
electronics

Article

Design and Evaluation of a New Machine Learning Framework
for IoT and Embedded Devices

Gianluca Cornetta 1,* and Abdellah Touhafi 2

����������
�������

Citation: Cornetta, G.; Touhafi, A.

Design and Evaluation of a New

Machine Learning Framework for IoT

and Embedded Devices. Electronics

2021, 10, 600. https://doi.org/

10.3390/electronics10050600

Academic Editor: Kenji Suzuki

Received: 4 January 2021

Accepted: 26 February 2021

Published: 4 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Engineering, San Pablo-CEU University, Boadilla del Monte, 28668 Madrid, Spain
2 Department of Engineering Technology (INDI), Vrije Universiteit Brussel, 1050 Brussels, Belgium;

abdellah.touhafi@vub.ac.be
* Correspondence: gcornetta.eps@ceu.es; Tel.: +34-91-472-4048

Abstract: Low-cost, high-performance embedded devices are proliferating and a plethora of new
platforms are available on the market. Some of them either have embedded GPUs or the possibility to
be connected to external Machine Learning (ML) algorithm hardware accelerators. These enhanced
hardware features enable new applications in which AI-powered smart objects can effectively and
pervasively run in real-time distributed ML algorithms, shifting part of the raw data analysis and
processing from cloud or edge to the device itself. In such context, Artificial Intelligence (AI) can
be considered as the backbone of the next generation of Internet of the Things (IoT) devices, which
will no longer merely be data collectors and forwarders, but really “smart” devices with built-in data
wrangling and data analysis features that leverage lightweight machine learning algorithms to make
autonomous decisions on the field. This work thoroughly reviews and analyses the most popular ML
algorithms, with particular emphasis on those that are more suitable to run on resource-constrained
embedded devices. In addition, several machine learning algorithms have been built on top of
a custom multi-dimensional array library. The designed framework has been evaluated and its
performance stressed on Raspberry Pi III- and IV-embedded computers.

Keywords: supervised learning; unsupervised learning; semi-supervised learning; reinforcement
learning; classifiers; decision trees; boosting; data wrangling; smart objects; embedded IoT platforms

1. Introduction

The Internet of Things (IoT) and Artificial Intelligence (AI) are probably two of the
most popular research topics at present, driving the interest of both the academic and
industrial sectors. The reason for this is their transversality, which makes them suitable for
almost every existing application. IoT and AI have been successfully applied to several
research and industrial fields, including health [1], life science [2], smart cities [3,4],
environmental monitoring [5,6], precision agriculture [7,8], and education [4,9]. Figure 1
depicts the Machine Learning (ML) adoption process, used to target several kinds of
problem or application. Machine learning can be effectively used to:

1. Perform an a posteriori analysis of a given problem in order to detect business process
issues and perform optimisation tasks;

2. Gain more insight into a given problem or improve business processes by automating
simple and repetitive tasks and assisting the end user in the decision-making process;

3. Perform long-term optimisation by fully automating all the business processes and
applying complex predictive techniques.

Both IoT and AI can be considered empowering technologies and, as such, they can
converge into a unique framework that leverages their symbiotic relationship to improve,
optimise and automate almost every business process.

Electronics 2021, 10, 600. https://doi.org/10.3390/electronics10050600 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8614-079X
https://orcid.org/0000-0001-8891-180X
https://doi.org/10.3390/electronics10050600
https://doi.org/10.3390/electronics10050600
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10050600
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/5/600?type=check_update&version=2


Electronics 2021, 10, 600 2 of 41

Figure 1. Machine learning (ML) technology adoption process (adapted from [10]).

Moreover, the rapid development of new hardware, software and communication
technologies experienced in recent years has fostered the proliferation of low-cost devices
and asynchronous communication protocols based on publish/subscribe mechanisms such
as Message Queue Telemetry Transport (MQTT) and Constrained Application Protocol
(CoAP), which are particularly suitable for IoT applications.

The new sensory boards available on the market now have enough computing power
to run locally complex tasks, thus extending the dew computing paradigm to smart
objects [11] and allowing for local processing and storage of the measured data before
making them available to edge or cloud infrastructure for further processing and analysis.

According to a recent forecast (Source International Data Corporation (IDC), re-
port available on-line at https://www.idc.com/getdoc.jsp?containerId=prUS45213219
(accessed on 10 February 2021)), by 2025, there will be 41.6 billion connected IoT devices
generating 79.4 zettabytes (ZB) of data. Thus, IoT will be among the most significant data
sources in the upcoming years. However, the effective management of data generated by
IoT is not the only concern; besides data volume, IoT is also characterised by the extremely
dynamic nature of its data. More specifically, IoT generates time-dependent geolocalised
data with a variety of formats, modalities and amounts. Extracting knowledge from such a
large amount of time-dependent and heterogeneous data is a challenging task. In this new,
data-centric context, data science and AI will play a crucial role.

Data science is the combination of several scientific fields relying on data-mining, big
data, machine learning and statistical techniques, aimed at making meaningful raw data
through pattern matching.

Data analysis is the process of inspecting, cleansing and modelling data, and involves
several steps, from data wrangling (namely, remapping raw data into another format more
suitable for analysis), identification of the data attributes (either categorical or quantitative)
and choice of a suitable data model (such as, for example, classification, clustering or neural
networks), to applying efficient algorithms to match data characteristics.

Machine learning (ML) and IoT are converging [12,13] and the availability of high-
performance embedded computing boards on the market is fostering the development of
the embedded AI concept. In this new paradigm, data analysis and ML algorithms run in a
distributed fashion across the complete IoT stack from device to cloud. In such a context,
edge devices are not only a data source, since they must also perform simple data analysis
on the raw data, provided they have enough computing power to carry out this task.

Some possible approaches to enabling embedded AI on edge devices may consist of
either developing dedicated hardware [14,15] or of leveraging low-, mid- and high-end
embedded computing boards to execute ad hoc frameworks that implement a classification
or a prediction algorithm targeting a specific application [16–19]. Other solutions rely
either on architectures where the edge/fog layer is in charge to run ML and sensor fusion
algorithms on the data collected from the edge devices [20–24], or on cloud services that
automatically compile pre-trained ML inference models into representations which are
more suitable for running in resource-constrained edge devices [25].

There are several open-source ML frameworks available, with Tensorflow (https:
//www.tensorflow.org (accessed on 10 February 2021)) being the one with the largest
community and user base [26]. The Tensorflow suite also includes a lite version called
Tensorflow Lite (TfLite). However, unlike a full-fledged ML framework such as Tensorflow,

https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://www.tensorflow.org
https://www.tensorflow.org


Electronics 2021, 10, 600 3 of 41

TfLite is rather a strongly opinionated ML platform that includes a runtime environment
and a set of tools to convert complex Tensforflow models into simplified ones that can
run on edge devices using the platform’s built-in algorithms [23]. A flexible approach
to embedding AI into edge devices requires the features of a full-fledged framework;
unfortunately, the available ML frameworks cannot run on constrained devices and the
complexity can be managed either at the cloud layer by leveraging a model compilation
process to match the hardware requirements of the target platform [25], or at the edge layer
by running the heavy tasks of an ML framework on an edge server [23].

To the authors’ knowledge, no attempt has been made to date to design and im-
plement a lightweight and general purpose cross-platform ML framework suitable for
running on edge devices. The implementation presented in this work leverages Node.js
(https://nodejs.org/ (accessed on 10 February 2021)) and JavaScript to run seamlessly on
a wide range of hardware platforms and operating systems, including extremely resource-
constrained boards such as Tessel 2 (https://tessel.io (accessed on 10 February 2021)) and
Neonious One (https://www.neonious.com/neoniousOne (accessed on 10 February 2021)).
The framework architecture is loosely coupled and comprises several independent modules
that implement core features for tensor and matrix manipulation, data wrangling, data
analysis, etc., allowing the execution of the ML flow depicted in Figure 2 on the device.
Each module exposes its own APIs and can operate both jointly with the other modules,
wrapped by a common middleware layer, and alone. This approach allows the implemen-
tation of scenarios in which each module can be containerized, orchestrated and scaled
independently as a microservice using Kubernete releases, such as as MicroKubernets
(https://microk8s.io (accessed on 10 February 2021)) or K3s (https://k3s.io (accessed on
10 February 2021)), suitable for running on edge devices [27,28].

Data science offers a rich set of algorithms to deal with classification, prediction and
analysis; however, not all of them are suitable to run in constrained devices, as is required
in IoT scenarios. In such a context, the objectives of this work are:

1. Evaluate the features and requirements that are desirable in a modern ML framework
targeted to IoT applications;

2. Evaluate the impact of the ML software infrastructure on embedded hardware com-
monly used for IoT applications;

3. Identify the constraints imposed by the underlying hardware on the ML algorithms
used in the proposed framework.

The rest of the paper is organised as follows. Section 2 reviews the most common
machine learning techniques and algorithms, putting particular emphasis on those that are
more suitable for IoT and embedded applications, and that should be implemented as a
library in the framework described in this work. Section 3 deals with the requirements and
the features that are desirable in a modern ML framework targeted to embedded devices
and introduces the software architecture of a novel ML engine targeted to IoT and embed-
ded applications. Section 4 describes the test set up deployed to evaluate the performance
of the ML introduced in this work and briefly reviews the hardware characteristics of
the embedded microcontroller boards used in the experiments. Section 5 delves into the
analysis of the experimental results, evaluating pros and cons of the proposed solution
and proposing possible improvements to be targeted in future research. Finally, Section 6
summarises the key aspects of this work.

