, i.e., ∅ (GB). We also
assumed that the size of each file 𝑝 cached at the fog nodes is the same. Let 𝑆௜,௝௧ାଵ denote
the file size requested by the UE 𝑖 with F-AP 𝑗, at any time instance 𝑡 + 1. In our prob-
lem formulation, for direct transmission, we considered only the delay for transferring the
data from the cloud to the F-APs. On the other hand, for cached transmission, the delay
for offloading the cached contents from the F-APs to the UEs is neglected. Considering
the above scenario, the overall delay for the 𝑁 × 𝑀 F-RAN system for any time instance 𝑡 + 1 can be devised as:

P(1) 𝛿௦௬௦௧ାଵ = min ൤∑ ∑ (1 − 𝑥௜,௝௧ାଵ)ெ௝ୀଵ ௌ೔,ೕ೟శభ஼ೕ,భಷ೓ே௜ୀଵ ൨ (1)

s.t. 𝑆௜,௝௧ାଵ𝑥௜,௝௧ାଵ ≤ ∅ ∀𝑖, 𝑗 (2)

where 𝛿௦௬௦௧ାଵ is the overall delay of the F-RAN system at time 𝑡 + 1, and 𝑥௜,௝௧ାଵ is the deci-
sion control variable to show whether the file requested by the UE 𝑖 with F-AP 𝑗 at any
time 𝑡 + 1 is available in the cache memory of the latched F-AP, or not. The value of 𝑥௜,௝௧ାଵ
can either be 1 or 0, not otherwise. This can be represented as: 𝑥௜,௝௧ାଵ = ൜1, 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑏𝑦 𝑈𝐸 𝑖 𝑖𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝐹 − 𝐴𝑃 𝑗 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3)

Figure 2. DL-based content caching in the fog-access points (F-APs).

As per the system model diagram, the DL-based training is done on the centralized
cloud (CC) considering the proactive as well as the reactive caching case. The testing results
provided by the DL-based model on the CC are used to send the most popular contents to
the F-APs. Since the computational capabilities of the F-APs are way lesser than that of the
cloud, only the top most popular contents are stored in it. The contents stored in the F-APs
are based on location-based user preference. Based on the proactive and reactive caching
scenario in an F-RAN system, the delay system is formulated and is shown in part 2.1.

2.1. Delay Formulation

In this part, we are interested in formulating overall system delay for the N × M
F-RAN system, for some time instance t+ 1. We assumed that the air-interface link capacity
connecting the UE i (i ∈ U) to F-AP j (j ∈ F) as CAi

i,j , and the fronthaul link capacity

connecting F-AP j to the CC as CFh
j,1 . For simplicity, we considered that the cache memory of

all the F-APs has the same capacity to store the files, i.e., ∅ (GB). We also assumed that the
size of each file p cached at the fog nodes is the same. Let St+1

i,j denote the file size requested
by the UE i with F-AP j, at any time instance t + 1. In our problem formulation, for direct
transmission, we considered only the delay for transferring the data from the cloud to the
F-APs. On the other hand, for cached transmission, the delay for offloading the cached
contents from the F-APs to the UEs is neglected. Considering the above scenario, the
overall delay for the N ×M F-RAN system for any time instance t + 1 can be devised as:

P(1) δt+1
sys = min

[
∑N

i=1 ∑M
j=1

(
1− xt+1

i,j

)St+1
i,j

CFh
j,1

]
(1)

s.t. St+1
i,j xt+1

i,j ≤ ∅ ∀i, j (2)

where δt+1
sys is the overall delay of the F-RAN system at time t + 1, and xt+1

i,j is the decision
control variable to show whether the file requested by the UE i with F-AP j at any time

Electronics 2021, 10, 512 5 of 20

t + 1 is available in the cache memory of the latched F-AP, or not. The value of xt+1
i,j can

either be 1 or 0, not otherwise. This can be represented as:

xt+1
i,j =

{
1, if the content requested by UE i is available in F−AP j
0, otherwise

(3)

The constraint in the problem statement (P1) indicates that the size of the file cached
in the cache memory of F-AP should be lesser than or equal to the overall memory size of
that particular F-AP.

3. DL-based Caching Policy

In this section, DLCC is presented, so that the overall delay of the F-RAN system
formulated in (P1) can be minimized in the best possible way. The general overview of the
proposed caching policy is shown in Figure 3.

Electronics 2020, 9, x FOR PEER REVIEW 5 of 20

The constraint in the problem statement (P1) indicates that the size of the file cached
in the cache memory of F-AP should be lesser than or equal to the overall memory size of
that particular F-AP.

3. DL-based Caching Policy
In this section, DLCC is presented, so that the overall delay of the F-RAN system

formulated in (P1) can be minimized in the best possible way. The general overview of
the proposed caching policy is shown in Figure 3.

Figure 3. The overview of the DLCC policy to get the popular content in terms of popular class.

Figure 3 contains a series of the task required for predicting the best cache contents
for the F-APs. The initial step includes the extraction of the most popular 1D real-life da-
tasets from the cloud. After the initial step, the downloaded data are pre-processed using
various techniques to make it a suitable 2D dataset for the preferred supervised DL-based
model. Then, the suitable 2D dataset is trained using the 2D CNN model. After that, the
trained model is used to predict the contents on the basis of different categorical classes
for time 𝑡 + 1. Due to the memory constraint of the F-APs, only the contents of the top-
most class are selected randomly to be stored in the F-APs for future user requirements.
The steps mentioned above are coherently described in the subsections given below.

3.1. Dataset
MovieLens dataset is used for training the DL-based model, as it is a large dataset

available in the open-source platform. Moreover, live streaming of the movies utilizes
most of the fronthaul capacity. So, to lessen fronthaul load to some extent, proactive stor-
ing of the most popular movies in the cache memory of the F-APs is considered the most
viable approach.

We downloaded the MovieLens dataset from [30]. It contains around 25 Million rat-
ings and around 1 Million tag applications for 62,423 movies. Moreover, the dataset con-
tains movies from 1 January 1995 to 21 November 2019, rated by 162,541 users. This da-
taset was generated on 21 November 2019. In this dataset, random users represented by a
unique id had rated at least 20 movies. The data contained in this dataset represent ge-
nome-scores.csv, genome-tags.csv, links.csv, ratings.csv, and tags.csv.

3.2. Data Pre-Processing
It requires a large computational effort and also not relevant to train the whole Mov-

ieLens dataset, so the portion of the dataset is only taken for training and validation pur-
poses. We used data from 1 January 2015 to 21 November 2019 from the dataset. The se-
lected portion of the dataset contains only around 7.5 million ratings for 58,133 movies.

Figure 3. The overview of the DLCC policy to get the popular content in terms of popular class.

Figure 3 contains a series of the task required for predicting the best cache contents for
the F-APs. The initial step includes the extraction of the most popular 1D real-life datasets
from the cloud. After the initial step, the downloaded data are pre-processed using various
techniques to make it a suitable 2D dataset for the preferred supervised DL-based model.
Then, the suitable 2D dataset is trained using the 2D CNN model. After that, the trained
model is used to predict the contents on the basis of different categorical classes for time
t + 1. Due to the memory constraint of the F-APs, only the contents of the top-most class
are selected randomly to be stored in the F-APs for future user requirements. The steps
mentioned above are coherently described in the subsections given below.

3.1. Dataset

MovieLens dataset is used for training the DL-based model, as it is a large dataset
available in the open-source platform. Moreover, live streaming of the movies utilizes most
of the fronthaul capacity. So, to lessen fronthaul load to some extent, proactive storing
of the most popular movies in the cache memory of the F-APs is considered the most
viable approach.

We downloaded the MovieLens dataset from [30]. It contains around 25 Million
ratings and around 1 Million tag applications for 62,423 movies. Moreover, the dataset
contains movies from 1 January 1995 to 21 November 2019, rated by 162,541 users. This
dataset was generated on 21 November 2019. In this dataset, random users represented
by a unique id had rated at least 20 movies. The data contained in this dataset represent
genome-scores.csv, genome-tags.csv, links.csv, ratings.csv, and tags.csv.

Electronics 2021, 10, 512 6 of 20

3.2. Data Pre-Processing

It requires a large computational effort and also not relevant to train the whole
MovieLens dataset, so the portion of the dataset is only taken for training and validation
purposes. We used data from 1 January 2015 to 21 November 2019 from the dataset. The
selected portion of the dataset contains only around 7.5 million ratings for 58,133 movies.

