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Abstract: Preterm births affect around 15 million children a year worldwide. Current medical efforts
focus on mitigating the effects of prematurity, not on preventing it. Diagnostic methods are based
on parent traits and transvaginal ultrasound, during which the length of the cervix is examined.
Approximately 30% of preterm births are not correctly predicted due to the complexity of this process
and its subjective assessment. Based on recent research, there is hope that machine learning can be
a helpful tool to support the diagnosis of preterm births. The objective of this study is to present
various machine learning algorithms applied to preterm birth prediction. The wide spectrum of
analysed data sets is the advantage of this survey. They range from electrohysterogram signals
through electronic health records to transvaginal ultrasounds. Reviews of works on preterm birth
already exist; however, this is the first review that includes works that are based on a transvaginal
ultrasound examination. In this work, we present a critical appraisal of popular methods that have
employed machine learning methods for preterm birth prediction. Moreover, we summarise the
most common challenges incurred and discuss their possible application in the future.

Keywords: artificial intelligence; deep learning; machine learning; preterm birth

1. Introduction

Preterm births affect around 15 million children a year worldwide [1]. This is the
leading cause of infant mortality, developmental delays, and long-term disability. Com-
plications of preterm birth are the single largest direct causes of neonatal deaths, being
responsible for 35% of the world’s 3.1 million deaths a year [2]. In almost all high- and
middle-income countries of the world, preterm birth (PTB), which is also known as prema-
ture birth, is the leading cause of child death.

PTB is defined by WHO as all births before 37 completed weeks of gestation or fewer
than 259 days since the first day of a woman’s last menstrual period [3]. Preterm birth
can be further subdivided based on gestational age: extremely preterm (<28 weeks), very
preterm (28–<32 weeks), and moderate preterm (32–<37 weeks of gestation). Premature
birth can result in long-term complications, with the frequency and severity of unfavourable
outcomes increasing with decreasing gestational age and decreasing quality of care [4].
The aforementioned 37-week limit is somewhat arbitrary and, although the risk that is
associated with preterm birth is greater the lower the gestational age, babies born at 37 or
38 weeks are still at greater risk than those born at 40 weeks gestation [5].

There are two types of PTB—spontaneous and iatrogenic. In cases affected with spon-
taneous PTB, the contractions start before the 37th week without any clinical interventions,
mostly due to cervical insufficiency or intrauterine infection. On the other hand, iatrogenic
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PTB occurs in severe, gestational complications, such as preeclampsia (PE) or fetal growth
restriction (FGR). In this group, preterm delivery is recommended due to endangered fetal
or maternal wellbeing. In high-income countries with widely available access to healthcare
professionals, the iatrogenic preterm birth occurs significantly more frequently than in
low-income countries. However, the prevalence of PTB is similar worldwide, regardless of
the part of the globe [6].

The natural and desirable date of birth occurs after 37 weeks of pregnancy. The earlier
the newborn is delivered, the higher the risk of prematurity complications and the need for a
longer stay in the neonatal intensive care unit (NICU). Moreover, a prolonged stay in NICU
can cause significant stress among the patient’s family and generates costs for the healthcare
system. According to the literature, certain screening methods may identify patients with
an increased risk of PTB and imply subsequent, prophylactic steps [7]. Ultrasonographic,
transvaginal measurement of the cervical length (CL) between 18 + 0 and 22 + 0 weeks
of gestation is a recognised, popular screening method for estimating the risk of a PTB
that has become a standard in prenatal care worldwide. Nonetheless, a significant rate of
PTBs occurs in patients that are identified as low-risk at the mid-trimester scan [8]; thus,
we believe that further studies may improve future prediction models.

Ultrasonographic measurement depends on several factors, such as the quality of the
ultrasound system, the experience of the sonographer, and the technique of the examina-
tion. Because many factors affect the final result, each measurement may be altered due
to various conditions of certain ultrasound examinations, and many details may not be
visible for the human eye. We hope that ML methods can help in reducing the number
of PTBs. These methods, which have already been used in signal and image analysis to
generate artificial data, could improve predictions by analysing multiplanar, ultrasono-
graphic images [9,10]. Additionally, they might discover some new features that may be
incorporated into current screening strategies. Machine learning can help to analyse the
quality of known markers [11] or lead to the discovery of new ones. New algorithms
for text analysis allow for using descriptions of medical examinations performed during
pregnancy as an input of prediction models, which opens up many new possibilities [12].

In this work, we review articles on preterm birth prediction using ML methods that
may potentially be incorporated into perinatal medicine. We have chosen publications that
contribute to this area from almost the very beginning of scientists’ interest in this topic.
Because of the small number of works, we were able to analyse a wide time frame, from
1994 until today. The studies to date have mainly used electronic health records (EHR)
statistics as well as electrohysterography (EHG) and uterine electromyography (EMG)
records. In recent years, fruitful attempts at using transvaginal (TVS) ultrasound image
data have emerged .

The early days of research on this topic were not hopeful. The results that were
attained by the created models were worse than the toss of a coin, but over the years
this has significantly improved. In our review, we can see a variety of tools being used,
from expert systems, through SVM classifiers [13] to deep neural networks [14]. What
is important, in all of the reviewed articles, predictions were made on data that were
gathered before labour. This is key to developing a predictive system to detect the risk of
preterm birth before it happens. The structure of our work is based on the chronology of
publications with an additional division into the data types that were used for research.

We hope that our work indicates noteworthy directions of development and also
confirms the need to analyse the topic of premature births due to the seriousness of
this matter and still a lot of room for improvement. The results presented in this paper
are promising despite the difficulty of diagnosis of preterm delivery given the lack of
understanding about its causes.

The remainder of this work is organised in the following manner. In Section 2 we
present preliminaries: PTB problem description, difficulties, future challenges and data
imbalance problem. In Section 3 we present four medical fields that are utilised for
preterm birth detection, such as electrohysterography (EHG), electronic health records
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(EHR), transvaginal ultrasound (TVS), and uterine electromyography (EMG) (Table 3).
In Section 4, we present a discussion on the future of ML applications and noteworthy
directions for cooperation between doctors and data scientists. Finally, in Section 5 we
conclude the paper.

2. Preliminaries
2.1. Preterm Birth Prediction

The rate of preterm birth has not been significantly reduced throughout the last 30–
40 years, although there were many efforts and studies to reduce this number. PTB is
considered the main cause of infant mortality, impaired neurodevelopment and long-term
disability. This problem is not only limited to low-income countries. The United States and
Brazil are both at the forefront in terms of preterm birth rates (at the 6th and 10th position,
respectively). On the other hand, Belarus ranks first with the lowest rate of preterm births,
corresponding to 4.1 per 100 births [15].

For most of the 20th century, premature births were considered to be an unpredictable
and unavoidable fact of life. According to WHO, 1.1 million of born too soon babies
dies in the postnatal period due to prematurity complications [16]. It is estimated that
three-quarters of them could survive if certain medical management was administered [17].
In recent years, the simultaneous development of advanced medical technologies and
machine learning (ML) has allowed for an increase in the quality of healthcare. Many
clinical issues remain unsolved despite the above mentioned constant progress in the
various fields of science.

For several decades, many researchers have been trying to solve premature births
by applying various types of machine learning algorithms. Hence, different methods
have been developed to address either sPTB detection or classification. Particularly, the
authors analyze ML-based approaches like Support Vector Machine (SVM) [18], K-Nearest
Neighbors (KNN) [19], and Convolutional Neural Networks (CNNs) [9,10]. A fundamental
motivation for this topic is that with preterm birth prediction, the lives of many children can
be saved or spared the many consequences of preterm birth. With the help of early detection
of preterm birth, steps can be taken to maintain the pregnancy. Modern medicine has the
tools to accomplish this task. All that is missing is a crucial element: early warning [20].
Using machine learning methods to create a prediction model can allow for this foresight.