2. A Review of Machine Learning Algorithms and Applications

The term Machine Learning (ML) refers to algorithms with the ability to learn and
autonomously perform a specific task, relying on pattern-matching and data inference.
More specifically, an ML algorithm is designed to build a mathematical and statistical
model based on a training dataset. This model is then used to perform either autonomous
predictions or make decisions without human intervention. Machine learning algorithms
are used in a plethora of applications including spam detection, fraud detection, preci-
sion agriculture, weather forecasting, banking, computer vision, handwriting recognition,

https://nodejs.org/
https://tessel.io
https://www.neonious.com/neoniousOne
https://microk8s.io
https://k3s.io


Electronics 2021, 10, 600 4 of 41

speech recognition etc. Although machine learning in not a new research field, it is now
experiencing a resurgence of interest in the scientific community and can be considered
one of the fastest-growing fields in computer science. Often, the terms “artificial intelli-
gence” and “machine learning” are used interchangeably; however, they are not the same
thing. Machine learning can be considered a sub-field of artificial intelligence, in which
the machines have the ability to learn from the experience they acquire by using statistical
methods to analyse a dataset and infer a given behaviour for a certain problem.

Figure 2 depicts the typical workflow followed when defining a machine learning
problem and proposing a solution.

Figure 2. Typical ML workflow.

The ML algorithm generates a mathematical model from the ingested data. The learn-
ing process is iterative. At the first iteration, the model is trained using historic data;
however, when the model is deployed in a production environment, new data are in-
gested and used to train the model on a regular basis. The training operation depends
on the size of the dataset and can be very time-consuming. For this reason, especially in
resource-constrained environments, it is not advisable to start the training process from
scratch at each iteration. Luckily, there are ML algorithms that are able to train the model
incrementally, significantly reducing the training time [29]. The quality of predictions can
be improved with a feedback data ingestion loop, in which real and predicted data can be
used to improve the reliability and efficiency of the prediction model in the next iteration.

When the full process steps depicted in Figure 2 can be completely automated, if the
machine is fast enough and the system feedback is available and ingested before a new
prediction is performed, it is possible to train the ML algorithm at each new iteration.
Machine learning devices using this method are called an online learning machine.

Two major issues must be addressed properly when defining an ML model: overfitting,
and data preparation. Overfitting [30] occurs when the ML model matches the training data
too closely, and hence lacks generality and has a negative impact on performance when
analysing new data. The interested reader may refer to Appendix A for a brief discussion
on overfitting and possible solutions. Data preparation and feature engineering [31] are
of paramount importance in the machine learning pipeline. ML algorithms generate
mathematical models that fit the training data in order to perform predictions. Features
are the inputs of these mathematical models. A feature is a measurable property of the
observed phenomenon; thus, feature engineering is the process of extracting measurable
properties from the raw data and transforming them into a format that is more suitable for
the ML model.

Constructing a valid dataset is a complex process that must go through several steps:
first of all, collected raw data must be analysed and key features identified; if the data
amount is too large, an adequate sampling strategy must be chosen to extract meaningful
samples from the selected features. Sampling must be carefully performed and account for
possible data unbalances that could eventually lead to skewed datasets that could bias the
prediction. Finally, sampled data must be randomized and split into training, validation
and testing sets for the ML model. The selected data must also undergo a mandatory



Electronics 2021, 10, 600 5 of 41

transformation process (e.g., converting a non-numeric feature into a numeric one and
resizing inputs to a fixed size). Optionally, quality transformations can also be applied to
the dataset. Quality transformations are not mandatory but, in some cases, can help to
improve the quality of a prediction, and may include tokenization, normalization of the
numeric features, and introducing non-linearities into the feature space.

There are four main categories of machine learning algorithms: supervised learning,
unsupervised learning, semi-supervised learning, and reinforcement learning. All of them will be
thoroughly reviewed in the following sections.

2.1. Supervised Learning

In supervised learning [32], the dataset D is a finite set of feature vectors xi; namely

D = {x1, x2, . . . , xn} | xi ∈ Rk (1)

Each feature vector xi contains a set of properties xj
i (with j = 1, . . . , k) that describes

an element of the dataset. For example, if each element of the dataset represents a house,
the xj

i ’s could represent the location, the number of rooms, the square meters, etc. A label
yi is assigned to each element of the dataset, which leads to a a set of examples E formed
by pairs of feature vectors and labels, namely

E = {(xi, yi)}N
i=1 (2)

The label yi can be considered as the output associated to a given example. The output
can either be numerical or categorical. In the former case, the learning process is called a
regression in the latter case, the learning process is called a classification.

The objective of a regression problem is to predict the value of label yj ∈ R+ (also
called a target), given an unlabelled example xj. Conversely, the objective of a classification
problem is to automatically assign a class to a label yj, given an unlabelled example xj.
In this case, yj ∈ {c1, c2, . . . , cn}, where each ci represents a class or category to which an
example may belong.

2.2. Unsupervised Learning

In supervised learning, a training dataset (i.e., a set of examples used for learning,
whose correct outputs are known) is used to train a mathematical model that infers the
relationship between system inputs and outputs. Conversely, in unsupervised learning, a
set of unlabelled examples, {xi}N

i=1, is used to gain a deeper understanding about the
inherent data distribution and properties. In general, unsupervised learning is used for
data exploratory analysis and dimensionality reduction. Dimensionality reduction refers
to the methods used to reduce the number of features of a given example in order to ease
further data processing (generally to pre-train supervised algorithms).

Figure 3, summarizes the four major classes of ML algorithms. The algorithms are
classified according the type of output (either continuous or discrete) and the type of
learning (either supervised or unsupervised).

2.3. Semi-Supervised Learning

Semi-supervised learning algorithms [33] are a class of algorithms able to learn from
a partially labelled dataset. This approach is particularly beneficial when manipulating
large datasets, since labelling is an expensive operation. Semi-supervised algorithms can
be used when it is necessary to categorize large amounts of data, relying only on a few
labelled examples. Typical applications include object segmentation, similarity detection
and automatic labelling.



Electronics 2021, 10, 600 6 of 41

Figure 3. Types of learning and ML classes of algorithms.

2.4. Reinforcement Learning

Reinforcement learning algorithms [34,35] rely on a decision-making agent that super-
vises the learning process. The learning algorithm samples the environment state (i.e.,
a vector of unlabelled features) and makes a decision according to the sampled data in a
trial-and-error fashion. The decision leads to an action, and to a reward from the environ-
ment. The better the action, the higher the reward. The action to take is decided by a policy
function f (xi) of the feature vector xi. The policy function is a mapping from Rk to a finite
set of actions A = {a1, a2, . . . , am}, namely

f (xi) : xi ∈ Rk 7→ A. (3)

The reinforcement learning algorithm can either be model-based [36,37] or model-
free [38]. Model-free algorithms are more popular at present, as they are easier to implement
and able to converge faster to an optimal solution for large-scale Markov Decision Processes
(MDPs).

2.5. Machine Learning for IoT

IoT technology can leverage machine learning algorithms as the enabling technology
for a wide number of applications [15,39–43]. The choice of the right machine learning
(ML) algorithm basically depends on the use one wants to make of the collected data,
and on the design requirements in terms of accuracy, linearity, number of parameters and
hyperparameters, number of features and training time. These requirements can be even
more stringent if the algorithm is supposed to run in hardware-constrained embedded
devices or smart objects.

ML algorithms are often categorized either by learning style (supervised, unsuper-
vised, etc.) or by similarities (regression algorithms, instance-based algorithms, regu-
larization algorithms, etc.); however, in the context of IoT, a classification based on the
application domain and the ML technique used can help to gain a much deeper insight
into ML learning’s role in the IoT echosystem as an empowering technology.

Table 1 categorizes several ML algorithms that are suitable for execution on embedded
devices according to their application domain and the ML technique (i.e., classification,
prediction or learning agent). This classification does not pretend to be exhaustive and for
more comprehensive treatment, the interested reader may refer to [43–45]. In particular,
Ref. [45] is a comprehensive survey that explores the applications of ML algorithms to the
whole IoT stack, including Cloud and Edge layers. To date, ML algorithms have mainly



Electronics 2021, 10, 600 7 of 41

been used in the IoT device context for classification, prediction and device management
purposes. Classification and prediction tasks rely, almost exclusively, on supervised and
deep learning algorithms, whereas device management tasks rely on reinforcement learning
techniques (both model-free and model-based). The supervised algorithms used more at
the device level are: Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Decision
Tree (DT), Naive Bayes (NB) , Hierarchical Mixture of Naive Bayes (HMNB), Regression
Tree (RT) and Multiple Linear Regression (MLR). Unsupervised techniques such as Hidden
Markov Model (HMM) and K-Means have also been reported, as well as ensemble learning
techniques such as Random Forest (RF).