The initial dataset contains the categorical variable such as User-ID, Movie-ID, Rating,
Date, Year, Month, Day, and Genres. Based on the dataset key features such as Year,
Month, and Day, the daily requested movies are counted and are portrayed in the form of
a yearly-based box plot, as shown in Figure 4.

Electronics 2020, 9, x FOR PEER REVIEW 6 of 20

The initial dataset contains the categorical variable such as User-ID, Movie-ID, Rating,
Date, Year, Month, Day, and Genres. Based on the dataset key features such as Year,
Month, and Day, the daily requested movies are counted and are portrayed in the form of
a yearly-based box plot, as shown in Figure 4.

Figure 4. Daily request count of movies on the basis of Movie-ID for each year.

As per Figure 4, we can see that on average, around 800 movies are requested daily.
Likewise, the maximum movie request on a particular day is around 38,000, whereas the
minimum movie request is 1.

If we go with the average daily request for the movie, it is still beyond the computa-
tional capacity of the F-AP to store 800 movies in its cache memory. To solve this, the
dataset is further analyzed on the basis of the Movie-ID and daily movie request count,
and it is depicted in Figure 5.

Figure 5. Probability density function (PDF) of the Movie-ID on the basis of movie request.

Figure 5 shows the probability density function (PDF) of the Movie-ID based on the
movies requested. As per the figure, we can observe that the PDF is comparatively higher

Figure 4. Daily request count of movies on the basis of Movie-ID for each year.

As per Figure 4, we can see that on average, around 800 movies are requested daily.
Likewise, the maximum movie request on a particular day is around 38,000, whereas the
minimum movie request is 1.

If we go with the average daily request for the movie, it is still beyond the compu-
tational capacity of the F-AP to store 800 movies in its cache memory. To solve this, the
dataset is further analyzed on the basis of the Movie-ID and daily movie request count,
and it is depicted in Figure 5.

Electronics 2020, 9, x FOR PEER REVIEW 6 of 20

The initial dataset contains the categorical variable such as User-ID, Movie-ID, Rating,
Date, Year, Month, Day, and Genres. Based on the dataset key features such as Year,
Month, and Day, the daily requested movies are counted and are portrayed in the form of
a yearly-based box plot, as shown in Figure 4.

Figure 4. Daily request count of movies on the basis of Movie-ID for each year.

As per Figure 4, we can see that on average, around 800 movies are requested daily.
Likewise, the maximum movie request on a particular day is around 38,000, whereas the
minimum movie request is 1.

If we go with the average daily request for the movie, it is still beyond the computa-
tional capacity of the F-AP to store 800 movies in its cache memory. To solve this, the
dataset is further analyzed on the basis of the Movie-ID and daily movie request count,
and it is depicted in Figure 5.

Figure 5. Probability density function (PDF) of the Movie-ID on the basis of movie request.

Figure 5 shows the probability density function (PDF) of the Movie-ID based on the
movies requested. As per the figure, we can observe that the PDF is comparatively higher

Figure 5. Probability density function (PDF) of the Movie-ID on the basis of movie request.

Electronics 2021, 10, 512 7 of 20

Figure 5 shows the probability density function (PDF) of the Movie-ID based on the
movies requested. As per the figure, we can observe that the PDF is comparatively higher
for the movie id number within 0–12,000. The PDF is smaller for the movies having id
numbers greater than 12,000. Thus, for our analysis, movies with id numbers 0–12,000 are
taken into account. The PDF of the selected movies is shown in Figure 6.

Electronics 2020, 9, x FOR PEER REVIEW 7 of 20

for the movie id number within 0–12,000. The PDF is smaller for the movies having id
numbers greater than 12,000. Thus, for our analysis, movies with id numbers 0–12,000 are
taken into account. The PDF of the selected movies is shown in Figure 6.

Figure 6. PDF of the selected Movie-ID.

After selection of Movie-ID from 0–12,000, the number of rows in the dataset is re-
duced to around 3.5 Million from 7.5 Million. This selected portion of the dataset accounts
to be around 14% of the total dataset (25 Million). Then, the per-day count of the movie as
per the unique Movie-ID is calculated to further reduce the number of rows to around 1.6
Million. After that, the dataset is re-arranged as per Movie-ID with its corresponding at-
tributes such as year, month, day, genre, and movie counter.

In the dataset, the genre feature contains the string values. Since the genre feature in
the dataset contains the different categorical string values, it is further processed by the
One-Hot Encoding method to convert it into numerical form, as the DL-model employs
on the numerical data. One-Hot encoding is one of the natural language processing tech-
niques to convert categorical string variables into a numerical form such that machine
learning algorithms can perform better prediction [31].

When the One-Hot Encoding technique is applied to a genre column containing mul-
tiple categorical string variables, the single genre column is transformed into 19 columns,
as it contained 19 different categories. The increment in the column numbers adds up
computational complexity to train the model. Therefore, to reduce the computational
complexity, principal component analysis (PCA) of the categorical variable of the genre
data is performed. PCA is a robust approach for reducing the dimension of datasets; by
preserving most of the useful information. It does so by creating new uncorrelated varia-
bles that successively maximize variance [32].

The PCA analysis on 19 categorical columns is done to reduce 19 categorical columns
to 3 categorical columns. The newly formed categorical columns are named PCA-1, PCA-
2, and PCA-3, respectively. Figure 7 shows the individual and cumulative weightage of
variance provided by the formed three principal components. In the figure, the first, the
second, and the third principal components are indicated by the x-axis values 0, 1, and 2,
respectively. The three principal components contain the Eigen-values of the PCA-1, PCA-
2, and PCA-3, respectively. We reduced the 18-columned matrices to 3-columned matrices
because the cumulative sum of the variance of three principal components accounted for
45.70% of the total variance. As per the figure, the Eigen-values of PCA-1, PCA-2, and
PCA-3 contributed 19.66%, 15.59%, and 10.45% of the total variance, respectively. The por-

Figure 6. PDF of the selected Movie-ID.

After selection of Movie-ID from 0–12,000, the number of rows in the dataset is reduced
to around 3.5 Million from 7.5 Million. This selected portion of the dataset accounts to
be around 14% of the total dataset (25 Million). Then, the per-day count of the movie as
per the unique Movie-ID is calculated to further reduce the number of rows to around
1.6 Million. After that, the dataset is re-arranged as per Movie-ID with its corresponding
attributes such as year, month, day, genre, and movie counter.

In the dataset, the genre feature contains the string values. Since the genre feature in
the dataset contains the different categorical string values, it is further processed by the
One-Hot Encoding method to convert it into numerical form, as the DL-model employs on
the numerical data. One-Hot encoding is one of the natural language processing techniques
to convert categorical string variables into a numerical form such that machine learning
algorithms can perform better prediction [31].

When the One-Hot Encoding technique is applied to a genre column containing multi-
ple categorical string variables, the single genre column is transformed into 19 columns,
as it contained 19 different categories. The increment in the column numbers adds up
computational complexity to train the model. Therefore, to reduce the computational
complexity, principal component analysis (PCA) of the categorical variable of the genre
data is performed. PCA is a robust approach for reducing the dimension of datasets; by
preserving most of the useful information. It does so by creating new uncorrelated variables
that successively maximize variance [32].

The PCA analysis on 19 categorical columns is done to reduce 19 categorical columns
to 3 categorical columns. The newly formed categorical columns are named PCA-1, PCA-2,
and PCA-3, respectively. Figure 7 shows the individual and cumulative weightage of
variance provided by the formed three principal components. In the figure, the first, the
second, and the third principal components are indicated by the x-axis values 0, 1, and 2,
respectively. The three principal components contain the Eigen-values of the PCA-1, PCA-2,
and PCA-3, respectively. We reduced the 18-columned matrices to 3-columned matrices
because the cumulative sum of the variance of three principal components accounted for
45.70% of the total variance. As per the figure, the Eigen-values of PCA-1, PCA-2, and PCA-

Electronics 2021, 10, 512 8 of 20

3 contributed 19.66%, 15.59%, and 10.45% of the total variance, respectively. The portion of
the variance contributed by PCA-1 is greater, so it is referred to as principal component 1.
Since the portion of the variance contributed by the Eigen-values of succeeding columns
is lesser than the preceding, they are indicated as principal component 2 and principal
component 3, correspondingly.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 20

tion of the variance contributed by PCA-1 is greater, so it is referred to as principal com-
ponent 1. Since the portion of the variance contributed by the Eigen-values of succeeding
columns is lesser than the preceding, they are indicated as principal component 2 and
principal component 3, correspondingly.