2.2. Difficulties and Future Challenges

Timely detection of pregnancies at high risk of spontaneous preterm birth (sPTB)
is a challenge that can help reduce the number of miscarriages and side effects later in
life for premature babies. Nearly half of all sPTBs are found in women with no known
clinical risk factors. Current sPTB diagnostic methods, such as obstetric interview, maternal
features and transvaginal ultrasound examination of the cervix, did not lower the PTB rate.
It is the reason why PTB is a difficult and complex real-world problem. This challenge
stems from the nature of pregnancy data, which changes dynamically, is noisy, and often
contains missing data for important groups of variables (e.g., genetic data) [20]. Accurate
classification and prediction of PTB are challenging tasks considering the large variety of
potential factors and the constant lack of reliable data on variables. Another challenge is
the waiting time for hardly available data (due to pregnancy duration), the acquisition
and processing of which requires the Medical Ethics Committee’s approval. The current
etiological factors that influence PTB are still mostly unknown. A better understanding of
the underlying variables and the use of machine learning methods to develop new methods
to predict PTB better may prove crucial.

2.3. Data Imbalance

The class imbalance problem arises when the class of interest is relatively rare com-
pared with other class(es) [21]. Many traditional algorithms to machine learning assume
that the target classes share similar prior probabilities. In many real-world applications,
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this assumption is not valid. Supervised learning methods require labelled training data,
and in classification problems, each data sample belongs to a known class. In a binary
classification problem with data samples from two groups, class imbalance occurs when
one class, the minority group, contains significantly fewer samples than the other class, the
majority group [22].

In imbalanced dataset almost all the instances are labelled as one class, while far
fewer instances are labelled as the other class, usually the more important class [23]. A
well-known class imbalanced machine learning scenario is the medical diagnosis task of
detecting disease, where the majority of the patients are healthy and detecting disease is of
greater interest. One can find examples in medical field [24]—Grzymala et al. [25] propose
how to increase the sensitivity of preterm birth prediction. PTB occurrence is an example
of skewed distribution, so solving class imbalance is here an important issue.

Standard machine learning algorithms tend to be overwhelmed by the majority class
and ignore the minority class since they classify most of the data into the majority class.
Class imbalance causes suboptimal classification performance. Most algorithms do not
work correctly when the data sets are highly imbalanced. The minority class has much
lower precision and recall than the majority class. Many practitioners have observed that
for extremely skewed class distributions, the recall of the minority class is often equal to
zero [26].

Over the last ten years, machine learning and mostly deep learning methods have
grown in popularity and were used successfully in many fields. However, very little
statistical work has been done which properly evaluates techniques for handling class
imbalance using deep learning. In fact, many researchers agree that the subject of deep
learning with class imbalanced data is insufficiently researched [27]. However, some
methods for coping with the imbalanced class in Convolutional Neural Networks are
reviewed by Buda et al. [28]. In 2012 most existing imbalance learning techniques were
only designed for and tested in two-class scenarios [29]. However, recent applications
extend binary imbalance classifiers to multiclass data using the decomposition methods
(e.g., One-vs-All) or adapt the intrinsic process in building the decision trees or adopt
ensemble-based approaches [30].

Addressing class imbalance with traditional machine learning techniques has been
studied extensively over the last two decades. First publications and surveys in this topic
come from the turn of the 2000s [23,26,31–35]. For twenty years, many literature reviews
on the topic have been developed—for a more in-depth study of the topic, the reader may
familiarise with them. Comparison of results using 35 different benchmark datasets on
7 sampling techniques and 11 commonly-used learning algorithms can be found in the
analysis performed by Van Hulse et al. [36].

The majority class bias can be diminished by altering the training data to decrease
imbalance or modifying the model’s underlying learning or decision process to increase
sensitivity towards the minority group. Methods for handling class imbalance are grouped
into data-level techniques (e.g., data sampling) and algorithm-level methods (e.g., cost-
sensitive and ensemble learning).

Data-level techniques can be subdivided into categories:

• undersampling:

– non-heuristic random undersampling,
– one-sided selection [33],
– wilson’s editing [37],

• oversampling:

– non-heuristic random oversampling,
– Synthetic Minority Oversampling Technique (SMOTE) [38],
– borderline-SMOTE [39],
– safe-level-SMOTE [40],
– cluster-based over-sampling [41],
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– Adaptive Synthetic Sampling (ADASYN) [42].

Random undersampling discards random samples from the majority group, while
random oversampling duplicates random samples from the minority group. The downside
of oversampling is that it increases training time and can be the cause of overfitting [43].
Random over-sampling does not actually increase any information and fails in solving the
fundamental ’lack of data’ problem. Overfitting occurs when a model fits too closely to the
training data and cannot generalise to new data. Commonly used SMOTE method creates
new non-replicated examples by interpolating neighbouring minority class instances.
However, their broadened decision regions are still error-prone by synthesising noisy and
borderline examples [44]. Therefore undersampling is often preferred to over-sampling [45].
Although undersampling does not introduce false dependencies and features to the data, it
also is not without its shortcomings. The elimination of some samples from the training
dataset may have two adverse effects:

• information loss—due to the elimination of informative or useful samples, classifica-
tion effectiveness deteriorates,

• data cleaning—because of eliminating irrelevant, redundant, or even noisy samples,
classification effectiveness is falsely improved.

In addition to the appropriate approach to the data, we should also focus on the
classifier and the learning process. In learning extremely imbalanced data, the overall
classification accuracy is often not an adequate measure of performance. A trivial classifier
that predicts every case as the majority class can still achieve very high accuracy. We use
metrics, such as true negative rate, true positive rate, weighted accuracy, precision, and
recall, in order to evaluate learning algorithms’ performance on imbalanced data. We want
to provide an intuition of negative influence of imbalanced data on classifiers for the most
popular ones (that we also recommend to use in review):

• SVM classifier—for a highly imbalanced classification, the majority class pushes the
ideal decision boundary toward the minority class [21],

• random forest—classifier induces each constituent tree from a bootstrap sample of
the training data [46]. In learning extremely imbalanced data, there is a significant
probability that a bootstrap sample contains few or even none of the minority class,
which results in a tree with poor performance for predicting the minority class [47].

Algorithmic methods for handling class imbalance do not alter the training data
distribution. Instead, the learning or decision process is adjusted in a way that increases
the importance of the positive class. Most commonly, algorithms are modified to take a
class penalty or weight into consideration, or the decision threshold is shifted in a way that
reduces bias towards the negative class. In cost-sensitive learning, penalties are assigned to
each class through a cost matrix. Increasing the cost of the minority group is equivalent to
increasing its importance, decreasing the likelihood that the learner will incorrectly classify
instances from this group [48]. One of the biggest challenges in cost-sensitive learning is
the assignment of an effective cost matrix.

Another type of methods for handling data imbalance are hybrid methods. They
combine different sampling-techniques and algorithm-based modifications. Ensemble
learning methods such as Boosting and Bagging are the most successful approaches. These
methods combine the results of many classifiers. Most commonly met in literature methods
are: AdaBoost [49], Rare-Boost [50], SMOTEBoost [51], AsymBoost [52], AdaCost [53],
MetaCost [54], EasyEnsemble [35]and BalanceCascade [35].

Contemporary classification methods that are based on deep convolutional neural
networks can also follow classic class re-sampling or cost-sensitive training. However,
Huang et al. [44] proposed that, given an imagery dataset with imbalanced class distri-
bution, our goal is to learn a Euclidean embedding from an image into a feature space.
The embedded features are discriminative without any possible local class imbalance. The
presented in work Large Margin Local Embedding (LMLE) approach offers crucial feature
representations for the following classification to perform well on imbalanced data. After
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we have applied LMLE, we can use an appropriate classifier to learn from the obtained
features.