Table 1. ML algorithms used in internet of things (IoT) applications.

Application ML Technique ML Algorithm

Malware detection in industrial embedded
devices [46]

Classification

SVM, KNN, NB, HMNB, RF, DT

Wearable ECG diagnosis device [47] SVM
Embedded driver drowsiness detector based on
EEG [48] SVM

End-to-end authentication system based on breathing
acoustics [49] RNN

Devices and algorithms for activity monitoring and
anomaly detection in smart homes [50]

ANN, SVM, K-Means, HMM

Weather prediction [51]

Prediction

SVM
Energy prediction and management [52] MLR, SVM, RT
Solar energy prediction relying on weather
forecasts [53] SVM, RT

Environmental monitoring [54,55] ANN, RNN, SVM
Smart grids [56,57] RNN

Dynamic sampling rate adaptation scheme based on
reinforcement learning for WSN [58]

Learning agent

Q-learning

Dynamic spectrum access for NB-IoT based on
reinforcement learning [59] UCB

Reinforcement learning based privacy-aware
offloading scheme for healthcare IoT devices [60] PDS, Dyna

The deep learning techniques used in the IoT devices rely on Artificial Neural Net-
works (ANN) and Recurrent Neural Networks (RNN). Finally, the reinforcement learning
techniques rely on Q-learning [38], Upper Confidence Bound (UCB) [61], Post-Decision
State (PDS) [62], and Dyna [36,37].

ANNs can also be used to improve the quality of a prediction by tackling the problem
of missing data. Techniques based on General Regression Neural Network (GRNN) net-
works and Successive Geometric Transformation Models (SGTM) [63,64] have been proven
to be be very effective when dealing with the missing data problem.

The data collected can be used to predict a value or an outcome, to choose between
two or more categories, to classify data or images, to analyse a text, to generate recommen-
dations or find unusual occurrences such as in fraud detection, and to analyse and discover
data structure. However, regardless of the target application, a trade-off must be found
among the design constraints in order to match the expected results. Key requirements for
ML models are reviewed in Appendix B.

3. Software Architecture

Machine learning is a very active field of research in both industrial and academic
environments; consequently, there is a plethora of tools and libraries for ML and deep



Electronics 2021, 10, 600 8 of 41

learning available [65]. However, all of them have been designed to manage huge amounts
of data and rely on expensive hardware infrastructure to reduce the computation time
by either increasing the parallelism (using, for example, computational models based on
MapReduce [66]) or using GPUs as hardware accelerators.

The number of interconnected smart devices in the new IoT paradigm is increasing
rapidly and there is a serious risk of saturating the network connection with the traffic
between smart objects and the cloud infrastructure that has to process and analyse the
sensed data. Consequently, part of the computational complexity must be shifted from
cloud-to-edge infrastructure and end devices disclosing the path to a new computational
paradigm for IoT. In the new computational model envisaged, raw data processing is
mainly performed locally and in a hierarchical fashion from device to cloud, offloading the
computation to the next level only when necessary [24,67]. However, to the authors’ knowl-
edge, too little effort has been made to develop ML frameworks suitable for embedded
devices to date.

Solutions based on Tensorflow lite are still not fully implementable in resource-
constrained embedded devices [24]. In addition, Tensorflow lite is not a framework but
a runtime environment that allows the running of pre-trained deep-learning models on
mobile devices and microcontroller boards; thus, it lacks the flexibility of a full-fledged
development framework and forces the programmers to develop applications only in
Python or C/C++.

In recent years, Node.js has become a de facto industrial standard for the develop-
ment of real-time distributed embedded systems and IoT applications [68–71] due to its
suitability for running in embedded devices, its ability to implement both server and client
applications, its low memory footprint and its asynchronous nature, which all make it very
appealing for real-time applications. Despite all these advantages, there is still a widespread
misconception that JavaScript (and hence Node.js) is not suitable for computation-intensive
applications such as machine and deep learning, and Python is still the preferred language.
Tensorflow.js (https://www.tensorflow.org/js (accessed on 10 February 2021)) is a first
attempt to provide the JavaScript programming community with an industrial-proof tool
to develop ML-based applications in JavaScript. Nonetheless, Tensorflow.js suffers the
same limitations as its Python counterpart; namely, it is not a framework targeted towards
embedded and resource constrained devices.

The dominant position of Node.js and JavaScript in the IoT panorama, and the neces-
sity of shifting the computation from cloud to edge devices requires the development of a
lightweight JavaScript ML framework that is able to run on embedded devices.

This section comprehensively targets the requirements and the architecture of such a
framework. The rest of this section is devoted to the description of all the modules that
form and integrate into the ML engine.

3.1. Overall Architecture

Figure 4 depicts the architecture of the ML framework described in this work. The
software comprises several independent modules that expose Application Programming
Interfaces (APIs). The core engine implements methods to manipulate multidimensional
arrays, tensors and matrices, as well as first- and second-order Artificial Neural Net-
works [72].

The framework also provides a small library of common ML algorithms and a neural
network. This library is an abstraction layer that sits on top of the core engines and provides
the programmer with an abstraction layer that allows the development of applications
without directly accessing the core APIs.

A typical ML pipeline, like the one depicted in Figure 2, also includes a data prepa-
ration step prior to the execution of the machine learning algorithm. Data preparation
comprises several tasks that have to be performed on raw data in order to extract meaning-
ful information. These include data normalization, data structuring and data aggregation.

https://www.tensorflow.org/js


Electronics 2021, 10, 600 9 of 41

The framework provides APIs to manage datasets (basically, import and export data) and
to manipulate data in tabular form through the Dataframe module.

Figure 4. Software architecture of the ML framework (dotted lines denote modules still
under development).

3.2. Multidimensional Array Engine

The multidimensional array engine is inspired by the NumPy package and provides
primitives to efficiently manipulate large multidimensional arrays of any size. The engine
provides getter and setter methods as well as methods for array slicing. In order to
maximise the efficiency and the flexibility of the implementation, the engine has been built
on top of JavaScript typed arrays. Typed arrays provide high-level views on top of a binary
raw-data buffer of fixed size, and allow JavaScript to manage data in multiple integer (both
signed and unsigned) and floating point (both single- and double-precision) formats, as
depicted in Figure 5.

Figure 5. JavaScript Typed Arrays: physical data structure, context and equivalence with C types.

A multidimensional array of k dimensions is characterised by its shape s = (s0, s1, . . . ,
sk−1); namely, a t-uple with the number of array elements along a given axis (or dimension).
More specifically, sj (with j ∈ Z0+ and sj ∈ N) represents the number of elements along the
axis j.

Array data are stored internally in row major format. The smaller indices represent
the higher dimensions; thus, referring to the previous array shape definition, the pair
(sk−2, sk−1) represents, respectively, the number of rows and columns of a matrix.



Electronics 2021, 10, 600 10 of 41

The engine performs a mapping f from a multidimensional array with a given shape
s = (s0, s1, . . . , sk−1) to a one-dimensional strided array, namely

f : Ai0,i1,...,ik−1
∈ Rs0×s1×...×sk−1 7→ Aj ∈ Rn (4)

where 0 ≤ im ≤ sm − 1 (with 0 ≤ m ≤ k− 1) and 0 ≤ j ≤ n− 1 = s0 × s1 × . . .× sk−1 − 1.
In other words, the multidimensional array and its 1-D mapping have different shapes but
the same number of elements.

The stride property is a t-uple s′ = (s′0, s′1, . . . , s′k−1) that shows how many elements
must be skipped in memory to move to the next position when traversing the array.
The number of bytes to move in memory is automatically inferred by the engine from the
stride and the type of array.

The index j of the mapping described by Equation (4), is a function g(.) of the stride
s′, the indices i0, i1, . . . , ik−1 of the element of the multidimensional array, and of an offset
x that denotes the position of the first element of the array within the ArrayBuffer data
structure, namely

j = g(s′0, s′1, . . . , s′k−1, i0, i1, . . . , ik−1, x) = x +
k−1

∑
m=0

(s′m × im) (5)

Defining an array through its shape, stride and offset leads to a more efficient internal
representation, in which every transformation carried out on a given array A does not
imply either duplication or reordering of the array elements, as shown in Figure 6, in the
case of a reshape operation.

Figure 6. Memory organisation after array reshaping.

The reshape operation depicted in Figure 6 transforms a 1D array of nine elements into
a three-by-three matrix. This operation implies a recomputation of the array strides. Ob-
serving that sizes and strides are given as number of array items, the engine automatically
translates them into the right number of bytes according to the type of array element.

The multidimensional array engine allows for the represention of tensors with rank
ρ ≥ 1. In order to also represent scalar types (i.e., rank 0 tensors), the core engine is wrapped
into a Tensor class that also provides a rich set of APIs to perform arithmetic operations on



Electronics 2021, 10, 600 11 of 41

tensors. The Tensor Wrapper is compatible at API level with Tensorflow.js engine; thus, an
application relying on the Tensorflow.js engine can be ported to our framework with very
little effort, considering some slight differences that exist between the two frameworks.
Table 2 summarises the API compatibility with Tensorflow.js. The implemented subset
limits the compatibility only to ML learning algorithms, since Tensorflow.js wrappers for
deep learning APIs relying on neural networks are still under development. In order to
ensure software compatibility, coherent data types must be used. The multidimensional
array engine supports all the JavaScript typed arrays (8, 16, 32 and 64 bits), whereas the
Tensor wrapper also adds support to multidimensional arrays of Booleans and Strings.
Conversely, Tensorflow.js only supports 32 bit data types, complex numbers encoded over
64 bit, Booleans and Strings.