Figure 7. Individual and cumulative variance of the principal components

After the column reduction technique is applied to the dataset, the 1D dataset is con-
verted to a 2D dataset for the selected 9019 Movie-ID’s. There are around 1787 days from
the starting of 2015 to 21 November 2019. When 9019 Movie-ID’s is multiplied to 1787, the
resulting 2D dataset will have 16,107,934 rows. This is a 1000% increment in the size of the
dataset from the reduced version of the 1D dataset.

The resulting 2D dataset is clustered based on per day’s movie request count to add
label to the dataset. The dataset is categorized into four categories, i.e., Class 0, Class 1,
Class 2, and Class 3, by using the k-means clustering technique, as shown in Figure 8.

Figure 8. Vertical clustering of the dataset on the basis of per-day count of the Movie-ID

Figure 7. Individual and cumulative variance of the principal components.

After the column reduction technique is applied to the dataset, the 1D dataset is
converted to a 2D dataset for the selected 9019 Movie-ID’s. There are around 1787 days
from the starting of 2015 to 21 November 2019. When 9019 Movie-ID’s is multiplied to
1787, the resulting 2D dataset will have 16,107,934 rows. This is a 1000% increment in the
size of the dataset from the reduced version of the 1D dataset.

The resulting 2D dataset is clustered based on per day’s movie request count to add
label to the dataset. The dataset is categorized into four categories, i.e., Class 0, Class 1,
Class 2, and Class 3, by using the k-means clustering technique, as shown in Figure 8.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 20

tion of the variance contributed by PCA-1 is greater, so it is referred to as principal com-
ponent 1. Since the portion of the variance contributed by the Eigen-values of succeeding
columns is lesser than the preceding, they are indicated as principal component 2 and
principal component 3, correspondingly.

Figure 7. Individual and cumulative variance of the principal components

After the column reduction technique is applied to the dataset, the 1D dataset is con-
verted to a 2D dataset for the selected 9019 Movie-ID’s. There are around 1787 days from
the starting of 2015 to 21 November 2019. When 9019 Movie-ID’s is multiplied to 1787, the
resulting 2D dataset will have 16,107,934 rows. This is a 1000% increment in the size of the
dataset from the reduced version of the 1D dataset.

The resulting 2D dataset is clustered based on per day’s movie request count to add
label to the dataset. The dataset is categorized into four categories, i.e., Class 0, Class 1,
Class 2, and Class 3, by using the k-means clustering technique, as shown in Figure 8.

Figure 8. Vertical clustering of the dataset on the basis of per-day count of the Movie-ID Figure 8. Vertical clustering of the dataset on the basis of per-day count of the Movie-ID.

Electronics 2021, 10, 512 9 of 20

In Figure 8, Class 0 is represented by the purple color. This class includes Movie-ID
having the almost higher count on a particular day. Likewise, Class 1, Class 2, and Class 3
are represented by the blue, green, and yellow colors, having a range of values such as
12–362, 4–11, and 1–3, respectively. In our 2D dataset, Class 0, Class 1, Class 2, and Class 3
contains 22,604, 212,759, 1,406,486, and 14,736,655 rows, respectively. The Class 0 movies
are referred to as highly preferred movies, whereas Class 3 movies are regarded as the least
requested ones. These categorized values are placed under the column name Class of the
dataset.

The resulting dataset contains Year, Month, Day, Movie-ID, PCA-1, PCA-2, and PCA-3
as the key features, and the Class as a key label. The correlation matrix in Figure 9 is shown
to depict the usefulness of our dataset for the 2D CNN model.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 20

In Figure 8, Class 0 is represented by the purple color. This class includes Movie-ID
having the almost higher count on a particular day. Likewise, Class 1, Class 2, and Class
3 are represented by the blue, green, and yellow colors, having a range of values such as
12–362, 4–11, and 1–3, respectively. In our 2D dataset, Class 0, Class 1, Class 2, and Class
3 contains 22,604, 212,759, 1,406,486, and 14,736,655 rows, respectively. The Class 0 movies
are referred to as highly preferred movies, whereas Class 3 movies are regarded as the
least requested ones. These categorized values are placed under the column name Class
of the dataset.

The resulting dataset contains Year, Month, Day, Movie-ID, PCA-1, PCA-2, and PCA-
3 as the key features, and the Class as a key label. The correlation matrix in Figure 9 is
shown to depict the usefulness of our dataset for the 2D CNN model.

Figure 9. Dataset correlation matrix

3.3. DLCC Model
In this section, at first, we explain the problem statement and then discuss the archi-

tecture for predicting the future popularity of movies listed in the MovieLens dataset by
using the time-series sequence of historical data.

3.3.1. Problem Statement
The main objective of the DLCC model is to realize the future likelihood of the data

contents being accessed by the connected UEs. In this study, the DLCC model is trained
based on the MovieLens dataset 𝑑 , containing movie lists up to time 𝑡 . Let Χ = {𝑋ଵ, 𝑋ଶ, 𝑋ଷ, … , 𝑋௧ } be the chronological order of time-variant historical movies list. Its cor-
responding output label, which is particularly the classification of movies list based on
popularity, can be represented as 𝑌 = {𝑌ଵ, 𝑌ଶ, 𝑌ଷ, … , 𝑌௧}. The 𝑖௧௛ time input of Χ can be de-
noted as:

𝑋௜ = ⎣⎢⎢⎢
⎡𝑥ଵଵ௜ 𝑥ଵଶ௜ ⋯ 𝑥ଵ௙௜𝑥ଶଵ௜ 𝑥ଶଶ௜ ⋯ 𝑥ଶ௙௜⋮𝑥௡ଵ௜ ⋮𝑥௡ଶ௜ ⋱ ⋮… 𝑥௡௙௜ ⎦⎥⎥⎥

⎤ ∈ ℝ௡ × ௙ (4)

where 𝑋௜ contains collection of 𝑛 movie samples, each having 𝑓 features. Similarly, its
corresponding 𝑖௧௛ time output label can be represented as:

Figure 9. Dataset correlation matrix.

3.3. DLCC Model

In this section, at first, we explain the problem statement and then discuss the archi-
tecture for predicting the future popularity of movies listed in the MovieLens dataset by
using the time-series sequence of historical data.

3.3.1. Problem Statement

The main objective of the DLCC model is to realize the future likelihood of the
data contents being accessed by the connected UEs. In this study, the DLCC model
is trained based on the MovieLens dataset d, containing movie lists up to time t. Let
X = {X1, X2, X3, . . . , Xt} be the chronological order of time-variant historical movies list.
Its corresponding output label, which is particularly the classification of movies list based
on popularity, can be represented as Y = {Y1, Y2, Y3, . . . , Yt}. The ith time input of X. can
be denoted as:

Xi =


xi

11 xi
12 · · · xi

1 f

xi
21 xi

22 · · · xi
2 f

...
xi

n1

...
xi

n2

. . .
...

. . . xi
n f

 ∈ Rn× f (4)

Electronics 2021, 10, 512 10 of 20

ere Xi contains collection of n movie samples, each having f features. Similarly, its corre-
sponding ith time output label can be represented as:

Yi =


yi

1
yi

2
...

yi
n

 ∈ Rn×1 (5)

where Yi contains the category of each movie sample based on popularity. The primary
objective of this study is to develop the prediction modelM, which uses input features Xi
to predict the popular class Yi, which can be defined as:

Yi =M(Xi, θ) (6)

where θ is the model parameter of DLCC model.

3.3.2. Model Implementation

In this part, we use 2D CNN for feature extraction from the input 2D MovieLens
dataset. Moreover, we use a regression-based approach to solve the classification problem.
The main goal of the DLCC model is to categorize MovieLens dataset on the basis of
popularity. The DLCC model used in this paper is shown in Figure 10.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 20

𝑌௜ = ⎣⎢⎢
⎡𝑦ଵ௜𝑦ଶ௜⋮𝑦௡௜ ⎦⎥⎥

⎤ ∈ ℝ௡ × ଵ (5)

where 𝑌௜ contains the category of each movie sample based on popularity. The pri-
mary objective of this study is to develop the prediction model ℳ, which uses input fea-
tures 𝑋௜ to predict the popular class 𝑌௜, which can be defined as: 𝑌௜ = ℳ(𝑋௜, 𝜃) (6)

where 𝜃 is the model parameter of DLCC model.
3.3.2. Model Implementation

In this part, we use 2D CNN for feature extraction from the input 2D MovieLens
dataset. Moreover, we use a regression-based approach to solve the classification problem.
The main goal of the DLCC model is to categorize MovieLens dataset on the basis of pop-
ularity. The DLCC model used in this paper is shown in Figure 10.