State-of-the-art methods for imbalanced class data are reviewed by Bi et al. [30]. They
perform analysis on 19 publicly available datasets and measure the performance of different
methods, i.e., accuracy, F-score and computation time. The best results are achieved by
proposed by them Diversified Error Correcting Output Codes (DECOC) algorithm, though
it is very computationally expensive.

The use of described methods for preterm birth data depends mostly from the type
of data. SMOTE and ADASYN should help reducing imbalance when using EHR or
EHG data. Using SMOTE one should be careful not use to high oversampling because of
overfitting risk. For imagery data analysis, we can use LMLE or an oversampling approach
specific to neural networks optimised with stochastic gradient descent—the class-aware
sampling [55].

3. Methods

This section presents works that are related to different types of medical examination
(different data sources) used for preterm birth detection with their advantages and short-
comings. We describe 24 publications, out of which 14 are based on EHR data, six on EHG
data, two on TVS data, and two on EMG data. Because of the different character of data,
these datasets require various data preprocessing steps and different machine learning
methods that we list in each of the descriptions.

For the first time, the use of the TVS data type for preterm birth prediction is reviewed.
There are high hopes for improved prediction quality with TVS data, upon which we
elaborate in Section 4. Our analysis also covers current preterm birth prediction research
challenges and their promising future directions.

In the works, we describe many machine learning algorithms that are used, among
others: SVM, k-NN [56], decision tree [57], random forest [58], logistic regression [59],
stochastic gradient boosting [60], and neural networks [61]. Within neural networks,
we can distinguish convolutional and recurrent networks [62]. The use of each of these
algorithms primarily depends on the type of data, but also on the size of the learning
set. For small data sets, neural networks are not advisable; however, good results can be
expected while using an SVM classifier. The rationale for choosing between traditional
machine learning algorithms (SVM, logistic regression) and neural networks must be
directly sought in our needs, namely whether we need only classification or whether we
also need feature extraction. We would also like to point out that the choice of algorithm
among the described works, in addition to the type of data, also depend on the time of
publication and the current state-of-the-art algorithms.

3.1. Data Availability and Use

Collecting data on premature births is difficult. In addition to the ethics and data
anonymisation that we mention later in the discussion (Section 4), difficulties arise in the
nature of the data. After the study is performed, there is a significant waiting time for the
annotation of the collected data. Depending on the country in which the study is developed,
it is difficult to obtain data from premature babies due to the relatively low rate of premature
births as compared to the general population. There is also a significant difference of
incidence between countries [16,63]. The rarity of the occurring phenomenon is usually
solved by over-sampling a group of premature babies [64] or under-sampling a group born
on time [35]. The latter is safer in terms of generalisation, but it significantly reduces the
data set. Over-sampling, on the other hand, can lead to cases that do not naturally occur.
The difficult issue is a proper choice of preterm birth cases for the dataset that is a decision,
if, for example, twin pregnancies should be included or if the classification system should
be made only for singleton pregnancies. Twin pregnancy is a strong factor for preterm
pregnancy, but it may be followed by singleton pregnancy for the same mother [65,66].
Iatrogenic (illness caused by medical examination or treatment) preterm deliveries are to
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be excluded from the dataset that was used to predict sPTB. Although performed during
pregnancy, some tests are made too late and do not carry the appropriate diagnostic value
for extreme preterm birth (before 28th week) detection that accounts for most of the deaths
of newborns [12]. As an example of early examination, one can provide cervical length
measured at 23 weeks of gestation that provides an accurate prediction of early preterm
delivery [67]. The proper assessment of gestational age is another question [68]. It is
also difficult to find data from standard procedures, as many countries have different
requirements for performing mandatory diagnostics during pregnancy. Many differences
in perinatal care are based on government policy, recommendations from a scientific or
professional society, or no written policy. Along with the policies, not all women are
commissioned to perform certain types of tests [69–72]. Most of the researches come from
only one medical centre [12,73]. The model that is created in this way may be difficult to
generalise in the case of other hospitals, what is more, it may require the introduction of
the same types of tests, which, at a given moment, may not be a standard procedure in
another medical centre. Datasets that are gathered from many medical centres should be
curated [18,74], because medical documentation standards may differ among them and be
inconsistent throughout the whole gestation process. Table 1 presents all of the datasets
used in the works presented in this review. They are compared based on the dataset’s size,
the type of data, the ratio of preterm births to the total, and the source where they were
collected. It can be seen that what stage of pregnancy they refer is only clearly stated in the
case of a few datasets.

Table 1. Comparison of the preterm birth datasets.

Author Data Type Group Size PTB % Gestation Age
(Week) Data Source

Grzymała-Busse et al. [75] EHR 18,890 - -
St. Luke’s Regional Perinatal Center,
Healthdyne Perinatal Services,
Tokos Corporation

Woolery et al. [76] EHR 18,899 - -
St. Luke’s Regional Perinatal Center,
Healthdyne Perinatal Services,
Tokos Corporation

Mercer et al. [77] EHR 2929 10.55 23–24 Maternal-Fetal Medicine Units Network

Goodwin et al. [78] EHR 63,167 22 - Duke University’s Medical Center

Frize et al. [79] EHR 113,000 17 - The Pregnancy Risk Assessment
Monitoring System (PRAMS) database

Vovsha et al. [18] EHR 2929 10.55 - Maternal-Fetal Medicine Units Network

Tran et al. [11] EHR 18,836 6.81 - Royal North Shore (RNS) hospital

Weber et al. [80] EHR 336,214 1.02 - -

Esty et al. [81] EHR 782,000 7.09 - BORN (Better Outcomes Registry Network) Information System,
PRAMS (Pregnancy Risk Monitoring Assessment)

Gao et al. [12] EHR 25,689 8.09 - Vanderbilt University Medical Center

Prema et al. [82] EHR 124 14.52 - Local hospitals of Mysuru, Karnataka state, India

Lee et al. [83] EHR 596 7.21 18–24 Anam Hospital in Seoul, Korea

Rawashdeh et al. [84] EHR 274 9.49 - Fetal medicine unit in a tertiary hospital in NSW, Australia

Koivu et al. [85] EHR 15,883,784 9.65 - CDC - National Center of Health Statistics

Fergus et al. [19] EHG 300 12.67 - TPEHG

Hussain et al. [64] EHG 300 12.67 - TPEHG

Sadi-Ahmed et al. [86] EHG - - - TPEHG

Despotovic et al. [87] EHG 160 11.73 22–25 TPEHG

Chen et al. [88] EHG 31 41.94 - TPEHGT

Degbedzui et al. [89] EHG 300 12.67 22–32 TPEHG

Włodarczyk et al. [9] TVS 354 10.97 - King’s College London,
Medical University of Warsaw

Włodarczyk et al. [10] TVS 359 11.98 - King’s College London,
Medical University of Warsaw

Maner et al. [90] EMG 185 27.57 - University of Texas Medical Branch

Most et al. [91] EMG 87 100 - -
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3.2. Electrohysterography