Finally, the framework also supports broadcasting. Broadcasting consists of applying
a given function to multidimensional arrays of different shapes, provided the shapes are
compatible. For example, broadcasting allows for the addition of a multidimensional array
to a scalar: the sum operation is broadcasted to all the individual elements of the array,
adding them to the scalar term.

Table 2. Tensorflow.js API compatibility table.

Class API

Creation tf.tensor, tf.scalar, tf.tensor1d, tf.tensor2d, tf.tensor3d, tf.tensor4d, tf.tensor5d, tf.tensor6d, tf.clone,
tf.fill, tf.linspace, tf.ones, tf.onesLike, tf.print, tf.range, tf.zeros, tf.zerosLike

Transformations tf.cast, tf.reshape, tf.squeeze

Slicing and Joining tf.concat, tf.slice, tf.stack

Random tf.randomUniform

Arithmetic tf.add, tf.sub, tf.mul, tf.div, tf.addN, tf.maximum, tf.minimum, tf.mod, tf.pow

Basic math
tf.abs, tf.acos, tf.acosh, tf.asin, tf.asinh, tf.atan, tf.atan2, tf.atanh, tf.ceil, tf.clipByValue, tf.cos, tf.cosh,
tf.exp, tf.floor, tf.isFinite, tf.leakyRelu, tf.log, tf.neg, tf.relu, tf.round, tf.rsqrt, tf.sigmoid, tf.sign, tf.sin,
tf.sinh, tf.softplus, tf.sqrt, tf.square, tf.tan, tf.tanh

Matrices tf.dot, tf.matMul, tf.transpose

Reduction tf.argMax, tf.argMin, tf.max, tf.mean, tf.min, tf.prod, tf.sum

Normalisation tf.moments, tf.softmax

Logical tf.equal, tf.greater, tf.greaterEqual, tf.less, tf.lessEqual, tf.notEqual

Other tf.data, tf.dataSync

The multidimensional array engine is the core module used to build an ML model
library, as depicted in Figure 4. The model library implements a set of prediction and
classification algorithms that have been proven to be effective for IoT applications, as
reported in Table 1. Table 3 reports the classification and prediction algorithms that were
implemented in the framework model library.



Electronics 2021, 10, 600 12 of 41

Table 3. Framework model library.

Class Algorithm

Classification K-Nearest Neighbours (KNN), Support Vector Machine (SVM), Gaussian Naive Bayes (GNB),
Multinomial Naive Bayes (MNB)

Clustering K-means

Prediction Linear Regression, Logistic Regression, Support Vector Machine (SVM)

3.3. Linear Algebra Engine

Linear algebra is intensively used in machine learning [73] when working with
datasets and data preparation (for example, for hot encoding and dimensionality re-
duction). Linear algebra is also used, for example, to solve linear regression problems
and in Principal Component Analysis (PCA). Principal Component Analysis is an analysis
method of multidimensional datasets that, generally, simplifies data analysis by projecting
the high-dimensional data space onto a two-dimensional plane using the first two principal
components. When the first two components fail to capture enough data variance, a 3D
representation using the first three principal components should be considered in order to
avoid loosing information. The structure of the projected data depends on the projection
axis. Finding the information associated with a given projection is an eigenvalue problem.
The eigenvectors of the covariance matrix represent the principal components, whereas
the corresponding eigenvalues give an estimation of how much information is contained
in each individual component. For this reason, the ML framework presented in this work
also includes a set of advanced linear algebra features that can be used for data analysis
and manipulation.

The Linear Algebra Engine (LAE) has been built on top of a Matrix Engine that
provides all the basic matrix manipulation features (matrix transposition, basic matrix,
rows and columns operations, Kroneker product, fast multiplication of large matrices
using the Volker–Strassen algorithm, etc.) using the algorithms described in [73]. More
specifically, the LAE implements the following features:

1. Eigenvalue decomposition (EVD);
2. LU decomposition;
3. QR decomposition;
4. Singular value decomposition (SVD);
5. Cholesky decomposition;
6. NIPALS algorithm;
7. Pseudo-inverse matrix computation;
8. Covariance matrix computation;
9. Determinant computation;
10. Linear dependencies computation.

Eigenvalue decomposition, a Nonlinear Iterative PArtial, Least Squares (NIPALS) algo-
rithm [74] and a covariance matrix are used in machine learning for Principal Component
Analysis. LU decomposition can be used to solve linear systems, compute determinants,
invert a matrix and find a basis set of a vector space (i.e., finding linear independent rows
of a matrix). The pseudo-inverse matrix can be used to compute a least-squares solution of
a linear system.

Singular Value Decomposition (SVD) is a technique that is extensively used in machine
learning and statistics for feature engineering, outlier detection, dimensionality reduction
and noise removal. Cholesky decomposition is a special case of decomposition that can be
applied to a symmetric and positive-definite matrix.

3.4. Artificial Neural Network Engine

The Artificial Neural Network (ANN) engine, provides primitives to connect neurons
in order to implement first- and second-order networks [72]. A Neural Network [75,76] is



Electronics 2021, 10, 600 13 of 41

a collection of interconnected simple processing units, the neurons. The processing ability
of the network lies in the weights associated to the neurons’ interconnections. The weights
are obtained from a process of adaptation or learning in which the network is trained using
specific data patterns. Figure 7 schematically depicts the operations performed by a neuron.

Figure 7. An artificial neuron.

A neuron, i, of the network is formed by an Adaptive Linear Combiner (ALC) and
by an activation function (or squashing function). The ALC performs the the sum of the
weighted inputs xij, namely

zi = bi + wT
i xi (6)

where

wi = (wi1, . . . , wim)

xi = (xi1, . . . , xim)

with bi = wi0 being the bias and wij being the weight of the j-th input of the i-th neuron of
the network. The activation function f (z) is a function of the neuron activation potential z
and performs an output normalisation by returning a value y ∈ [0, 1]. Several activation
functions are available [77,78]; however, the ANN engine only implements the small subset
reported in Table 4 that comprises both threshold, linear and non-linear activation functions.

The neural network learning process is implemented by combining gradient descent
and backpropagation algorithms, as described in [76], on a training dataset whose true
outcomes are known.

Several neural network topologies have been developed to date [79,80]; some of them
have been implemented in the ANN engine and are available as library components that
expose a simple API which provides primitives for creating and training the network. The
following subsections briefly review the implemented networks.

3.4.1. Perceptron

The perceptron is a linear binary classifier that implements the neuron depicted in
Figure 7. Since it is used for binary classification, the activation function f (z) is a simple
hard limiter; thus, for a vector x ∈ Rk of inputs, the results are

f (x) =

{
1, if w · x + b > 0
0, otherwise

(7)

where w is the vector of weights and w · x = ∑k
i=1 wixi is the dot product. The bias b is

used to shift the decision boundary away from the origin and does not depend on the
input values.



Electronics 2021, 10, 600 14 of 41

Table 4. Supported activation functions.

Function Implemented Equation

Sigmoid f (z) = 1
(1+e−αz)

tanh f (z) = ez−e−z

ez+e−z

ReLU f (z) = max(0, z) =

{
z, if z ≥ 0
0, otherwise

Leaky ReLU f (z) = max(αz, z) =

{
z, if z ≥ 0
αz, otherwise

Linear f (z) = z

Hard limiter f (z) =

{
1, if z ≥ 0
0, otherwise

3.4.2. Long Short-Term Memory Network

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN)
architecture, suitable for performing regression and classification based on a time series.
It deals with the vanishing gradient problem (namely, an excessively low gradient that can
prevent weights from changing during the training process and that, in the worst case,
can completely stop the network training) that can occur when training recurrent neural
networks. Several variants have been proposed [81]; however, the framework implements
the most commonly used set-up, depicted in Figure 8.

Figure 8. Detailed schematic of a basic LSTM cell (dotted lines denote peephole connections).

In its basic implementation, the LSTM is formed by three gates (the input gate it,
the forget gate ft, and the output gate ot), a block input activation function σs, an output
activation function σh and a single cell Ct (the Constant Error Carousel (CEC)). Function σs
is a sigmoid, whereas σh is usually a hyperbolic tangent. Moreover, cell Ct has a hyperbolic
tangent activation function denoted with σc.

Subindex t denotes the time-step. At t = 0, the initial cell values are C0 = 0 and
y0 = 0, respectively. Referring to Figure 8, xt ∈ Rn is the input vector, Ct ∈ Rm is the cell



Electronics 2021, 10, 600 15 of 41

state vector, it ∈ Rm the input gate activation vector, ft ∈ Rm the forget gate activation
vector, and ot ∈ Rm the output gate activation vector.