Figure 10. DLCC model to classify MovieLens dataset on the basis of popularity.

In Figure 10, the architecture of the DLCC model is formed by stacking three convo-
lutional layers, two max-poling layers, one flatten layer, and one dense layer. Mathemat-
ically, the 𝑓௧௛ feature map of 𝑙௧௛ convolutional layer 𝑦௙௟ can be obtained by first convolut-
ing 2D input or previous layer output with the convolutional filter and then applying bit-
wise non-linear activation, which is shown in Equation (7).

𝑦௙௟ = 𝜎 ቌ෍ 𝑦௞௟ିଵ⨁𝑊௞௙௟௙೗షభ
௞ୀଵ + 𝑏௙௟ ቍ , 𝑓 ∈ [1, 𝑓௟] (7)

where 𝑦௞௟ିଵ is the 𝑘௧௛ feature map of (𝑙 − 1)௧௛ layer, 𝑊௞௙௟ is the kernel weight at po-
sition 𝑘 connected to the 𝑓௧௛ feature map of 𝑙௧௛ layer, 𝑏௙௟ is the bias of 𝑓௧௛ filter of 𝑙௧௛
layer, 𝑓௟ is the number of the filter in 𝑙௧௛ layer and 𝜎(.) represent element-wise non-lin-
ear activation function. Equation (8) shows the output of 𝑙௧௛ convolutional layer and pool-
ing layer.

Figure 10. DLCC model to classify MovieLens dataset on the basis of popularity.

In Figure 10, the architecture of the DLCC model is formed by stacking three convolu-
tional layers, two max-poling layers, one flatten layer, and one dense layer. Mathematically,
the f th feature map of lth convolutional layer yl

f can be obtained by first convoluting 2D
input or previous layer output with the convolutional filter and then applying bit-wise
non-linear activation, which is shown in Equation (7).

yl
f = σ

(
fl−1

∑
k=1

yl−1
k

⊕
W l

k f + bl
f

)
, f ∈ [1, fl] (7)

where yl−1
k is the kth feature map of (l − 1)th layer, W l

k f is the kernel weight at position

k connected to the f th feature map of lth layer, bl
f is the bias of f th filter of lth layer, fl is

Electronics 2021, 10, 512 11 of 20

the number of the filter in lth layer and σ(.) represent element-wise non-linear activation
function. Equation (8) shows the output of lth convolutional layer and pooling layer.

yl
f = pool

(
σ

(
fl−1

∑
k=1

yl−1
k

⊕
W l

k f + bl
f

))
, f ∈ [1, fl] (8)

In the DLCC model, the feature learned from the 2D CNN model is concatenated into
a dense vector by flattening operation. The dense layer contains the high feature extraction
from the input. Let L be the previous layer before flattening layer, having fL number of
feature maps, then the output of L + 1 layer, yL+1 is given as:

yL+1 = oL
f latten = f latten

([
yL

1 , yL
2 , . . . , yL

fL

])
(9)

where yL
1 , yL

2 , . . . , yL
fL

are the feature maps of Lth layers, and oL
f latten is the flatten vector

of L layer. Finally, the flattened layers are transformed to model output through a fully
connected layer, having Wd and bd weight and bias of fully connected dense layer. The
model output can be written as:

ŷ = WdoL
f latten + bd= Wd

(
f latten

(
pool

(
σ

(
fl−1

∑
k=1

yl−1
k

⊕
W l

k f + bl
f

))))
+ bd (10)

In our model MSE loss function L(θ) is used to optimize the target. Minimizing MSE
is taken as the training goal of our model. Mathematically, MSE can be written as:

L(θ) = ‖yt − ŷt‖2
2 (11)

In Figure 10, at first 2D input of size 9019 × 7 (rows number × column numbers) is
employed to the first convolutional 2D layer of the portrayed DLCC model. In the first
convolutional layer, the input is scaled up by using 32 filters of size 2 × 2 with a stride
of 1 × 1. The convoluted output of the first layer is then fed to the downsampling layer.
In the downsampling layer, the max-pooling technique with a pool size of 2 × 2 is used
along with the batch normalization (BN) and dropout techniques. In our DLCC model,
BN is used to stabilize the learning process and reduce the number of epochs required to
train the neural networks [33], whereas dropout is used to prevent the trained model from
overfitting [34]. The convoluted downsampled data of size 4509 × 3 × 32 are employed
in the second convolutional layer to reduce the filter number from 32 to 16 by using the
same filter and stride size used in the first convolutional layer. After that, the convoluted
outputs of the second convolutional layer are again employed in the downsampling layer
to reduce the size of inputs to 2254 × 1 × 16. Again, the downsampled data of the second
downsampling layer are fed to the third convolutional layer to reduce the filter size from
16 to 8. Since the necessary features were extracted after the implementation of the third
convolutional layer, the features of size 2254 × 1 × 8 are flattened to employ it to the
fully-connected neural network (FCNN) for the regression process. In each convolutional
layer, a rectified linear unit (ReLU) activation function is used to increase the non-linearity
in our input data, as well as to solve a vanishing gradient problem. In the regression
process, the input of size 18,032 is fed to the FCNN layer to get the output of size 9019. The
detailed structure of our DLCC model is shown in Table 1.

Electronics 2021, 10, 512 12 of 20

Table 1. Detailed structure of DLCC with three convolutional layers.

Layer Name Input Size Output Size Filter Size

Conv2D_1 9019 × 7, 1 9019 × 7, 32 3 × 3, 32
Max_Pooling_1 9019 × 7, 32 4509 × 3, 32 ____________

Dropout_1 4509 × 3, 32 4509 × 3, 32 ____________

Batch_Normalization_1 4509 × 3, 32 4509 × 3, 32 ____________

Conv2D_2 4509 × 3, 32 4509 × 3, 16 3 × 3, 16
Max_Pooling_2 4509 × 3, 16 2254 × 1, 16 ____________

Dropout_2 2254 × 1, 16 2254 × 1, 16 ____________

Batch_Normalization_2 2254 × 1, 16 2254 × 1, 16 ____________

Conv2D_3 2254 × 1, 16 2254 × 1, 8 3 × 3, 8
Dropout_3 2254 × 1, 8 2254 × 1, 8 ____________

Flatten_1 2254 × 1, 8 18,032 ____________

Batch_Normalization_3 18,032 18,032 ____________

FCNN_1 18,032 9019 ____________

In the output of FCNN, the ReLU activation function is used to get output greater
than one. After the implementation of the ReLU activation function, the predicted outputs
are rounded-off to make hard-decision. The obtained hard-decision is the classification
of the MovieLens dataset based on popularity. We trained 1461 data of size 9019 × 7 to
predict output for time tn+1.

Algorithm 1: Training process for DLCC model.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 20

Table 1. Detailed structure of DLCC with three convolutional layers.

Layer Name Input Size Output Size Filter Size
Conv2D_1 9019× 7, 1 9019×7, 32 3×3, 32

Max_Pooling_1 9019× 7, 32 4509×3, 32 ____________

Dropout_1 4509×3, 32 4509×3, 32 ____________

Batch_Normalization_1 4509×3, 32 4509×3, 32 ____________

Conv2D_2 4509×3, 32 4509×3, 16 3×3, 16
Max_Pooling_2 4509×3, 16 2254×1, 16 ____________

Dropout_2 2254×1, 16 2254×1, 16 ____________

Batch_Normalization_2 2254×1, 16 2254×1, 16 ____________

Conv2D_3 2254×1, 16 2254×1, 8 3×3, 8
Dropout_3 2254×1, 8 2254×1, 8 ____________

Flatten_1 2254×1, 8 18032 ____________

Batch_Normalization_3 18032 18032 ____________

FCNN_1 18032 9019 ____________

In the output of FCNN, the ReLU activation function is used to get output greater
than one. After the implementation of the ReLU activation function, the predicted outputs
are rounded-off to make hard-decision. The obtained hard-decision is the classification of
the MovieLens dataset based on popularity. We trained 1461 data of size 9019× 7 to pre-
dict output for time 𝑡௡ାଵ.

Since our problem is a multi-variant regression problem, the mean square error
method is used in the training process [35]. Moreover, the Adam optimizer is used to up-
date the weight and learning rate values as it is straightforward to implement, computa-
tionally efficient, and has low memory requirements [36]. It is very difficult to tune the
hyper-parameters required to train the DL model. The detailed procedure to select hyper-
parameters such as batch size (b) and learning rate (𝛼) to train the proposed model (𝑚) is
shown in Algorithm 1.