Electrohysterography (EHG) is a non-invasive measurement of the electrical activity
underlying uterine contractions. EHG is a recording of the electrical currents through
contact electrodes at the maternal abdomen. The first EHG signal ever reported in the
literature was measured in 1931 as the deflection of a galvanometer’s needle that is caused
by a uterine contraction [92]. The need for a non-invasive and reliable method for testing
uterine activity, predicting delivery, and understanding the processes underlying the onset
of labour results in the steadily increasing interest in EHG. Since the first application of
EHG, the recording techniques have significantly advanced, and computer technology
has allowed for new methods of signal analysis, including ML methods [93]. One of
the most important factors in using the EHG data, which emerges from the reviewed
articles, is an extraction of features from the recorded signals. In EHG signal analysis for
the preterm birth prediction task, many researchers approached this challenge thanks to
Gašper Fele-Zorz et al., who first worked on the Term-Preterm EHG Database (TPEHG)
records dataset [73,94]. In the following years, many types of research applied ML methods
on this data in the hope of improving the results. It is noticeable that only 38 EHG samples
are collected from patients whose gestation ended in preterm delivery, while the other
262 EHG samples are from patients with normal term delivery (Table 2). The week of the
pregnancy in which examination of the patient is performed is the value that can hardly be
overestimated for future diagnostics. Records from the normal term deliveries consist of
143 records that were recorded early (before the 26th week of gestation) and 119 records
later. The 38 PTB records consist of 19 records that were recorded early, before the 26th
week of gestation, and 19 records recorded later. The results of the developed models can
be assessed based on such quality measures as accuracy, specificity, sensitivity, and area
under the curve (AUC) of the receiver characteristic operator curve (ROC) [95,96].

Table 2. Details of the Term-Preterm EHG Database (TPEHG) recordings dataset [73,94].

Recording Recording Week Median Term Delivery Preterm Delivery

Early Term 23 143 19
Late term 30 119 19

Accuracy (1) is the ratio of how many correct predictions the model made out of the
total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity (True Positive Ratio) (2) tells us what proportion of the positive class were
correctly classified and specificity (True Negative Rate) (3) tells us what proportion of the
negative class became correctly classified.

Sensitivity =
TP

TP + FN
(2)

Speci f icity =
TN

TN + FP
(3)

The ROC curve is an evaluation metric for binary classification problems. It is a
probability curve that plots the True Positive Ratio against False Positive Ratio at various
threshold values and separates the ‘signal’ from the ‘noise’. The AUC is the measure of the
ability of a classifier to distinguish between classes and it is used as a summary of the ROC
curve. Figure 1 depicts an example of an EHG workflow.
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EHG data

AnalysisClassification

EHG signal

Preprocessing

Signal processing

Feature extraction
Feature selection

Preterm

No preterm

AI algorithm

Data Normalization

Figure 1. An example of the diagram of preterm birth classification workflow. From top-left: raw
EHG signal as an entry to quantifier block, preprocessing step serves as a feature extractor, and then
ML algorithm being employed to classify preterm labor.

Fergus et al. [19] focus their attention on the possibility of preterm birth prediction
using EHG signals—the type of data that was used for the first time by Manner et al.
Fergus’ work is based on the TPEHG dataset. In this work, models are developed using
various classifiers, namely: density-based, linear, and polynomial-based and nonlinear-
based classifiers. The features used include: root mean squares, peak frequency, median
frequency, and sample entropy. The best performing classifier oversampled the original
TPEHG dataset using the synthetic minority oversampling technique (SMOTE) [38], which
is a tree classifier that scores 90% sensitivity, 83% specificity. and an 89% AUC value. The
use of new features (clinical data), which was added later to original TPEHG dataset, allows
for the generation of a new dataset that consists of cases equally split between preterm and
term births. As a result, this significantly improves the accuracy as well as the specificity of
SMOTE. The polynomial classifier has a sensitivity of 97%, specificity of 90%, and AUC of
95%.

Unlike Fergus’ attempt using traditional ML methods, Hussain et al. [64] improve
the result on the original TPEHG dataset, scoring 89% sensitivity, 91% specificity, and a
93% AUC value with a self-organised neural network inspired by the immune algorithm
(SONIA) [97]. Such a model has improved generalisation capability over a plain neural
network. For balancing the dataset, Hussain oversamples the minority class. The authors
also propose a dynamic self-organised network (DSIA), the results of which lie just below
SONIA’s results.

Sadi-Ahmed et al.’s [86] approach differs from the two previous works by using the
Huang–Hilbert transform (HHT) [98]. HHT is a combination of two procedures: empirical
mode decomposition (EMD) and Hilbert transform (HT). EMD adaptively decomposes
any signal, with no prior knowledge, into a sum of oscillating single components, called
intrinsic mode functions (IMF). Basis functions of EMD are specific to the signal, which
makes it suitable for the analysis of non-stationary and non-linear signals. HT is used to
calculate instantaneous frequency (IF) and amplitude (IA) of each of these IMFs. For the
best combination of features, the linear SVM classifier achieves sensitivity 98%, specificity
93%, and AUC 95%. The work’s advantage is a high diagnostic performance that is due to
the very high sensitivity and low computational cost.

The attempts described so far use 30 min long recordings, while Despotovic et al. [87]
achieve better results by splitting the 30-min records into two 15 min ones. What is worth
mentioning is that the authors use records that were made between the 22nd and 25th week
of gestation, that is very important for the early prediction. They propose new features
that exploit the signal’s nonstationarity and empirical mode decomposition. The problem
of imbalance is solved using an adaptive synthetic sampling (ADASYN) [42] approach for
imbalanced learning. A random forest [46] classifier combined with artificial sampling
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using 10-fold cross-validation on 322 samples, out of which 38 are preterm, achieves 99%
accuracy, 98% sensitivity and AUC of 99%. The obtained results are suspiciously good.
Perhaps the model has over-fitted the data and cross-validation may not be able to detect it
in the case of a small number of data [99]. It is very likely that the model will not generalise
well to new data.

Degbedzui et al. [89] propose the classification of EHG signals using the following
ML algorithms: K-NN and SVM. The best result obtained is 96.16% accuracy for K-NN
and 99.74% for the SVM algorithm. The work is distinguished by the high accuracy that
was achieved in classification.

Chen et al. [88] propose a solution that is based on deep neural networks on the
TPEHGT dataset [94,100]. This is different from previous solutions that used classic ML
algorithms. It obtains the results of 98.2% sensitivity, 97.74% specificity, and accuracy of
97.9%. According to the authors, adding more EHG signals can improve the accuracy of
predicting preterm birth.

3.3. Electronic Health Records

Electronic health records (EHR) contain data regarding the course of the pregnancy as
well as information about patients medical history and necessary personal data collected
through a medical interview. They allow us to assess the risk of premature birth before
conception and during pregnancy [12,80]. However, this type of data is very difficult to
analyse due to the lack of standardisation among hospitals in the world, which does not
allow for an easy automation of predictions and the fast adaptation of the created models
for various research centres. Despite these difficulties, many researchers have attempted to
analyse the available data to detect risk factors favouring premature birth [11]. It is difficult
to compare the results of the following works, because all of the models are trained on
different datasets. The only differences that we can highlight are related to data imputation
or methods of balancing the dataset. Figure 2 depicts an example of an EHR workflow.

input

AnalysisClassification

Preprocessing

Feature selection

Preterm

No preterm

AI algorithm

Data Normalization

Features

Age BMI
Hypertension Prior preterm

Diabetes Cervical length
Smoker Drinker

Figure 2. An example of the diagram of preterm birth classification workflow. From top-left: raw
electronic health records (EHR) features as an entry to quantifier block, preprocessing step serves as
a feature extractor, and then ML algorithm employed to classify preterm labor.

Woolery et al. [76] developed a prototype system for predicting preterm labour risk
based on rough set theory, a method for managing uncertainty in knowledge acquisition.
Applying that method to the dataset, the authors create 520 usable rules and then validate
them by entering them into a dedicated expert system. The proposed system is 53–88%
accurate in predicting preterm birth for 9419 patients.
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Grzymala-Busse et al.’s [75] research showed that the performance of computer-based
methods for the prediction of preterm birth is significantly better than the performance
of manual methods. The authors try to identify regularities that are hidden in datasets
by utilising the ML program LERS (Learning from Examples based on Rough Sets) [101].
Classification rules for preterm prediction are induced by applying genetic algorithms to
the dataset to improve the accuracy. The experimental results show that the prediction rate
of rule sets with the appropriate classification scheme is 68–90% accurate.