The LSTM network implements the following functions:

ft = σs(W f xt + Wp
f Ct−1 + b f )

it = σs(Wixt + Wp
i Ct−1 + bi)

ot = σs(Woxt + Wp
o Ct−1 + bo)

Ct = ft × Ct−1 + it × σc(Wcxt + bc)

yt = ot × σh(Ct)

where W ∈ Rm×n is the weight matrix for the CEC, input, forget and output cells; Wp ∈
Rm×m is the weight matrix for the peephole connections of the input, forget and output
cells. Vector b ∈ Rm is the bias vector of the CEC, input, forget and output cells. Finally,
operator × denotes matrix element-wise multiplication (i.e., the Hadamard product).

3.5. Data Frame and Data Wrangling

The framework presented in this work also provides APIs for data acquisition, explo-
ration, cleaning and manipulation, as depicted in Figure 4. Data wrangling is essential to
transform raw data into a format that can be processed more efficiently by the machine
learning engine.

The framework allows for the importation and exportation of large data files in
several text formats (namely, CSV, TSV, PSV, JSON) and mapping the data onto a dataframe.
A dataframe is a simple, two-dimensional schema of heterogeneous data with labelled axes.
Primitives are available to manipulate rows and columns of a dataframe, which include
filtering, selection, and joining. The core functionalities can be easily extended through a
plugin system. Plugins that allow for the performance of statistical and matrix operations
on a dataframe are available. Table 5 summarises the core features implemented by the
data-wrangling engine of the framework.

Table 5. Framework support for data analysis and data wrangling.

Class Implemented Features

Importing/Exporting Primitives for reading and writing files in CSV, TSV, PSV and JSON formats.

Data transformation Primitives for converting a data frame to an array or a hash table and to cast a column to a given type.

Dataset operations Primitives for inner, left, right and outer join. Primitives for sorting, shuffling, slicing and extracting
random samples from the dataset. Map and reducing operations.

Data cleaning and filtering

Primitives for dropping or filling missing values, dropping duplicate values or replacing an existing
one. Primitives for applying custom filters to the dataset. Primitives for finding rows matching a
given condition. Methods to either obtain unique values or obtain number of occurrences of a given
value into a column.

Data access Primitives for getting and setting row values, getting the dimensions of either a data frame or a
column. Primitives for adding a new row to the data frame.

Data frame comparison Primitives for listing the data frame columns and for finding the differences between two data
frames.

4. Hardware Platforms and Framework Performance

A plethora of embedded computing platforms are available on the market [82,83].
Some new high-end embedded boards, such as Google Coral and NVIDIA Jetson Nano,
also offer GPU acceleration. However, while an embedded GPU may be appealing for the
acceleration of many machine learning algorithms, the increased cost of these platforms is
a potential barrier for their adoption in many IoT applications, where the design is mainly



Electronics 2021, 10, 600 16 of 41

cost-driven. In addition, server-side JavaScript GPU support is still at a very early stage,
which limits the adoption of these boards for only Python and C/C++ applications.

Among all the boards available on the market, Raspberry Pis are the ones that probably
offer the best trade-off between cost and performance. For this reason, the performance of
the framework described in this work are stressed on a Raspberry Pi III (model B+) and a
Raspberry Pi IV boards. Table 6 summarises the main features of the embedded computing
boards used to evaluate the performance of the developed ML framework.

Table 6. Raspberry Pi boards’ main characteristics.

Feature Board
Raspberry Pi III B+ Raspberry Pi IV

CPU Cortex-A53 quad-core 64-bit @ 1.4 GHz Cortex-A72 quad-core 64-bit @ 1.5 GHz
Architecture ARMv8 ARMv8
RAM 1 GB LPDDR2 SDRAM 8 GB LPDDR4-3200 SDRAM
WiFi 2.4 GHz and 5 GHz IEEE 802.11.b/g/n/ac 2.4 GHz and 5 GHz IEEE 802.11.ac
Bluetooth 4.2, BLE 5.0, BLE
Ethernet Gigabit Ethernet over USB 2.0 (max 300 mbps) Gigabit Ethernet
GPIO 40 pins 40 pins
USB 2.0 (4 ports) 2.0 (2 ports), 3.0 (2 ports)
OS Raspbian v10 (Buster) Ubuntu v20.04 LTS (64-bit)

Observe that, although both boards rely on a 64-bit ARMv8 architecture, Raspberry
Pi III B+ runs a 32-bit operating system (Raspbian v10), since it has only 1 GB memory
and running a 64-bit operating system would not lead to any significant performance
improvement. Conversely, in the proposed test set-up, Raspberry Pi IV runs a 64-bit
operating system (Ubuntu 20.04).

4.1. Set-Up of the Benchmarking Environment

The performances of the embedded development boards have been stressed using a
set of ad-hoc benchmarks to determine their suitability to run embedded machine learning
algorithms. The main goal is stressing the performance of the underlying mathematical
core rather than the execution speed of a ML algorithm; thus, the benchmarks are focused
on analysing the performance of those operations that are more likely to be used in an
ML algorithm.

The benchmark suite used to evaluate the performance of the ML framework runs
on Node.js v14.4 and is formed of 29 typical operations applied to rank 1 and rank 2
tensors: vectors and matrices. Table 7 reports the operations that form the benchmark suite.
Appendix C describes the architecture and the implementation of the benchmarking tool
used to evaluate the performances of the ML framework in detail.

Table 7. Characteristics of the benchmark suite.

Class Benchmarks

Rank 1 Tensor ops
reduction by adding, reduction by multiplying, reduction by averaging, reduction by computing
max, sum, scalar sum, subtraction, scalar subtraction, multiplication, scalar multiplication,
division, scalar division.

Rank 2 Tensor ops
zero fill, reduction by adding, reduction by multiplying, reduction by averaging, reduction by
computing max, sum, scalar sum, subtraction, scalar subtraction, multiplication, scalar
multiplication, division, scalar division.

Matrix and vector ops vector dot product, vector-matrix dot product, matrix dot product, matrix transpose.

4.2. Performance Evaluation

Each benchmark operation is executed a variable number of times during a maximum
timeframe of 5 s. The delay between consecutive test cycles is 5 ms, and the minimum



Electronics 2021, 10, 600 17 of 41

number of samples measured during each cycle is 5. Test times and statistics are generated
for each benchmark of the test suite. More specifically, the following timing metrics
are calculated:

1. The time (in seconds) taken to complete the last cycle (cycle);
2. The elapsed time (in seconds) taken to complete the benchmark;
3. The time (in seconds) taken to execute a test once (period).

Moreover, the following test statistics are computed:

1. The number of samples acquired during the test;
2. The sample standard deviation σ;
3. The sample variance σ2;
4. The sample arithmetic mean m (i.e., the average execution time of the benchmark in

seconds);

5. The standard error of the mean (SEM) computed as
√

σ2

n , where n denotes the number
of samples;

6. The Margin of Error (MOE) computed over a confidence interval of 95%; namely,

MOEγ = zγ ×
√

σ2

n , where zγ denotes the quantile computed for a confidence level
γ = 0.95;

7. The Relative Margin of Error (RME) expressed as percentage of the mean, namely,

RME =
MOEγ

m × 100.

Performances have been evaluated for rank 1 tensors and vectors of dimension k and
rank 2 tensors and matrices of dimension k× k, where k ∈ {32, 64, 128}. Figure 9 shows
the cycle and period latencies for a Raspberry Pi III B+ board measured after running the
benchmarking tool. The delay of rank 1 tensor operations ranges from few ms (for k = 32)
to roughly 70 ms for (for k = 128). The latency increases to up 1.1 s for some rank 2 tensor
operations (see Figure 9b).

(a)
Figure 9. Cont.



Electronics 2021, 10, 600 18 of 41

(b)

(c)
Figure 9. Measured period and cycle parameters with k ∈ {32, 64, 128} on a Raspberry Pi III B+ for (a) rank 1 tensor
operations, (b) rank 2 tensor operations, and (c) typical vector and matrix operations.

The most time-consuming operation is the matrix dot product, whose latency exceeds
4.5 s for square matrices with k = 64. Observe that the delay for a square matrix dot
product with k = 128 is not reported since it exceeds 5 s, namely, the maximum time frame
allocated for execution by the benchmarking tool.

Figure 10 shows the cycle and period latencies for a Raspberry Pi IV board. Observe
that for rank 1 tensor operations, the speedup with respect to the execution latencies
measured for a Raspberry Pi III B+ board is roughly 2.



Electronics 2021, 10, 600 19 of 41

(a)

(b)
Figure 10. Cont.



Electronics 2021, 10, 600 20 of 41

(c)
Figure 10. Measured period and cycle parameters with k ∈ {32, 64, 128} on a Raspberry Pi IV for (a) rank 1 tensor operations,
(b) rank 2 tensor operations, and (c) typical vector and matrix operations.

However, the improvement is even more significant for higher-order tensor and matrix
operations, with speed-ups of up to 3.3 with respect to the benchmark execution times on a
Raspberry Pi III B+. Nonetheless, for the Raspberry Pi IV, the latency of the square matrix
dot product with k = 128 exceeds 5 s (the average delay is roughly 12.6 s), and it is not
reported in the plots.