In Algorithm 1, the CNN model 𝑚 is trained for the random values of batch size 𝑚௕
and learning rate 𝑚ఈ. For each value of 𝑚௕, 1000 random learning rates having a value in
between (0, 1) is realized to train on dataset 𝑑. The value of 𝑚௕ is selected by increasing
the power of base integer two from 0–9. Using every value of 𝑚௕ and 𝑚ఈ, the model is
trained on dataset 𝑑 to obtain training error (𝑚௧௘௥௥௢௥) and validation error (𝑚௩௘௥௥௢௥),
which is stored in the 𝑣𝑎𝑙 array. After the completion of the loop, the 𝑘௧௛ index on the 𝑣𝑎𝑙 array providing the minimum value of 𝑚௧௘௥௥௢௥ and 𝑚௩௘௥௥௢௥ is selected to extract the

Algorithm 1: Training process for DLCC model
Input: Training dataset 𝑑, model 𝑚
Ouput: Trained model 𝑚௞
Initialize: 𝑚௧௘௥௥௢௥, 𝑚௩௘௥௥௢௥, 𝑚ఈ, 𝑚௕ = 0
Find the best parameters: To train the model 𝑚
1. for 𝑖 in range(10) do

 2. 𝑚௕௜ ← 2 ∗∗ 𝑖
 3. for 𝑗 in range(1000) do
 4. 𝑚𝜶௜,௝ ← rand(0,1)
 5. Train the model 𝑚 with dataset 𝑑 minimizing ℒ(𝜃)

6. Store all of training information of model 𝑚 for each training loop 𝑖, 𝑗 in array 𝑣𝑎𝑙௠௜,௝ ← {𝑚: 𝑚௕௜ , 𝑚ఈ௜,௝, 𝑚௧௘௥௥௢௥௜,௝ , 𝑚௩௘௥௥௢௥௜,௝ }
 7. endfor

8. endfor
9. Choose the with best parameters of index 𝑘 = argmin(𝑚௧௘௥௥௢௥௜,௝ 𝑚௩௘௥௥௢௥௜,௝) to train the model 𝑚
Train: model 𝑚 with 𝑘 index parameters to produce trained model 𝑚௞

Since our problem is a multi-variant regression problem, the mean square error
method is used in the training process [35]. Moreover, the Adam optimizer is used to
update the weight and learning rate values as it is straightforward to implement, com-
putationally efficient, and has low memory requirements [36]. It is very difficult to tune
the hyper-parameters required to train the DL model. The detailed procedure to select
hyper-parameters such as batch size (b) and learning rate (α) to train the proposed model
(m) is shown in Algorithm 1.

In Algorithm 1, the CNN model m is trained for the random values of batch size mb
and learning rate mα. For each value of mb, 1000 random learning rates having a value in
between (0, 1) is realized to train on dataset d. The value of mb is selected by increasing the
power of base integer two from 0–9. Using every value of mb and mα, the model is trained
on dataset d to obtain training error (mterror) and validation error (mverror), which is stored
in the val array. After the completion of the loop, the kth index on the val array providing
the minimum value of mterror and mverror is selected to extract the hyper-parameters value

Electronics 2021, 10, 512 13 of 20

stored in that particular index. Finally, the obtained hyper-parameter values are selected to
train the model m to get trained model mk.

Choosing the depth of convolutional neural network plays a crucial role in determin-
ing the performance of the model as each addition of convolutional layer in the model
leads to the increment of the feature map, so the learning. However, beyond a certain limit,
each addition of a convolutional layer in the model tends to overfit the data. So, based
on DLCC model accuracy, we experimented using different depths of the model to find a
better one. Table 2 justifies why we only chose three convolutional layers in our model.

Table 2. Comparison of the different model depths of DLCC.

Model Description Filter
Configuration

Validation Loss
(MSE)

Computational
Time (min)

DLCC_1_1 1 2D-CNN and 1 FCNN 32 N/A N/A
DLCC_2_1 2 2D-CNN and 1 FCNN 32_16 0.2785 23.75
DLCC_3_1 3 2D-CNN and 1 FCNN 32_16_8 0.0452 13.35
DLCC_4_1 4 2D-CNN and 1 FCNN 32_16_8_4 0.0596 7.98

As per Table 2, we can see that the DLCC model having the single convolutional layer
could not provide any output because of the large number of trainable parameters, i.e.,
39B. The MSE is minimum for the DLCC model having three convolutional layers in its
architecture with a filter configuration of 64_32_8, while the computational time is lesser
for the DLCC model having four convolutional layers. Since we require to select the model
which provides minimum MSE in a reasonable time, we selected the DLCC_3_1 model to
solve the caching issue. The validation MSE provided by the DLCC_3_1 model at the cost
of 13.35 min is 0.0452. The number of the input parameters and hyper-parameters was the
same for generating results for all four configurations.

Furthermore, the number of filters in the convolution neural networks also plays an
important role in determining the performance of the model. So, to find out the best filter
configuration for our DLCC_3_1 model, we tried three different configurations, as shown
in Table 3.

Table 3. Comparison of the different filter configuration of DLCC.

Model Filter
Configuration

Validation Loss
(MSE)

Computational Time
(min)

DLCC_3_1 64_32_16 0.0729 26.3
DLCC_3_1 32_16_8 0.0452 13.35
DLCC_3_1 16_8_4 0.0741 7.28

Table 3 shows that the DLCC_3_1 model having filter configuration 32_16_8 provides
a better validation loss as compared to the other two different types of filter configuration.
So, we selected the filter configuration of 32_16_8 for our DLCC_3_1 model.

3.4. Cache Decision

In this part, caching decision process is described to allocate the best cache contents to
F-APs. The initial step includes the training of the DLCC model on the cloud, based on
Algorithm 1. Then the trained model is used to predict cache contents for time t + 1. After
that, the list of contents categorized based on popular classes is transferred to the F-APs for
the selection process. On the priority order, the contents of Class 0 is stored in the available
cache memory of the F-APs. If the is still some memory available, the contents of Class
1 followed by Class 2 are recommended to be stored in the available cache memory. The
contents of Class 3 are not stored even if there is any memory space available in the F-APs
as contents of Class 3 are the least preferred ones. The detailed procedure is summarized
in Algorithm 2.

Electronics 2021, 10, 512 14 of 20

Algorithm 2: Cache content decision process.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 20

available cache memory of the F-APs. If the is still some memory available, the contents
of Class 1 followed by Class 2 are recommended to be stored in the available cache
memory. The contents of Class 3 are not stored even if there is any memory space available
in the F-APs as contents of Class 3 are the least preferred ones. The detailed procedure is
summarized in Algorithm 2.

4. Performance Analysis
In this section, the performance of the proposed CNN-based model is shown in terms

of model key performance indicators (KPI): such as MSE and prediction accuracy. Like-
wise, the performance cache content decision is quantified in terms of cache hit ratio and
system delay.

To train the DLCC model, we used the Keras library on top of the TensorFlow frame-
work in Python 3.7 as a programming platform. The training process for our datasets is
performed by using a computation server (MiruWare, Seoul, Korea). The specification of
the computational server includes; one Intel Core i7 CPU, four Intel Xeon E7-1680 proces-
sors, and 128 GB random access memory. The results are obtained by using a computer
with 16 GB random access memory and an Intel Core i7-8700 processor.

4.1. Model KPI
In this part, the DLCC model KPI in terms of MSE (regression), and prediction accu-

racy (classification) is presented. The proposed 2D CNN-based model is trained on each
day data of the MovieLens dataset from January 2015–December 2018. Likewise, the val-
idation of the trained model is done on the data of January 2019–October 2019. Finally,
the trained model is tested on the data of November 2019. The simulation parameter used
while training the model is summarized in Table 4.

Algorithm 2: Cache content decision process
Input: Requested contents history
Output: Selected content list to be stored in the cache memory of F-APs
1. Training of the DLCC model in the Cloud based on Algorithm 1
2. Prediction of content list categorized on the basis of classes for time t+1
3. Send the predicted information to the F-APs
4. if the total size of contents of Class 0 ≤ 𝑀∅ then
5. Store all the contents of Class 0 in the cache memory of F-APs

 6. if the total size of Class 1 contents ≤ 𝑀∅—total size of Class 1 then
 7. Store all the contents of Class 1 in the remaining cache memory of F-APs
 8. else
 9. Store the contents of Class 1 randomly until the cache memory of F-APs is full
 10. if the total size of Class 2 contents ≤ 𝑀∅—total size of Class 1 and Class 2 then

11. Store all the contents of Class 2 in the available cache memory of F-APs
 12. else

13. Store the contents of Class 2 randomly until the cache memory of F-APs is full
14. else
15. Store the contents of Class 0 randomly until the cache memory of F-APs is full

4. Performance Analysis

In this section, the performance of the proposed CNN-based model is shown in
terms of model key performance indicators (KPI): such as MSE and prediction accuracy.
Likewise, the performance cache content decision is quantified in terms of cache hit ratio
and system delay.