Mercer et al. [77] aim to develop a risk assessment system for sPTB prediction at 23 to
24 weeks’ gestation. They evaluate more than 100 parameters, like age, medical history,
complications of current gestation, body mass, or Bishop score that may be considered
to be clinical risk factors for subsequent spontaneous preterm delivery. In this work, the
authors apply univariate analysis and multivariate logistic regression on a random selection.
Despite many input factors, the risk assessment system has relatively low sensitivity
(24.2% and 18.2%) and positive predictive value (28.6% and 33.3%), for multiparous and
nulliparous women, respectively. Nulliparous is a term that describes a woman who has
not given birth to a child, but it does not mean that she has never been pregnant. Someone
who has had a miscarriage, stillbirth, or elective abortion, but has never given birth to a
live baby, is referred to as nulliparous.

Goodwin et al. [78] focused on developing tools and techniques to help understand
the causes of preterm birth. The authors perform five different modelling techniques that
use neural networks, logistic regression, Classification And Regression Trees (CART) [102],
and software, called PVRuleMiner and FactMiner. However, the results do not perform as
well as previous studies using smaller datasets and inductive ML methods and found only
small differences in all proposed methods.

Frize et al. [79] compared two preterm births classification methods: the first is an
artificial neural network with weight-elimination (ANN-we); the second is a combined
decision-tree (DT) for the elimination of input features that have little impact on the results
and artificial neural network with weight-elimination (ANN-we). At first, both methods
are evaluated on a relatively small dataset of adults in an intensive care unit (ICU). The
performance of both methods is reported as a mean and standard deviation for three
output measures: specificity, sensitivity, and ROC. Next, the better performing classifier,
the DT-ANN, is applied to a large database collected in the United States before 23 weeks
of gestation in order to predict premature births. The dataset contains over 113,000 cases.
The superior DT-ANN classifier is also shown to be effective in predicting PTB. For the
parous cases, a sensitivity of 66% and specificity of 84% are achieved. The classifier for
nulliparous cases achieves a sensitivity of 65% and specificity of 71%.

Vovsha et al. [18] used the “Preterm Prediction Study”, a clinical trial dataset that
was collected between 1992 to 1994, which means that current PTB treatments were not
then in use, that is why dataset depicts natural incidence of PTB. A valuable feature of
the dataset is the presence of screenings performed at an early stage of the pregnancy. In
this article, particular emphasis is placed on both predicting preterm birth in nulliparous
mothers and understanding its complex etiologies. Vovsha’s approach makes use of SVM
with linear and non-linear kernels and logistic regression. The best performing classifier
is an SVM with radial basis function (RBF) kernel scores, on average, for all populations:
0.57 sensitivity and 0.69 specificity. The positive aspect of this work is the fact that the
best model is tested on previously unseen data. However, Vovsha’s analysis lacks a more
elaborate explanation of the approach to the missing data and imputation. What is more,
the results may be distorted due to the training of the SVM classifier on an unbalanced set.

Tran et al. [11] paid considerable attention to the proper preparation of data. The
research team takes measures to prevent a “leakage” problem—records that implicitly
indicate the outcome to be predicted, e.g., they contain procedures and tests that are
performed late in the course of the pregnancy, and are not considered as features. Features
that occurred before the 25th week of gestation are explicitly extracted. Data are balanced
through under-sampling the majority class. This work utilises, as previously proposed by
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the authors, reducing instability under correlated data, which is a stabilised sparse logistic
regression (SSLR). To estimate the upper-bound of model accuracy, Tran uses Randomised
Gradient Boosting (RGB)—a hybrid of Random Forests and Stochastic Gradient Boosting.
Before building the model, the group visualises dataset by embedding data points into
2D space using t-SNE [103]—that leads them to the assumption that there are no simple
linear hyperplanes that can separate the preterm births from the rest. Results are very
well presented and documented. The top three risk factors found are multiple fetuses,
cervix incompetence and prior preterm births. The highest AUC using RGB is in the
range of 0.80–0.81 and the proposed SSLR method is only slightly worse with the AUC in
the range of 0.79. The authors also propose a simplified prediction model with only 10
features, achieving a similar overall quality of AUC 0.77, which, in turn, allows for better
transparency and interpretability.

Weber et al. [80] used data that were collected on a large number (2+ million) of
patients to predict preterm birth. Weber’s work focuses on nulliparous women preterm
birth. The final analytic sample does not include records with missing critical data, limits
the scope to early sPTB (20–32 weeks) and nulliparous women of the desired ethnicity. The
authors treat missing data with Multiple Imputation by Chained Equations (MICE) [104].
The following ML methods are used: logistic regression, random forest, k-nearest neigh-
bours, generalised additive models, lasso regression, ridge regression, and elastic net
with mixing parameter. All of the algorithms have similar performance (five-fold cross-
validation—AUC). The results for logistic regression of cross-validated AUCs are 0.62
and 0.63 for non-Hispanic blacks and whites, respectively. Having combined racial-ethnic
groups prediction improves the AUC to 0.67—that is a similar value to others who use
bio-markers. This article concludes that the resolution of administrative data is inadequate
for the precise prediction of risk for early sPTB, despite the use of advanced statistical
methods. The results may be limited by the data, rather than the statistical tools. Perhaps a
better feature engineering could improve the results.

Esty et al. [81] analysed two datasets containing data on births. One of the objectives
of this work is to create a model that uses data that are collected during maternal prenatal
medical visits to surpass the prediction quality of fibronectin marker predictions, for which
screening is expensive and highly invasive. The authors note that there is a large number
of missing variables in both of the datasets, although they do not provide exactly to what
extent. The missing features in both datasets are mostly missing at random, which allows
them to be imputed based on other related features in the dataset. However, features
with more than 50% of missing data are removed. Imbalance in datasets is cured with
down-sampling the majority class. For classification, the authors use a C5.0 Decision
Tree [105]. Unfortunately, they do not provide features that the model considers to be
the most decisive. The results of the proposed model are sensitivity: 90.9%, specificity:
71.8%, and ROC: 80.9%. According to the authors, their model presents a trade-off between
increasing sensitivity and decreasing specificity for the previous work done. An increase in
sensitivity is desirable in the case of preterm prediction.

Gao et al. [12] tried to predict extreme preterm birth (EPB)—infants that were born
before the 28th week of gestational age. The data include patient demographics, diag-
noses and procedures, prescribed medications, and laboratory test results. To solve bias
problems that are caused by the unbalanced dataset, the controls in the development are
under-sampled. The evaluation set is not balanced. The model preparation workflow
consists of four elements: word embedding, cohort construction (30 cohorts), which uses
bootstrapping to undersample controls, ML, and medical concept ranking based on statisti-
cal models. Gao et al. use both bag of words (BOW) and word embedding to represent
each medical concept. For BOW, term frequency-inverse document frequency (TF-IDF)
is used to normalise the importance of each medical concept. For word embedding, a
skip-gram is used to find the most related words for a given word (representation that can
predict the surrounding medical concepts for a particular concept of interest). The created
models use linear regression (LR), SVM, and gradient boosting (GB). A long short-term
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memory (LSTM) [106] model is used to characterise sequential information. For non-neural
networks with word embedding, LR has the highest AUC of 0.769, and with a combination
of BOW and word embedding, LR also achieves the best performance, with an AUC of
0.780. LSTM using word2vec [107] scores an AUC of 0.811. The authors create an ensemble
of the LSTM with word2vec models, which achieves an AUC of 0.827, 96.5% sensitivity,
and 69.8% specificity. The positive predictive value (PPV) of the best ensemble model is
extremely low, at 3.3%, which indicates that most of the predicted EPB are non-EPB. PPV
is equal to the ratio of the number of true positive results to the sum of true and false
positives.