4.2.1. Summary of Raspberry Pi III measurements

Tables 8–16 report the detailed benchmark statistics for rank 1 and rank 2 tensor
operations, and for vector and matrix operations.

Table 8. Raspberry Pi III B+ benchmark statistics for rank 1 tensor operations with k = 32 (times
in ms).

Rank 1 Tensor Operation Statistics

Samples moe rme sem std dev Mean Variance

reduction by adding 78 0.08 6.25% 0.04 0.37 1.32 0.13
reduction by multiplying 86 0.03 3.31% 0.01 0.17 1.14 0.03
reduction by averaging 84 0.02 2.30% 0.01 0.12 1.14 0.01
reduction by computing max 84 0.01 2.32% 0.01 0.08 7.70 0.007
sum 83 0.08 2.90% 0.04 0.41 3.04 0.16
scalar sum 82 0.07 2.74% 0.03 0.32 2.60 0.10
subtraction 82 0.11 3.57% 0.05 0.50 3.08 0.25
scalar subtraction 80 0.05 2.20% 0.02 0.24 2.46 0.06
multiplication 81 0.09 3.41% 0.04 0.43 2.78 0.19
scalar multiplication 83 0.04 1.87% 0.02 0.21 2.45 0.04
division 81 0.07 2.41% 0.03 0.33 3.04 0.11
scalar division 81 0.07 2.88% 0.03 0.33 2.50 0.11



Electronics 2021, 10, 600 21 of 41

Table 9. Raspberry Pi III B+ benchmark statistics for rank 1 tensor operations with k = 64 (times
in ms).

Rank 1 Tensor Operation Statistics

Samples moe rme sem std dev Mean Variance

reduction by adding 80 0.09 5.50% 0.04 0.42 1.69 0.18
reduction by multiplying 85 0.05 3.41% 0.02 0.24 1.53 0.06
reduction by averaging 84 0.05 3.69% 0.02 0.26 1.54 0.07
reduction by computing max 86 0.02 2.02% 0.01 0.09 1.00 0.009
sum 85 0.10 2.32% 0.05 0.48 4.38 0.23
scalar sum 85 0.12 3.26% 0.06 0.57 3.76 0.33
subtraction 84 0.10 2.34% 0.05 0.48 4.44 0.23
scalar subtraction 82 0.12 3.09% 0.06 0.56 3.91 0.31
multiplication 86 0.08 2.12% 0.04 0.40 3.99 0.16
scalar multiplication 84 0.16 4.20% 0.08 0.75 3.83 0.56
division 86 0.03 0.87% 0.02 0.17 4.25 0.03
scalar division 85 0.11 3.07% 0.06 0.54 3.76 0.29

Table 10. Raspberry Pi III B+ benchmark statistics for rank 1 tensor operations with k = 128 (times in ms).

Rank 1 Tensor Operation Statistics

Samples moe rme sem std dev Mean Variance

reduction by adding 85 0.14 5.45% 0.07 0.67 2.65 0.46
reduction by multiplying 85 0.07 3.17% 0.03 0.35 2.38 0.12
reduction by averaging 86 0.05 2.15% 0.02 0.23 2.33 0.05
reduction by computing max 87 0.03 2.35% 0.01 0.17 1.51 0.02
sum 77 0.23 2.88% 0.11 1.04 8.11 1.09
scalar sum 76 0.15 2.18% 0.08 0.70 7.19 0.49
subtraction 76 0.32 3.85% 0.16 1.45 8.49 2.12
scalar subtraction 77 0.16 2.24% 0.08 0.72 7.24 0.52
multiplication 79 0.16 2.12% 0.08 0.73 7.71 0.53
scalar multiplication 76 0.16 2.28% 0.08 0.72 7.10 0.52
division 75 0.26 3.23% 0.13 1.15 8.07 1.32
scalar division 78 0.17 2.50% 0.09 0.79 7.04 0.63

Table 11. Raspberry Pi III B+ benchmark statistics for rank 2 tensor operations with k = 32 (times
in ms).

Rank 2 Tensor Operation Statistics

Samples moe rme sem std dev Mean Variance

zero fill 65 0.28 3.63% 0.14 1.17 7.85 1.37
reduction by adding 75 0.39 2.81% 0.20 1.73 13.97 3.02
reduction by multiplying 69 0.49 3.56% 0.25 2.08 13.79 4.3
reduction by averaging 75 0.48 3.21% 0.24 2.12 14.46 4.5
reduction by computing max 49 3.75 4.77% 1.91 13.40 78.57 179.5
sum 56 1.49 2.39% 0.76 5.70 62.27 32.5
scalar sum 48 1.09 2.01% 0.56 3.88 54.53 15.0
subtraction 56 1.04 1.70% 0.53 3.99 61.48 15.9
scalar subtraction 48 0.90 1.67% 0.46 3.20 54.12 10.3
multiplication 58 1.00 1.72% 0.51 3.90 58.44 15.2
scalar multiplication 48 1.02 1.87% 0.52 3.63 54.94 13.2
division 55 1.11 1.80% 0.56 4.21 61.74 17.7
scalar division 47 0.98 1.79% 0.50 3.45 54.91 11.9



Electronics 2021, 10, 600 22 of 41

Table 12. Raspberry Pi III B+ benchmark statistics for rank 2 tensor operations with k = 64 (times
in ms).

Rank 2 Tensor Operation Statistics

Samples moe rme sem std dev Mean Variance

zero fill 53 1.42 4.86% 0.72 5.28 29.21 27.91
reduction by adding 55 1.28 3.08% 0.65 4.87 41.85 23.79
reduction by multiplying 55 1.76 4.26% 0.89 6.66 41.28 44.37
reduction by averaging 55 0.59 1.46% 0.30 2.26 40.77 5.12
reduction by computing max 30 6.76 2.97% 3.30 18.11 227.69 328.21
sum 30 4.19 1.79% 2.05 11.23 234.23 126.28
scalar sum 31 1.75 0.87% 0.85 4.78 200.98 22.88
subtraction 30 1.01 0.44% 0.49 2.72 229.50 7.43
scalar subtraction 31 2.50 1.22% 1.22 6.82 203.69 46.55
multiplication 30 2.06 0.94% 1.00 5.53 218.91 30.58
scalar multiplication 31 1.09 0.54% 0.53 2.99 202.63 8.94
division 30 0.95 0.41% 0.46 2.55 229.95 6.53
scalar division 31 1.03 0.51% 0.50 2.80 201.97 7.89

Table 13. Raspberry Pi III B+ benchmark statistics for rank 2 tensor operations with k = 128 (times
in ms).

Rank 2 Tensor Operation Statistics

Samples moe rme sem std dev Mean Variance

zero fill 23 9.58 7.34% 4.62 22.16 130.53 491.48
reduction by adding 35 1.82 1.17% 0.93 5.52 155.06 30.47
reduction by multiplying 35 3.54 2.29% 1.81 10.71 154.69 114.74
reduction by averaging 34 2.38 1.50% 1.21 7.08 158.28 50.20
reduction by computing max 22 13.42 1.50% 6.45 30.27 892.50 916.80
sum 22 21.43 2.01% 10.30 48.32 1062.99 2335.72
scalar sum 22 10.76 1.16% 5.17 24.27 920.74 589.39
subtraction 22 21.66 2.00% 10.41 48.85 1081.53 2386.95
scalar subtraction 22 8.98 0.97% 4.32 20.26 920.06 410.86
multiplication 22 20.75 2.01% 9.97 46.80 1030.73 2190.79
scalar multiplication 22 14.03 1.51% 6.74 31.64 927.27 1001.34
division 22 21.49 2.00% 10.33 48.47 1073.33 2349.77
scalar division 22 12.42 1.33% 5.97 28.02 933.80 785.43

Table 14. Raspberry Pi III B+ benchmark statistics for vector and matrix operations with k = 32
(times in ms).

Vector or Matrix Operation Statistics

Samples moe rme sem std dev Mean Variance

vector dot product 77 0.11 1.73% 0.05 0.49 6.34 0.24
vector-matrix dot product 65 0.95 3.09% 0.48 3.90 30.68 15.27
matrix dot product 23 9.30 1.41% 4.48 21.51 658.39 463.07
matrix transpose 80 0.13 1.58% 0.06 0.59 8.26 0.35



Electronics 2021, 10, 600 23 of 41

Table 15. Raspberry Pi III B+ benchmark statistics for vector and matrix operations with k = 64
(times in ms).

Vector or Matrix Operation Statistics

Samples moe rme sem std dev Mean Variance

vector dot product 75 0.41 2.75% 0.21 1.82 14.94 3.31
vector-matrix dot product 41 3.72 3.53% 1.89 12.16 105.46 147.98
matrix dot product 20 19.49 0.42% 9.31 41.64 4617.58 1734.40
matrix transpose 68 0.59 2.03% 0.30 2.51 29.48 6.34

Table 16. Raspberry Pi III B+ benchmark statistics for vector and matrix operations with k = 128
(times in ms).