To train the DLCC model, we used the Keras library on top of the TensorFlow frame-
work in Python 3.7 as a programming platform. The training process for our datasets is
performed by using a computation server (MiruWare, Seoul, Korea). The specification of
the computational server includes; one Intel Core i7 CPU, four Intel Xeon E7-1680 proces-
sors, and 128 GB random access memory. The results are obtained by using a computer
with 16 GB random access memory and an Intel Core i7-8700 processor.

4.1. Model KPI

In this part, the DLCC model KPI in terms of MSE (regression), and prediction accuracy
(classification) is presented. The proposed 2D CNN-based model is trained on each day
data of the MovieLens dataset from January 2015–December 2018. Likewise, the validation
of the trained model is done on the data of January 2019–October 2019. Finally, the trained
model is tested on the data of November 2019. The simulation parameter used while
training the model is summarized in Table 4.

Before the application of hard-decision on the obtained results, the MSE obtained
while testing the trained model on the November 2019 data of MovieLens dataset is shown
in Table 5. The obtained result is compared with the results shown in [29].

The hard-decision rule is implemented for classifying the prediction results of the
CNN-based regression model, which is shown in Table 6.

Electronics 2021, 10, 512 15 of 20

Table 4. Simulation parameters for the training model.

Parameters Values

Training Size (1461, 9019, 7, 1)
Validation Size (304, 9019, 7, 1)

Testing Size (21, 9019, 7, 1)
Training Period January 2015– December 2018

Validation Period January 2019–October 2019
Testing Period November 2019

Number of 2D CNN Layers 3
Number of FCNN Layer 1

Number of Features 7
Number of Label 1

Output Activation Function ReLU
Batch Size 8

Learning Rate 0.001
Epoch 1–8

Table 5. Comparison of results obtained from different DL methods.

Model Type Validation Loss (MSE)

DLCC (Proposed) 0.045
1D CNN [29] 0.066
1D LSTM [29] 0.056
1D CRNN [29] 0.059

Table 6. Mapping table for classifying the results of convolutional neural network (CNN)-based
model.

Range
(Predicted Values)

Classification
(Hard-Decision)

0–0.5 0
0.5–1 1
1–1.5 1
1.5–2 2
2–2.5 2
2.5–3 3

After the implementation of mapping table shown in Table 6, the average value of
prediction accuracy and prediction error of November 2018 is shown in Figure 11 for the
different values of training epochs.

As per Figure 11, it can be seen that there is an exponential rise in the prediction
accuracy of the model and exponential decay in the prediction error of the model till the five
training epoch. Beyond the five training epoch, the learning potential of the model enters
the saturation phase. The prediction accuracy of the model is 92.81% for the five training
epochs, but it is around 1% for the training epoch less than four. Moreover, the error curve
shown in Figure 11 is plotted based on the formula; Classi f ication Error (%) = 100 (%) –
Classi f ication Accuracy (%).

Electronics 2021, 10, 512 16 of 20

Electronics 2020, 9, x FOR PEER REVIEW 16 of 20

Figure 11. Accuracy of DLCC model to classify MovieLens dataset on the basis of popularity

As per Figure 11, it can be seen that there is an exponential rise in the prediction
accuracy of the model and exponential decay in the prediction error of the model till the
five training epoch. Beyond the five training epoch, the learning potential of the model
enters the saturation phase. The prediction accuracy of the model is 92.81% for the five
training epochs, but it is around 1% for the training epoch less than four. Moreover, the
error curve shown in Figure 11 is plotted based on the formula; 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 (%) = 100 (%) – 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%).

To lime-light the prediction accuracy of each class, a multi-class confusion matrix is
drawn for the prediction date: 1 November 2019 to 21 November 2019. The confusion ma-
trix value of the whole testing period is averaged and is shown in Table 7. The accuracy
of the confusion matrix shown in Table 4 can be calculated using the following formula
[37]: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (12)

where “TP”, “TN”, “FP”, and “FN” corresponds to “true positive”, “true negative”, “false
positive”, and “false negative”, respectively. Using the above equation, the value of the
accuracy for the confusion matrix shown in Table 7 is calculated to be 92.81%. This accu-
racy is around 21–54% greater than the prediction accuracy reported in the papers [15,27–
29] while solving a similar problem.

Table 7. Multi-class confusion matrix (average value) for the prediction of the popularity of cache
contents for 1 November 2019–21 November 2019.

 Predicted Values

Actual Values

Class 0 1 2 3
0 5.713 2.433 2.230 0.676
1 2.676 50.926 49.227 1.984
2 0.572 22.858 300.249 401.784
3 0.369 1.781 161.292 8014.230

4.2. System KPI
In this section, the cache hit ratio and overall system delay are shown to portray the

usefulness of the DLCC policy in the F-RAN system. The movies of the categories “0”, “1”
and “2” are proactively stored in the F-APs, whereas the movies under category “3” are
not stored as they are the least preferred ones.

Figure 11. Accuracy of DLCC model to classify MovieLens dataset on the basis of popularity.

To lime-light the prediction accuracy of each class, a multi-class confusion matrix is
drawn for the prediction date: 1 November 2019 to 21 November 2019. The confusion
matrix value of the whole testing period is averaged and is shown in Table 7. The accuracy
of the confusion matrix shown in Table 4 can be calculated using the following formula [37]:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

where “TP”, “TN”, “FP”, and “FN” corresponds to “true positive”, “true negative”, “false
positive”, and “false negative”, respectively. Using the above equation, the value of the
accuracy for the confusion matrix shown in Table 7 is calculated to be 92.81%. This accuracy
is around 21–54% greater than the prediction accuracy reported in the papers [15,27–29]
while solving a similar problem.

Table 7. Multi-class confusion matrix (average value) for the prediction of the popularity of cache
contents for 1 November 2019–21 November 2019.

Predicted Values

Actual Values

Class 0 1 2 3

0 5.713 2.433 2.230 0.676
1 2.676 50.926 49.227 1.984
2 0.572 22.858 300.249 401.784
3 0.369 1.781 161.292 8014.230

4.2. System KPI

In this section, the cache hit ratio and overall system delay are shown to portray the
usefulness of the DLCC policy in the F-RAN system. The movies of the categories “0”, “1”
and “2” are proactively stored in the F-APs, whereas the movies under category “3” are
not stored as they are the least preferred ones.

Mathematically, the cache hit ratio for any time instance can be calculated as:

Cache hit ratio (t) =
Total cache hits (t)

Total cache hits (t) + Total cache misses (t)
(13)

Electronics 2021, 10, 512 17 of 20

The system parameters used to calculate the cache hit ratio and the system delay are
summarized in Table 8.

Table 8. Fog radio access network (F-RAN) system parameters.

Parameters Values

Number of F-APs (M) 50
Number of UEs (N) 400

Number of movie files in the pool (p) 9019
Size of each movie (S) 1 (GB)

Fronthaul link capacity (CFh
j,1) 10 Gbps @ 10 km+

Total cache memory (∅) 0–600 (GB)
Distance between F-AP and central cloud 10 km

+ Greater than.

As shown in Table 8, an F-RAN system consisting of 50 F-APs and 400 UEs is designed
to request movie files from the pool of files. It is assumed that each user can request only
one movie file from F-APs at time t + 1. Likewise, the size of each movie file listed in the
MovieLens dataset is considered to be 1 GB, making a total of 9019 GB. Since there are 400
UEs in our system, 400 movie requests at time t + 1 make a total demand size of 400 GB.
Based on the above simulation parameters, the cache hit ratio is calculated for the different
values of total cache memory and is portrayed in Figure 12.

Electronics 2020, 9, x FOR PEER REVIEW 17 of 20

Mathematically, the cache hit ratio for any time instance can be calculated as: 𝐶𝑎𝑐ℎ𝑒 ℎ𝑖𝑡 𝑟𝑎𝑡𝑖𝑜 (𝑡) = 𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑐ℎ𝑒 ℎ𝑖𝑡𝑠 (𝑡)𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑐ℎ𝑒 ℎ𝑖𝑡𝑠 (𝑡) + 𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑐ℎ𝑒 𝑚𝑖𝑠𝑠𝑒𝑠 (𝑡) (13)

The system parameters used to calculate the cache hit ratio and the system delay are
summarized in Table 8.