Lee et al. [83] proposed the application and comparison of six ML algorithms for
the prediction of preterm birth: the artificial neural network (ANN), logistic regression,
decision tree, Naive Bayes, random forest, and SVM. The following features are used for
the analysis: prior preterm birth, diabetes mellitus, drinker, smoker, hypertension, in vitro
fertilisation, age, BMI, parity, and cervical length. The model achieves a classification
accuracy of 91.14% using ANN and 91.80% multinominal logistic regression. The study
shows that the most important features used for classification are: hypertension, BMI,
cervical length, and age. The study was conducted on a small statistical group of 596
women.

Rawashdeh et al. [84] proposed the preterm birth prediction for women with cervical
cerclage based on EHR data, which contains such features as age, prior preterm, cervical
length before and after cerclage, or uterine anomaly. The authors compare several classifiers,
such as random forest, K-NN, and neural networks. In the best variant, they achieve 98%
accuracy and specificity at the level of 94%.

Prema et al. [82] proposed a solution that is based on two classifiers: logistic regression
and the SVM algorithm. The main risk factors for spontaneous preterm birth, such as age,
number of times pregnant, obesity, diabetes mellitus (DM and GDM), and hypertension of
the pregnant women are featured as entry into the classification. It shows that the identified
risk factors are helpful in sPTB prediction. The results show that both GDM and DM are
major preterm birth risks.

Koivu et al. [85] proposed experimentation to discover novel risk models that could
be utilised in clinical settings. They use a large dataset of almost 16 million observations.
They use three state-of-the-art ML algorithms, such as logistic regression, artificial neural
network, and gradient boosting decision tree. The best performing ML algorithms achieved
0.76 AUC for early stillbirth, 0.63 for late stillbirth, and 0.64 for preterm birth.

3.4. Transvaginal Ultrasound

Transvaginal ultrasound is a non-invasive transvaginal imaging examination that is
based on ultrasound waves, allowing for visualising and diagnosing many pathologies. It
consists of inserting the probe into the vagina, thanks to which the doctor can better visu-
alise and more accurately assess the reproductive organ. Each time, the probe is protected
with a disposable latex cover, thanks to which the test is safe for the woman—there is no
possibility of transmission of infection. The first work was based on transvaginal ultra-
sound images that used ML algorithms was the work of Włodarczyk et al. [9]. Włodarczyk
proposed the segmentation of the cervix using the convolutional neural network—U-
Net [108]. On the segmentation results, he estimates two biomarkers—CL (cervical length)
and ACA (anterior cervical angle). Both of the biomarkers are used to manually assess
the risk of spontaneous preterm birth (sPTB) by doctors [109]. Subsequently, he classifies
the obtained results using classic ML algorithms, such as SVM or Naive Bayes. The best
results are obtained by Naive Bayes algorithm: accuracy of 7.5%, precision of 85%, recall
of 74%, and AUC of 78.13%. The sPTB prediction results are better than those that were
presented in [109] by gynaecologists. In the second study, Włodarczyk et al. [10] proposed
an end-to-end solution. It is a simultaneous segmentation and classification of the cervix on
transvaginal ultrasound images. The solution is based on a convolutional neural network
that was inspired by the Y-Net network [110]. The paper has state-of-the-art results in IoU,
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recall, and precision on transvaginal ultrasound images. Figure 3 depicts an example of
workflow utilising transvaginal ultrasound.

Input

Preterm No preterm

Convolutional Neural Network

US image

Mask

Predicted labels

Figure 3. An example of a diagram of the preterm birth classification. From left: transvaginal
ultrasound image with a mask showing cervix as entry into convolutional neural network, simplified
diagram of convolutional neural network and segmentation results with preterm/control class as a
outcome.

3.5. Uterine Electromyography

Uterine electromyography (EMG) is electrical activity of the myometrium, or uterine
muscle, which is responsible for myometrial contractions.

Maner et al. [90] addressed the problem of classification preterm labour pregnant
patients in gestational ages that ranged from 24 to 41 weeks, by using an artificial neural
network (ANN) on uterine electromyography (EMG) data. The authors use spectral
analysis to quantify EMG signals by finding the means and standard deviations of the peak
frequency and then measure parameters, like burst duration, number of bursts per unit
time, and total activity. All of those extracted variables serve as inputs to the Kohonen
ANN, which groups the output data into four categories: term labour (TL), term non-
labour (TN), preterm labour (PTL), and preterm non-labour (PTN). The obtained accuracy
of correctly identified patients is 79%, 92%, 86%, and 71%, for TL, PTL, TN, and PTN,
respectively.

Most et al. [91] also focussed on analysing the electrical activity of the uterine muscle.
The authors study non-invasive transabdominal electrical uterine myographic monitoring
(EUM) and utilise it as a preterm birth predictor with a comparison of fetal fibronectin
(fFN) and cervical length measurement. To evaluate this hypothesis, they perform logistic
regression and obtain the following results: 41% sensitivity and 92% specificity. It proves
that a combination of EUM and the history of preterm delivery is significantly correlated
to the risk of PTB. Furthermore, a combination of the following three risk factors: EUM,
fFN, and cervical length (CL) can increase the negative predictive value from 79% for the
only fFN to 92% for all inputs.

4. Discussion

Despite global efforts to prevent PTB, the worldwide rate of newborns delivered
prematurely has remained stable throughout the last 30–40 years. Many studies and
screening models were prepared to reduce this rate. However, millions of neonates continue
to be born before 37 weeks of gestation every year. Preterm delivery is associated with
an increased risk of respiratory distress syndrome (RDS), intracranial haemorrhage (ICH),
necrotising enterocolitis (NEC), or cerebral palsy. Complications that are associated with
prematurity may lead to neonatal death, impaired neurodevelopment, and long-term
disability. Because we may prevent some of the PTB due to population screening, further
steps need to be taken to improve current strategies.

It is noteworthy that prenatal care standards differ worldwide. In some countries,
every pregnant patient is subjected to for the three ultrasound scans (e.g., Poland), in
others two scans (e.g., the United Kingdom), and in some countries only one scan in the
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second trimester (e.g., Norway). Regardless of the country, every patient shall be offered a
mid-trimester scan to measure the cervical length (CL). The length of the uterine cervix
strictly corresponds to the risk of PTB—the shorter cervix, the higher risk of PTB. Several
studies show that the cut off value for the increased risk of PTB is 25 mm. When the CL at
the mid-trimester scan (between 18 + 0 and 22 + 0 weeks) is less than 25 mm, the patient is
at higher risk of PTB, and shall remain under strict prenatal surveillance. In high-risk group
patients, we may administer means that have proven efficacy in prolonging the gestation,
such as progesterone or reducing adverse neonatal outcomes, such as the administration of
corticosteroids.

In spite of proper screening based on CL measurement, current screening strategies
cannot identify a significant percentage of patients who will deliver prematurely. This
fact points out that we shall continue extensive study in this field and look for alternative
solutions. One of the most popular theories associated with preterm delivery is the one
that was proposed by Romero et al. [111]. According to this theory, we should analyse
the preterm birth from a broader perspective, not only by shortening the uterine cervix,
but also by including other factors, such as immunological factors, uterine distention, or
inflammation. Unfortunately, we cannot predict whether one of these additional risk factors
will occur, and it seems that cervical measurement is the best tool for predicting preterm
birth. There were many studies that analysed the practical use of biochemical markers of
preterm birth detected in the vagina (e.g., insulin-like growth factor-1 (IGF-1), insulin-like
growth factor-binding protein IGFBP-1, or fetal fibronectin) [112,113]. Although tje results
pointed to statistically significant differences in these markers’ expression among patients
who delivered prematurely, they have not become a part of routine screening. We may
apply many methods to assess the risk of preterm birth. However, it seems that cervical
measurement is the only method applied worldwide, and we shall focus on increasing its
accuracy.