Vector or Matrix Operation Statistics

Samples moe rme sem std dev Mean Variance

vector dot product 47 1.04 1.92% 0.53 3.65 54.35 13.33
vector-matrix dot product 25 15.98 3.32% 7.74 38.72 480.72 1499.84
matrix dot product - - - - - - -
matrix transpose 36 2.65 1.90% 1.35 8.11 138.95 65.85

Observe that the latency of matrix dot product for k = 128 is not reported, since it
exceeds the maximum time allocated for the execution of a benchmark (namely, 5 s).

Finally, Figure 11 shows the elapsed times to compute the statistics for each benchmark
on a Raspberry Pi III B+ board.

The overall time spent by the benchmarking tool performing all the measurements for
a given benchmark ranges from a few seconds, in the case of rank 1 tensor operations with
k = 32, up to approximately 180 s, in the case of the square matrix dot product with k = 64.

4.2.2. Summary of Raspberry Pi IV Measurements

Tables 17–25 report the detailed benchmark statistics for rank 1 and rank 2 tensor
operations, and for vector and matrix operations executed on a Raspberry Pi IV embed-
ded computer.

Table 17. Raspberry Pi IV benchmark statistics for rank 1 tensor operations with k = 32 (times in ms).

Rank 1 Tensor Operation Statistics

Samples moe rme sem std dev Mean Variance

reduction by adding 86 0.03 5.98% 0.01 0.15 0.54 0.02
reduction by multiplying 89 0.01 3.51% 0.01 0.08 0.50 0.007
reduction by averaging 90 0.01 3.51% 0.01 0.08 0.52 0.008
reduction by computing max 89 0.01 3.42% 0.006 0.05 0.35 0.003
sum 92 0.04 3.35% 0.02 0.22 1.33 0.04
scalar sum 90 0.03 3.28% 0.01 0.17 1.07 0.02
subtraction 92 0.03 2.93% 0.02 0.18 1.31 0.03
scalar subtraction 93 0.02 2.65% 0.01 0.13 1.02 0.01
multiplication 91 0.03 2.78% 0.01 0.16 1.18 0.02
scalar multiplication 94 0.02 2.53% 0.01 0.12 1.01 0.01
division 92 0.03 2.67% 0.01 0.16 1.29 0.02
scalar division 94 0.02 2.55% 0.01 0.12 1.01 0.01



Electronics 2021, 10, 600 24 of 41

(a)

(b)
Figure 11. Elapsed time for running all the measurements on a Raspberry Pi III B+ for (a) tensor operation benchmarks,
and (b) vector and matrix operation benchmarks.



Electronics 2021, 10, 600 25 of 41

Table 18. Raspberry Pi IV benchmark statistics for rank 1 tensor operations with k = 64 (times in ms).

Rank 1 Tensor Operation Statistics

Samples moe rme sem std dev Mean Variance

reduction by adding 84 0.03 5.24% 0.01 0.17 0.70 0.03
reduction by multiplying 91 0.02 3.25% 0.01 0.10 0.67 0.01
reduction by averaging 91 0.02 3.31% 0.01 0.10 0.68 0.01
reduction by computing max 90 0.01 3.02% 0.006 0.06 0.43 0.004
sum 93 0.04 2.58% 0.02 0.24 1.91 0.06
scalar sum 91 0.03 2.36% 0.02 0.18 1.62 0.03
subtraction 92 0.04 2.46% 0.02 0.23 1.92 0.05
scalar subtraction 92 0.03 2.22% 0.02 0.17 1.60 0.03
multiplication 91 0.03 2.12% 0.02 0.18 1.76 0.03
scalar multiplication 91 0.03 2.08% 0.01 0.16 1.59 0.02
division 92 0.04 2.14% 0.02 0.19 1.88 0.03
scalar division 93 0.03 2.01% 0.01 0.15 1.58 0.02

Table 19. Raspberry Pi IV benchmark statistics for rank 1 tensor operations with k = 128 (times
in ms).

Rank 1 Tensor Operation Statistics

Samples moe rme sem std dev Mean Variance

reduction by adding 89 0.04 4.20% 0.02 0.20 1.03 0.04
reduction by multiplying 93 0.03 3.27% 0.01 0.15 0.96 0.02
reduction by averaging 93 0.02 2.87% 0.01 0.13 0.96 0.01
reduction by computing max 95 0.01 2.51% 0.007 0.07 0.60 0.005
sum 91 0.08 2.50% 0.04 0.38 3.19 0.15
scalar sum 90 0.05 2.13% 0.03 0.28 2.78 0.08
subtraction 91 0.06 2.25% 0.03 0.34 3.10 0.11
scalar subtraction 91 0.04 1.49% 0.02 0.20 2.77 0.04
multiplication 92 0.04 1.61% 0.02 0.22 2.86 0.05
scalar multiplication 92 0.04 1.60% 0.02 0.21 2.72 0.04
division 90 0.05 1.61% 0.02 0.24 3.06 0.05
scalar division 92 0.04 1.49% 0.02 0.20 2.72 0.04

Table 20. Raspberry Pi IV benchmark statistics for rank 2 tensor operations with k = 32 (times in ms).

Rank 2 Tensor Operation Statistics

Samples moe rme sem std dev Mean Variance

zero fill 70 0.14 4.33% 0.07 0.61 3.35 0.38
reduction by adding 82 0.16 2.60% 0.08 0.74 6.21 0.55
reduction by multiplying 83 0.15 2.65% 0.08 0.73 5.99 0.54
reduction by averaging 82 0.13 2.22% 0.06 0.63 6.15 0.39
reduction by computing max 67 1.27 3.91% 0.64 5.31 32.49 28.21
sum 67 0.44 1.87% 0.22 1.83 23.49 3.38
scalar sum 75 0.18 0.96% 0.09 0.83 19.54 0.70
subtraction 69 0.24 1.09% 0.12 1.03 22.39 1.08
scalar subtraction 75 0.21 1.09% 0.10 0.94 19.41 0.88
multiplication 72 0.20 0.94% 0.10 0.86 21.17 0.75
scalar multiplication 75 0.22 1.17% 0.11 1.00 19.47 1.01
division 68 0.23 1.04% 0.11 0.98 22.42 0.97
scalar division 75 0.22 1.14% 0.11 0.98 19.54 0.97



Electronics 2021, 10, 600 26 of 41

Table 21. Raspberry Pi IV benchmark statistics for rank 2 tensor operations with k = 64 (times in ms).

Rank 2 Tensor Operation Statistics

samples moe rme sem std dev Mean Variance

zero fill 65 0.36 3.11% 0.18 1.50 11.72 2.26
reduction by adding 69 0.36 1.99% 0.18 1.52 18.04 2.32
reduction by multiplying 69 0.22 1.26% 0.11 0.95 17.75 0.90
reduction by averaging 69 0.22 1.27% 0.11 0.97 18.01 0.94
reduction by computing max 44 2.62 2.68% 1.33 8.88 97.88 78.98
sum 46 1.64 1.82% 0.83 5.68 90.05 32.30
scalar sum 50 0.87 1.14% 0.44 3.14 76.37 9.89
subtraction 46 0.84 0.96% 0.43 2.92 87.59 8.54
scalar subtraction 50 0.86 1.13% 0.44 3.13 76.68 9.82
multiplication 47 0.96 1.14% 0.49 3.39 84.69 11.49
scalar multiplication 50 0.89 1.14% 0.45 3.21 77.78 10.34
division 46 0.76 0.87% 0.38 2.63 87.32 6.92
scalar division 50 0.78 1.02% 0.39 2.81 76.32 7.92

Table 22. Raspberry Pi IV benchmark statistics for rank 2 tensor operations with k = 128 (times
in ms).

Rank 2 Tensor Operation Statistics

Samples moe rme sem std dev Mean Variance

zero fill 33 4.56 8.20% 2.32 13.36 55.56 178.73
reduction by adding 56 0.62 1.00% 0.32 2.40 62.71 5.76
reduction by multiplying 56 0.31 0.50% 0.16 1.20 61.99 1.45
reduction by averaging 56 0.43 0.68% 0.22 1.65 63.06 2.73
reduction by computing max 26 3.65 1.05% 1.77 9.04 347.41 81.83
sum 26 4.57 1.13% 2.22 11.33 405.09 128.44
scalar sum 27 2.15 0.63% 1.04 5.45 339.20 29.75
subtraction 26 2.85 0.72% 1.38 7.07 396.48 50.07
scalar subtraction 26 2.18 0.63% 1.06 5.41 345.57 29.30
multiplication 26 1.60 0.42% 0.77 3.95 379.60 15.66
scalar multiplication 27 1.61 0.47% 0.78 4.08 344.42 16.70
division 26 1.90 0.48% 0.92 4.72 395.83 22.30
scalar division 27 1.83 0.53% 0.89 4.62 345.59 21.43

Table 23. Raspberry Pi IV benchmark statistics for vector and matrix operations with k = 32 (times
in ms).

Vector or Matrix Operation Statistics

Samples moe rme sem std dev Mean Variance

vector dot product 87 0.06 2.87% 0.03 0.32 2.36 0.10
vector-matrix dot product 80 0.15 1.49% 0.07 0.68 10.00 0.46
matrix dot product 32 0.75 0.38% 0.38 2.17 197.89 4.73
matrix transpose 94 0.06 2.24% 0.03 0.31 2.85 0.10



Electronics 2021, 10, 600 27 of 41

Table 24. Raspberry Pi IV benchmark statistics for vector and matrix operations with k = 64 (times
in ms).