Table 8. Fog radio access network (F-RAN) system parameters.

Parameters Values
Number of F-APs (𝑀) 50
Number of UEs (𝑁) 400

Number of movie files in the pool (𝑝) 9019
Size of each movie (S) 1 (GB)

Fronthaul link capacity (𝐶௝,ଵி௛) 10 Gbps @ 10 km+
Total cache memory (∅) 0–600 (GB)

Distance between F-AP and central cloud 10 km
+ Greater than.

As shown in Table 8, an F-RAN system consisting of 50 F-APs and 400 UEs is de-
signed to request movie files from the pool of files. It is assumed that each user can request
only one movie file from F-APs at time 𝑡 + 1. Likewise, the size of each movie file listed
in the MovieLens dataset is considered to be 1 GB, making a total of 9019 GB. Since there
are 400 UEs in our system, 400 movie requests at time 𝑡 + 1 make a total demand size of
400 GB. Based on the above simulation parameters, the cache hit ratio is calculated for the
different values of total cache memory and is portrayed in Figure 12.

Figure 12. Total F-AP capacity vs. cache hit ratio

Figure 12 shows that the cache hit ratio for five different caching policies such as
ideal, DLCC, Zipf’s probability distribution, randomized replacement (RR), and no-cache
condition for variant cache memory. The cache hit ratio of DLCC is approximately 527%
and 334% greater than RR and Zipf’s probability distribution, respectively, for the total
storage space of 600 GB. Moreover, the cache hit ratio obtained using the DLCC approach
in this paper is compared with the transfer learning-based cooperative caching (LECC)
strategy introduced in the paper [26] and is shown in Table 9.

Figure 12. Total F-AP capacity vs. cache hit ratio.

Figure 12 shows that the cache hit ratio for five different caching policies such as
ideal, DLCC, Zipf’s probability distribution, randomized replacement (RR), and no-cache
condition for variant cache memory. The cache hit ratio of DLCC is approximately 527%
and 334% greater than RR and Zipf’s probability distribution, respectively, for the total
storage space of 600 GB. Moreover, the cache hit ratio obtained using the DLCC approach
in this paper is compared with the transfer learning-based cooperative caching (LECC)
strategy introduced in the paper [26] and is shown in Table 9.

Electronics 2021, 10, 512 18 of 20

Table 9. Comparison between DLCC and learning-based cooperative caching (LECC) approach on
the basis of cache hit ratio.

Parameter DLCC LECC [26]

Number of F-APs 50 4
Total content items 9019 GB 500 GB

Total F-APs Capacity 600 GB 400 GB
Total F-APs capacity normalized by the total content items 0.066 0.8

Cache hit ratio 57% 55%

As per Table 9, we can see that the cache hit ratio for the DLCC approach is 57% for
the 0.66 F-APs capacity (normalized by the total contents). Likewise, in the LECC-based
approach, the cache hit ratio is 55% for the 0.8 F-APs capacity (normalized by the total
contents). Based on the above comparative analysis, we can say that the DLCC approach is
better than the LECC approach for proactive caching.

Figure 13 shows the overall delay in the F-RAN system for the proposed DNN-based
proactive caching policy. The total system delay is calculated by using equations listed in
(1), (2) and (3). It is assumed that each CPRI cable connecting CC to F-AP has an average
downloading speed of 10 Gbps for a distance range of more than 10 km. The delay added
by the DLCC in the F-RAN system is approximately 200% and 193% lesser than RR and
Zipf’s probability distribution method, respectively, for 600 GB of the storage capacity. As
per the figure, the total average delay of 5.33 min is added to the system to download
movies of cumulative size 400 GB for the no-cache memory scenario. Whereas, in the
case of the DLCC scheme, a minimum value of total delay of 2.28 min can be experienced,
provided that the total F-AP capacity is greater than 400 GB.

Electronics 2020, 9, x FOR PEER REVIEW 18 of 20

Table 9. Comparison between DLCC and learning-based cooperative caching (LECC) approach on
the basis of cache hit ratio.

Parameter DLCC LECC [26]
Number of F-APs 50 4

Total content items 9019 GB 500 GB
Total F-APs Capacity 600 GB 400 GB

Total F-APs capacity normalized by
the total content items

0.066 0.8

Cache hit ratio 57% 55%

As per Table 9, we can see that the cache hit ratio for the DLCC approach is 57% for
the 0.66 F-APs capacity (normalized by the total contents). Likewise, in the LECC-based
approach, the cache hit ratio is 55% for the 0.8 F-APs capacity (normalized by the total
contents). Based on the above comparative analysis, we can say that the DLCC approach
is better than the LECC approach for proactive caching.

Figure 13 shows the overall delay in the F-RAN system for the proposed DNN-based
proactive caching policy. The total system delay is calculated by using equations listed in
(1), (2) and (3). It is assumed that each CPRI cable connecting CC to F-AP has an average
downloading speed of 10 Gbps for a distance range of more than 10 km. The delay added
by the DLCC in the F-RAN system is approximately 200% and 193% lesser than RR and
Zipf’s probability distribution method, respectively, for 600 GB of the storage capacity. As
per the figure, the total average delay of 5.33 min is added to the system to download
movies of cumulative size 400 GB for the no-cache memory scenario. Whereas, in the case
of the DLCC scheme, a minimum value of total delay of 2.28 min can be experienced,
provided that the total F-AP capacity is greater than 400 GB.

Figure 13. Total F-AP capacity vs. total system delay

5. Conclusions
In this paper, a 2D CNN-based DLCC approach is proposed to proactively store the

most popular file contents in the cache memory of F-APs. For training the DLCC model,
a publicly available MovieLens dataset containing the movie’s historical feedback infor-
mation is taken into account since movie files are responsible for a major portion of the
fronthaul load in the F-RAN system. Simulation results showed that our proposed model
acquired an average testing accuracy of 92.81%, which is around 21–54% greater than the
prediction accuracy reported in the papers [15,27–29] while solving a similar problem.

Figure 13. Total F-AP capacity vs. total system delay

5. Conclusions

In this paper, a 2D CNN-based DLCC approach is proposed to proactively store
the most popular file contents in the cache memory of F-APs. For training the DLCC
model, a publicly available MovieLens dataset containing the movie’s historical feedback
information is taken into account since movie files are responsible for a major portion of
the fronthaul load in the F-RAN system. Simulation results showed that our proposed
model acquired an average testing accuracy of 92.81%, which is around 21–54% greater
than the prediction accuracy reported in the papers [15,27–29] while solving a similar

Electronics 2021, 10, 512 19 of 20

problem. Likewise, when the trained model is deployed in the F-RAN system, it obtained
the maximum cache hit ratio of 0.57 and an overall delay of 2.28 min. In comparison with
RR and Zipf’s probability distribution methods, the cache hit ratio obtained using DLCC is
approximately 527% and 334% greater, and the overall delay is approximately 200% and
193% lesser, respectively. Moreover, the cache hit ratio reported in this paper is better than
the cache hit ratio obtained using the LECC strategy.

Author Contributions: Conceptualization, S.B. and H.K.; methodology, S.B.; software, S.B. and N.R.;
validation, S.B., N.R., P.K., H.K. and Y.-S.H.; resources, H.K. and Y.H.; data curation, S.B. and N.R.;
writing—original draft preparation, S.B.; writing—review and editing, S.B., N.R., P.K., H.K. and
Y.-S.H.; visualization, S.B. and P.K.; supervision, H.K.; project administration, H.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://grouplens.org/datasets/movielens/.

Acknowledgments: This work was supported by Post-Doctoral Research Program of Incheon Na-
tional University in 2017.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cisco. White Paper. Internet of Things at a Glance. Available online: https://www.cisco.com/c/dam/en_us/solutions/trends/

iot/docs/iot-aag.pdf (accessed on 1 January 2021).
2. Anawar, M.; Wang, S.; Azam Zia, M.; Jadoon, A.; Akram, U.; Raza, S. Fog Computing: An Overview of Big IoT Data Analytics.