The length of the cervical canal is the key element of the cervical measurement. The
risk of preterm birth is increased in patients with a cervical length canal shorter than 25 mm
at the mid-trimester scan. However, the cervical length does not identify every patient
who will deliver soon. From our perspective, ultrasound images that are taken during
transvaginal measurement of the uterine cervix provide much more data than cervical
length alone. According to this point of view, more studies were evaluating additional
aspects of these ultrasound images. Sochacki et al. [109] proposed measuring the anterior
cervical angle to identify patients with an increased risk of preterm birth. Volpe et al. [114]
described a so-called cervical sliding sign in patients endangered with preterm birth. Banos
et al. [115] reported that the mid-trimester cervical consistency index performs better than
CL alone in the population at high risk of preterm birth. The last two research studies
point out that looking for new markers of preterm birth provided in the ultrasound images
makes sense, and we should continue our efforts.

ML methods allow for us to analyse data on the binary level, which is impossible for
a human eye. We believe that, when we incorporate various uterine cervix assessment
methods into the deep learning networks, we may improve the detection rates and observe
new phenomena based on the computer analysis of certain areas in the uterine cervix.
Cervical length measurement is based on the subjective assessment of the sonographer. For
inexperienced hands, the intraobserver measurement differences can be as high as 4 mm.
However, when we consider how many factors affect the final result, a new standardisation
method of the cervix’s objective evaluation may improve perinatal care quality. ML
may help clinicians in further management of the patient’s treatment. After a primary
assessment, deep learning networks could assist medical professionals in evaluating the
obtained images.

Moreover, a dynamic evaluation of the uterine cervix could be possible due to the
deep learning networks’ application. Ultrasound images only provide a single sample for
each patient, while short cine loops with hundreds of frames may be analysed successively
with dedicated algorithms. As we mentioned before, we believe that the place of ML
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in this field begins where the abilities of the human eye end. Thanks to the frame-by-
frame investigation, which would be very time-consuming, we may obtain additional data
on how the cervical tissue responds to applied pressure with the ultrasound probe and
investigate changes among the cervix automatically.

From our perspective, machines are meant not to replace humans in medicine, but
to support them. Deep learning methods may help to evaluate ultrasound images in a
novel way, especially where the human eye is not enough. We shall develop further studies
investigating these ideas’ clinical application and evaluate whether they improve perinatal
results. Unfortunately, ML methods have weaknesses and limitations in predicting spon-
taneous preterm birth. The main limitation is obtaining an extensive and good-quality
database that would allow new correlations between features to be tested on a larger
statistical sample. An additional limitation is the collection time of the dataset—researchers
have to wait until the pregnancy is completed to find out about the outcome, health, and
other characteristics of the baby that may be useful in the analysis, such as weight and
week at birth. The research paths in which we can see the potential may be ultrasound
imaging during the abdominal examination and transvaginal data. Ultrasound images in
solving the problem of predicting spontaneous preterm births are not well researched yet.
There are many research opportunities and discoveries for new biomarkers in ultrasound
images. An example of the possibility of further work on ultrasound images may be the
examination of tissue density around the cervical canal or fetal biometry.

In this work, we present a table that compares the datasets of analysed articles in
Table 1. Among reviewed works, we distinguish dataset size—number of patients or
pregnancies—the percentage of spontaneous preterm birth in this group and gestation
week of pregnant women during an examination or data recording, depending on the
data type. It can be seen that datasets significantly vary in size. Electronic health records
are the easiest to obtain in large amounts and, very often, they do not need annotations.
However, they may contain a lot of noise and information that itself suggest the result of
pregnancy—so the most effort must be put into data preparation. A common feature of
almost all datasets is connected with preterm birth specificity, which is unbalanced data
because of an average 10% frequency of sPTB. The researchers, predominantly to counter
this difficulty, reach out for the oversampling techniques, but they rarely point out that it
creates artificial data that may not have much in common with real observations—instead,
they focus on better accuracy results.

Difficulties of collecting preterm data arise not only from the specificity of the phe-
nomenon of the premature birth itself. Gathering medical data, in general, is connected
with important issues that are associated with ethical aspects, data privacy, and account-
ability. ML’s use in medicine is accompanied by relevant challenges beyond the simple use
of the algorithms. Medical and human health work touches sensitive topics that require
high standards and accuracy. One issue that requires special attention is that of ethics. In
many countries, the Medical Ethics Committee’s approval is required to conduct preterm
birth research [116]. Moreover, the use of the collected data requires additional preparatory
steps, e.g., to implement ML projects, all medical and personal data should be anonymised
according to GDPR standards [117]. Finally, attention should also be paid to the purpose
and use of the tools created. ML systems should only support medical diagnosis and not
replace the doctor to whom the final decision belongs.

In our work, we also provide a summary table of all the publications that we are
analysing (Table 3). It makes a comparison of the obtained results and used data types easier.
We can see that 75% of publications come from the 2010s, which may represent an increase
in interest in the topic, but this phenomenon is also correlated with the ever-increasing
possibilities of using machine learning to predict preterm birth. The most represented data
types are EHR and EHG with the latter primarily due to the publicly available TPEHG
dataset [73,94]. What might be found interesting is access to other datasets. Some of them
can be directly downloaded, while others require written enquiry. To our best knowledge,
the currently available datasets sources are:
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• National Institute of Child Health and Human Development (NICHD)—Maternal-Fetal
Medicine Units Network (MFMU) (https://mfmunetwork.bsc.gwu.edu/PublicBSC/
MFMU/MFMUPublic/datasets/ (accessed on 28 December 2020)),

• Better Outcomes Registry Network (BORN) Information System (https://www.bornontario.
ca/en/data/data-dictionary-and-library.aspx (accessed on 28 December 2020)),

• Pregnancy Risk Monitoring Assessment (PRAMS) (https://www.cdc.gov/prams/
state-success-stories/data-to-action-success.html (accessed on 28 December 2020)),

• Centers for Disease Control and Prevention (CDC)—National Center of Health Statis-
tics (NCHS) (https://www.cdc.gov/nchs/data_access/ftp_data.htm (accessed on 28
December 2020)),

• Term-Preterm EHG Database (TPEHG) (https://physionet.org/content/tpehgdb/1.0.
1/ (accessed on 28 December 2020)), and

• Term-Preterm EHG Dataset with Tocogram (TPEHGT) (https://physionet.org/content/
tpehgt/1.0.0/ (accessed on 28 December 2020)) [94,100].

To summarise the recent results obtained for each type of data, one can distinguish:

• EHG—Degbedzui et al. [89] who achieve accuracy of 0.997, recall 0.995, and specificity
1.0—using SVM classifier,

• EHR—Rawashdeh et al. [84] who achieve accuracy of 0.95, recall 1.0, and specificity
0.94—using random forest,

• TVS—Włodarczyk et al. [10] who achieve a recall of 0.68, and specificity 0.97—using
convolutional neural networks, and

• EMG—Most et al. [91] who achieve a recall of 0.41 and specificity 0.92—using logistic
regression.

We must remember that these results should be interpreted in the context of a data
set. From these results, we also conclude which tools to use, depending on the type of
data. Generally, for classification, the best choice is to use SVM or random forest. If we care
about automatic feature extraction, it is advisable to use neural networks. For image data,
the best results are obtained while using convolutional neural networks.