Wireless Commun. Mobile Comput. 2018, 2018, 1–22. [CrossRef]
3. Peng, M.; Yan, S.; Zhang, K.; Wang, C. Fog Computing based Radio Access Networks: Issues and Challenges. IEEE Netw. 2015,

30, 46–53. [CrossRef]
4. Bhandari, S.; Kim, H.; Ranjan, N.; Zhao, H.P.; Khan, P. Optimal Cache Resource Allocation Based on Deep Neural Networks for

Fog Radio Access Networks. J. Internet Technol. 2020, 21, 967–975.
5. Zeydan, E.; Bastug, E.; Bennis, M.; Kader, M.A.; Karatepe, I.A.; Er, A.S.; Debbah, M. Big data caching for networking: Moving

from cloud to edge. IEEE Commun. Mag. 2016, 54, 36–42. [CrossRef]
6. Jiang, Y.; Huang, W.; Bennis, M.; Zheng, F.-C. Decentralized asynchronous coded caching design and performance analysis in fog

radio access networks. IEEE Trans. Mobile Comput. 2020, 19, 540–551. [CrossRef]
7. Jiang, Y.; Hu, Y.; Bennis, M.; Zheng, F.-C.; You, X. A mean field game-based distributed edge caching in fog radio access networks.

IEEE Trans. Commun. 2020, 68, 1567–1580. [CrossRef]
8. Blasco, P.; Gündüz, D. Learning-based optimization of cache content in a small cell base station. In Proceedings of the 2014 IEEE

International Conference on Communications (ICC), Sydney, NSW, Australia, 10–14 June 2014; pp. 1897–1903.
9. Yang, P.; Zhang, N.; Zhang, S.; Yu, L.; Zhang, J.; Shen, X. Content popularity prediction towards location-aware mobile edge

caching. IEEE Trans. Multimedia 2019, 21, 915–929. [CrossRef]
10. Zhang, S.; He, P.; Suto, K.; Yang, P.; Zhao, L.; Shen, X. Cooperative edge caching in user-centric clustered mobile networks. IEEE

Trans. Mobile Comput. 2018, 17, 1791–1805. [CrossRef]
11. Deng, T.; You, L.; Fan, P.; Yuan, D. Device caching for network offloading: Delay minimization with presence of user mobility.

IEEE Wireless Commun. Lett. 2018, 7, 558–561. [CrossRef]
12. Xu, M.; David, J.; Kim, S. The Fourth Industrial Revolution: Opportunities and Challenges. Inter J. Financ. Res. 2018, 9, 1–90.

[CrossRef]
13. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2016,

arXiv:1506.02640.
14. Schmidhuber, J. Deep learning in neural network: An overview. arXiv 2014, arXiv:1404.7828. [CrossRef]
15. Liu, W.; Zhang, J.; Liang, Z.; Peng, L.; Cai, J. Content Popularity Prediction and Caching for ICN: A Deep Learning Approach

With SDN. IEEE Access 2018, 6, 5075–5089. [CrossRef]
16. Poularakis, K.; Iosifidis, G.; Tassiulas, L. Approximation algorithms for mobile data caching in small cell networks. IEEE Trans.

Wireless Commun. 2014, 62, 3665–3677. [CrossRef]
17. Golrezaei, N.; Molisch, A.F.; Dimakis, A.G.; Caire, G. Femtocaching and device-to-device collaboration: A new architecture for

wireless video distribution. IEEE Commun. Mag. 2013, 51, 142–149. [CrossRef]
18. Tandon, R.; Simeone, O. Cloud-aided wireless networks with edge caching: Fundamental latency trade-offs in fog radio access

networks. In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July
2016; pp. 2029–2033.

https://grouplens.org/datasets/movielens/
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/iot-aag.pdf
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/iot-aag.pdf
http://doi.org/10.1155/2018/7157192
http://doi.org/10.1109/MNET.2016.7513863
http://doi.org/10.1109/MCOM.2016.7565185
http://doi.org/10.1109/TMC.2019.2896970
http://doi.org/10.1109/TCOMM.2019.2961081
http://doi.org/10.1109/TMM.2018.2870521
http://doi.org/10.1109/TMC.2017.2780834
http://doi.org/10.1109/LWC.2018.2795617
http://doi.org/10.5430/ijfr.v9n2p90
http://doi.org/10.1016/j.neunet.2014.09.003
http://doi.org/10.1109/ACCESS.2017.2781716
http://doi.org/10.1109/TCOMM.2014.2351796
http://doi.org/10.1109/MCOM.2013.6495773

Electronics 2021, 10, 512 20 of 20

19. Din, I.U.; Hassan, S.; Khan, M.K.; Guizani, M.; Ghazali, O.; Habbal, A. Caching in Information-Centric Networking: Strategies,
Challenges, and Future Research Directions. IEEE Commun. Surv. Tutor. 2018, 20, 1443–1474. [CrossRef]

20. Wang, X.; Leng, S.; Yang, K. Social-aware edge caching in fog radio access networks. IEEE Access 2017, 5, 8492–8501. [CrossRef]
21. Hung, S.; Hsu, H.; Lien, S.; Chen, K. Architecture Harmonization between Cloud Radio Access Networks and Fog Networks.

IEEE Access 2015, 3, 3019–3034. [CrossRef]
22. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient processing of deep neural networks: A tutorial and survey. Proc. IEEE 2017, 105,

2295–2329. [CrossRef]
23. Sun, Y.; Peng, M.; Zhou, Y.; Huang, Y.; Mao, S. Application of machine learning in wireless networks: Key techniques and open

issues. IEEE Commun. Surv. Tutor. 2019, 21, 3072–3108. [CrossRef]
24. Ranjan, N.; Bhandari, S.; Zhao, H.P.; Kim, H.; Khan, P. City-Wide Traffic Congestion Prediction Based on CNN, LSTM and

Transpose CNN. IEEE Access 2020, 8, 81606–81620. [CrossRef]
25. Bastug, E.; Bennis, M.; Debbah, M. Living on the edge: The role of proactive caching in 5g wireless networks. IEEE Commun. Mag.

2014, 52, 82–89. [CrossRef]
26. Hou, T.; Feng, G.; Qin, S.; Jiang, W. Proactive Content Caching by Exploiting Transfer Learning for Mobile Edge Computing. In

Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, Singapore, 4–8 December
2017; pp. 1–6.

27. Ale, L.; Zhang, N.; Wu, H.; Chen, D.; Han, T. Online proactive caching in mobile edge computing using bidirectional deep
recurrent neural network. J. IEEE Internet Things 2019, 6, 5520–5530. [CrossRef]

28. Tsai, K.C.; Wang, L.; Han, Z. Mobile social media networks caching with convolutional neural network. In Proceedings of the
2018 IEEE Wireless Communications Network Conference Workshops (WCNCW), Barcelona, Spain, 15–18 April 2018; pp. 83–88.

29. Thar, K.; Tran, N.H.; Oo, T.Z.; Hong, C.S. DeepMEC: Mobile Edge Caching Using Deep Learning. IEEE Access 2018, 6, 78260–78275.
[CrossRef]

30. GroupLens. Available online: https://grouplens.org/datasets/movielens/ (accessed on 5 January 2021).
31. Hancock, J.; Khoshgoftaar, T. Survey on categorical data for neural networks. J. Big Data 2020, 7, 28. [CrossRef]
32. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci.

2016, 374. [CrossRef] [PubMed]
33. Loffe, S. Szegedy, Christian. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

arXiv 2015, arXiv:1502.03167.
34. Wu, H.; Gu, X. Towards dropout training for convolutional neural networks. Neural Netw. 2015, 71, 1–10. [CrossRef]
35. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
36. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
37. Visa, S.; Ramsay, B.; Ralescu, A.; Knaap, E. Confusion Matrix-based Feature Selection. In Proceedings of the 2011 CEUR Workshop,

Heraklion, Crete, Greece, 30 May 2011; pp. 120–127.

http://doi.org/10.1109/COMST.2017.2787609
http://doi.org/10.1109/ACCESS.2017.2693440
http://doi.org/10.1109/ACCESS.2015.2509638
http://doi.org/10.1109/JPROC.2017.2761740
http://doi.org/10.1109/COMST.2019.2924243
http://doi.org/10.1109/ACCESS.2020.2991462
http://doi.org/10.1109/MCOM.2014.6871674
http://doi.org/10.1109/JIOT.2019.2903245
http://doi.org/10.1109/ACCESS.2018.2884913
https://grouplens.org/datasets/movielens/
http://doi.org/10.1186/s40537-020-00305-w
http://doi.org/10.1098/rsta.2015.0202
http://www.ncbi.nlm.nih.gov/pubmed/26953178
http://doi.org/10.1016/j.neunet.2015.07.007

	Introduction
	Related Works
	Contribution and Organization

	System Model
	Delay Formulation

	DL-based Caching Policy
	Dataset
	Data Pre-Processing
	DLCC Model
	Problem Statement
	Model Implementation

	Cache Decision

	Performance Analysis
	Model KPI
	System KPI

	Conclusions
	References