Many reviewed works use TPEHG dataset in which researchers compare their results
with previous works and notice the improvement in accuracy of a few per cent or less
and such trend repeats for many following years with new publications that are based on
TPEHG. One should realise that the dataset consists of only 38 preterm births (Table 2).
One preterm sample out of 38 available is 2.5% of the whole preterm group. One of the
important things that can be deduced from this is that one should not focus on accuracy
only, but rather more on sensitivity. What is more, one should treat these works more
as ML methods comparison, rather than a new model proposal that is encouragingly
more accurate and will make a better decision assisting system. It would be beneficial if
researchers could get bigger EHG dataset, which would verify whether models created on
TPEHG dataset generalise well, because the accuracy of almost 99% may raise suspicion
of data overfitting. Another thing to consider is that researchers attempting preterm birth
topic should point out which age of gestation patient’s examination or recordings were
performed. Because of the high mortality of infants born prematurely before the 28th week
of gestation, one should focus the most on examinations taken early. Only such ones allow
for us to create models that will help doctors to take precautions. The mentioned TPEHG
dataset has only 19 preterm deliveries in the group examined early around 23rd week of
gestation. It is known that such annotated data are challenging to obtain. However, it
seems of little benefit to science to exploit the same TPEHG dataset more in the future.

https://mfmunetwork.bsc.gwu.edu/PublicBSC/MFMU/MFMUPublic/datasets/
https://mfmunetwork.bsc.gwu.edu/PublicBSC/MFMU/MFMUPublic/datasets/
https://www.bornontario.ca/en/data/data-dictionary-and-library.aspx
https://www.bornontario.ca/en/data/data-dictionary-and-library.aspx
https://www.cdc.gov/prams/state-success-stories/data-to-action-success.html
https://www.cdc.gov/prams/state-success-stories/data-to-action-success.html
https://www.cdc.gov/nchs/data_access/ftp_data.htm
https://physionet.org/content/tpehgdb/1.0.1/
https://physionet.org/content/tpehgdb/1.0.1/
https://physionet.org/content/tpehgt/1.0.0/
https://physionet.org/content/tpehgt/1.0.0/
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Table 3. Comparison of the papers based on the obtained results and used data type, sorted by year.

Author Methods Results Data Type Year

Woolery et al. [76] LERS, ID3 Tree Accuracy: 0.53–0.88 EHR 1994

Grzymała-Busse et al. [75] LERS, genetic algorithm Accuracy: 0.68–0.90 EHR 1994

Mercer et al. [77] Univariate analysis and
multivariate logistic regression

Recall: 0.18-0.24,
Precision: 0.29–0.33 EHR 1996

Goodwin et al. [78] Neural networks, CART,
logistic regression AUC = 0.76 EHR 2000

Maner et al. [90] FFT, Kohonen Network Accuracy = 0.82 EHG 2007

Most et al. [91] Bivariate analysis, CHI square
logistic regression, Fisher’s test

Recall = 0.41,
Specificity = 0.92 EMG 2008

Frize et al. [79] Neural network, decision tree Recall: 0.65–0.66,
Specificity: 0.71–0.84 EHR 2011

Fergus et al. [19] K-NN, decision trees, SVM
AUC = 0.95,
Recall = 0.97,
Specificity = 0.90

EHG 2013

Vovsha et al. [18] Logistic regression, SVM Recall = 0.57,
Specificity = 0.69 EHR 2014

Hussain et al. [64]
DSIA (Dynamic Self-Organised
Network), benchmark: SONIA,
MLP, Fuzzy-SONIA, K-NN

AUC = 0.93,
Recall = 0.89,
Specificity = 0.91

EHG 2015

Tran et al. [11]
Logistic regression, randomised
gradient boosting, stochastic
gradient boosting, random forest

AUC = 0.81 EHR 2016

Sadi-Ahmed et al. [86] Huang-Hilbert transform (HHT),
IMF, SVM

AUC = 0.95,
Recall = 0.99,
Specificity = 0.98

EHG 2017

Weber et al. [80]

Super learning (SL), K-NN,
random forest, lasso regression,
ridge regression, elastic net,
Generalised Additive Models (GAM)

AUC = 0.67 EHR 2018

Despotovic et al. [87] Random forest, K-NN, SVM
Accuracy = 0.99,
AUC = 0.99,
Recall = 0.98

EHG 2018

Esty et al. [81] Decision trees, neural networks
AUC = 0.81,
Recall = 0.91,
Specificity = 0.72

EHR 2018

Gao et al. [12]
BOW and word embedding (NLP),
recurrent neural network (RNN),
regularised logistic regression

AUC = 0.83,
Recall = 0.966,
Specificity = 0.70

EHR 2019

Włodarczyk et al. [9]
Convolutional neural network (CNN),
SVM, K-NN, Naive Bayes,
Decision trees

Accuracy = 0.78,
AUC = 0.78,
Recall = 0.74,
Precision = 0.85

TVS 2019

Prema et al. [82] SVM, logistic regression

Accuracy = 0.76,
Recall = 0.84,
Specificity = 0.73,
Precision = 0.84

EHR 2019
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Table 3. Cont.

Author Methods Results Data Type Year

Lee et al. [83]
Naive Bayes, neural networks, SVM,
logistic regression, decision trees,
random forest

Accuracy = 0.92 EHR 2019

Chen et al. [88]
Wavelet entropy, Stacked Sparse
Autoencoder (SSAE)

Accuracy = 0.98,
Recall = 0.98,
Specificity = 0.98

EHG 2020

Degbedzui et al. [89] SVM
Accuracy = 0.997,
Recall = 0.995,
Specificity = 1.0

EHG 2020

Rawashdeh et al. [84]
Naive Bayes, decision trees, K-NN,
random forest, neural networks

Accuracy = 0.95,
AUC = 0.98,
Recall = 1.0,
Specificity = 0.94

EHR 2020

Włodarczyk et al. [10] CNN - FCN, DeepLab, U-Net
Recall = 0.68,
Specificity = 0.97 TVS 2020

Koivu et al. [85]
Logistic regression, neural networks,
gradient boosting AUC = 0.64 EHR 2020

In summary, an individual interested in developing a preterm birth prediction system
should take the following steps. Firstly, the method of collecting data should be consulted
between physicians and data scientists. It is crucial to collect universal data so that as
many medical centres as possible can use it. An important aspect is to try to create the
most balanced data. When working with imbalanced preterm birth data, that are naturally
skewed because of PTB occurrence, we need to use the methods described in Section 2.3.
Solving class imbalance is here an important issue, which will largely determine the quality
of our model. Next, it is necessary to prepare it properly, i.e., perform data anonymisation,
carry out the dataset’s filtration, which consists of removing outliers and imputing missing
values. The last stage is the proper selection of the machine learning algorithm for both
classification and feature extraction. The learning process should be carried out with the
division into training, validation, and test sets. The test set must not be used to adjust
any parameters of the model. In the case of preterm births, we need to primarily focus on
sensitivity and precision, but not solely on accuracy. We should be aware that a good result
on the test set does not guarantee success in applying the model in real life.

5. Conclusions

In this paper, we summarise the current application of ML methods that may be
incorporated into perinatal medicine. Afterwards, we outline the main four methods used
in preterm birth prediction: electrohysterography, electronic health records, transvaginal
ultrasound, and uterine electromyography. We present various works concerning each
method and compare them based on the achieved results. The reviewed studies suggest
that ML methods can improve preterm birth detection rates and contribute additional
information to identify women with true sPTB. Finally, they can also produce a powerful,
objective tool for assessing labour and earlier intervention.
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