Vector or Matrix Operation Statistics

Samples moe rme sem std dev Mean Variance

vector dot product 86 0.11 2.16% 0.06 0.54 5.26 0.29
vector-matrix dot product 61 0.89 2.40% 0.45 3.54 36.98 12.57
matrix dot product 21 3.91 0.24% 1.87 8.59 1615.54 73.88
matrix transpose 84 0.20 1.91% 0.10 0.96 10.78 0.93

Table 25. Raspberry Pi IV benchmark statistics for vector and matrix operations with k = 128 (times
in ms).

Vector or Matrix Operation Statistics

Samples moe rme sem std dev Mean Variance

vector dot product 72 0.25 1.51% 0.12 1.09 16.66 1.18
vector-matrix dot product 35 3.88 2.52% 1.98 11.71 154.03 137.27
matrix dot product - - - - - - -
matrix transpose 50 0.54 1.08% 0.27 1.95 49.83 3.83

Observe that the latency of matrix dot product for k = 128 is not reported, since it
exceeds the maximum time allocated for the execution of a benchmark (namely, 5 s).

Finally, Figure 12 shows the elapsed times to compute the statistics for each benchmark
on a Raspberry Pi IV board. The overall time spent by the benchmarking tool to perform
all the measurements for a given benchmark ranges from a few seconds, in the case of rank
1 tensor operations with k = 32, up to approximately 68 s in the case of the square matrix
dot product with k = 64.

(a)
Figure 12. Cont.



Electronics 2021, 10, 600 28 of 41

(b)
Figure 12. Elapsed time for running all the measurements on a Raspberry Pi IV for (a) tensor operation benchmarks, and (b)
vector and matrix operation benchmarks.

5. Discussion

In the previous section, the performance of a new ML framework targeted to IoT and
embedded devices was stressed on Raspberry Pi III and IV boards. The collected results
showed that these devices have enough computing power to perform tensor and matrix
arithmetic with acceptable execution times for datasets of reasonable size (namely, up to
128× 128 matrices of single-precision floating point numbers).

A substantial performance improvement was observed when executing the benchmark
functions on a Raspberry Pi IV board, as also summarised in Figure 13.

(a)
Figure 13. Cont.



Electronics 2021, 10, 600 29 of 41

(b)

(c)
Figure 13. Computed average speedups for (a) rank 1 tensor operations, (b) rank 2 tensor operations,
and (c) vector or matrix operations.

The speed-ups were computed using the measured benchmark average execution
values on Raspberry Pi III and IV boards for k ∈ {32, 64, 128}, with k being the size of either
a tensor or an array or a k× k square matrix. The speed-ups, with respect to a Raspberry Pi
III B+ board, were obtained by executing the framework on a Raspberry Pi IV ranging from
roughly 2.2 to 3.3. However, this improvement is exclusively due to the better hardware
characteristics of the Raspberry Pi IV board, which is particularly suitable for computation-
and memory-intensive operations.

Framework latency could be further decreased by optimising the code to increase
the execution parallelism. Node.js is a single-threaded event-driven JavaScript runtime;
however, by leveraging asynchronous constructions, it is possible to execute loop iterations
in parallel as if they were executed by a multithreaded system.



Electronics 2021, 10, 600 30 of 41

Consider the code snippets depicted in Listing 1. Snippet (a) simulates a matrix dot
product using a synchronous programming style, whereas snippet (b) simulates the same
operation using an asynchronous programming style with Promises.

Listing 1. JavaScript code snippets that simulate a matrix dot product using (a) a synchronous programming, and (b) an asynchronous
programming style.

1 /* require ’sleep’ package
2 * used to simulate the delay
3 * of a dot product */
4 const sleep = require(’sleep ’)
5
6 // matrix rows number
7 const NROWS = 16
8
9 // matrix colums number

10 const NCOLS = 16
11
12 //start measuring the elapsed time
13 console.time(’test’)
14
15 for (let i=0; i<NROWS ; i++) {
16 for (let j=0; j<NCOLS; j++) {
17 sleep.msleep (10) //wait 10 ms
18 if (j===NCOLS -1) {
19 //print iteration number
20 console.log(‘iteration ${i+1}‘)
21 }
22 if (i===NROWS -1 && j===NCOLS -1) {
23 //stop measuring elapsed time
24 console.timeEnd(’test’)
25 }
26 }
27 }

(a)

1 // matrix rows and columns number
2 const NROWS = 16
3
4 /* asynchronous function that
5 * simulates a 10 ms delay */
6 const delay = () => {
7 return new Promise(resolve =>
8 setTimeout(resolve , 10)
9 )

10 }
11
12 /* dummy callback that simulates
13 * the computation of an array
14 * dot product */
15 const arrDotProd = async item => {
16 await delay() //wait for delay
17 console.log(item) // print argument
18 }
19
20 const matDotProd = async arr => {
21 console.time(’test’)
22 for (let i=0; i<NROWS; i++) {
23 const proms = arr.map(arrDotProd)
24 await Promise.all(proms)
25 }
26 console.timeEnd(’test’)
27 }

(b)

It is assumed that the code operates on 16× 16 square matrices and that the array dot
product has a delay of 10 ms. The execution latency is measured using the console.time()
and console.timeEnd() function provided by the JavaScript console object.

After executing the two snippets on a Raspberry Pi III B+, the elapsed times are,
respectively, 2.636 s for snippet (a) and 281.676 ms for snippet (b). Thus, writing code
in an asynchronous fashion could lead to a theoretical speedup of 9.3 with respect to
the sequential code. The performance increase is due to the fact that lines 23 and 24 of
snippet (b) will run the arrDotProd task in parallel.

Refactoring the code in an asynchronous fashion by either “promisifying” the functions,
as depicted in snippet (b) of Listing 1, or relying on third-party libraries, such as Async.js
(https://caolan.github.io/async/v3/ (accessed on 10 February 2021)), is an appealing
design choice since this will lead to a drastic reduction in the execution times measured
reported in Section 4.

However, the framework mathematical core was designed and implemented according
to the following main guidelines:

1. Implementation from scratch, without relying on any third-party package;
2. Use of a synchronous programming style for the core mathematical functions.

Implementing the core from scratch with zero dependencies avoids the code malfunc-
tioning due to either broken dependencies or changes in the APIs of the third-party libraries.
On the other hand, using a synchronous programming style, although detrimental from a
performance perspective, could significantly ease the porting of the mathematical core to
other programming languages.

https://caolan.github.io/async/v3/


Electronics 2021, 10, 600 31 of 41

The main limitation of languages based on garbage collection, such as Java, JavaScript
or Python, is their lack of performance when compared to low-level languages such as C or
C++. This is why well-established ML frameworks such as Tensorflow.js come with a core
written in C/C++ in order to achieve high performances.

In the specific case of Node.js, the garbage collector relies on the Mark and Sweep
algorithm [84]. Mark and Sweep solves the problem of cross referencing objects; however, it
is relatively slow when compared to other garbage-collection algorithms such as Automatic
Reference Counting (ARC), and this could be a problem when striving for better performance.
A possible way to improve performance is writing a native Node.js module in C/C++ and
provide JavaScript bindings. However, there is a better solution, which could potentially
lead to much better results. In recent years, Rust (https://www.rust-lang.org (accessed
on 10 February 2021)) has attracted increasing attention from the programmer community.
Rust is a low-level language designed for high speed, memory safety and thread safety,
and it is particularly appealing for embedded applications. Rust does not rely on a garbage-
collector, and memory management must be explicitly carried out by the programmer,
as in C. However, unlike C, Rust relies on smart pointers, and the allocated memory is
immediately released when a pointer falls out of scope. In addition, in most cases, Rust
outperforms C and C++ [85] (especially when using concurrency and multithreading) and
provides seamless integration with JavaScript and Node.js [86].

From this perspective, optimising JavaScript code makes no sense, since a much better
performance can be achieved by porting computation- and memory-intensive operations to
Rust and providing bindings for the JavaScript application. For this reason, the framework
ML core is in the process of being ported to Rust. Combining the power and speed of Rust
and the flexibility and the large ecosystem of Node.js has the potential to enable new ML
applications in which part of the data analysis and processing is shifted to the embedded
device itself.

The framework presented in this work is suitable for all those IoT applications
that rely on batch-processing of the sampled data [87–89]; however, it is envisaged
that the performance boost achievable by rewriting the mathematical core in Rust will
make this framework suitable for that class of applications that requires stream and
real-time processing.

A general-purpose and embeddable ML framework may potentially enable new
architectures, in which some of the computational tasks are shifted to the edge devices.
In such a context, the software presented in this work is now being tested in a staging
environment for metabolomics applications [90]. Metabolomics requires batch processing
of huge amounts of data; thus, the target requirements in terms of data-throughput perfectly
match the framework current characteristics. The goals of this ongoing research are:

1. Automating the whole ML workflow, as depicted in Figure 2, by leveraging the
data-wrangling features and the ML algorithms bundled with the framework;

2. Integrating data versioning systems such as DVC (https://dvc.org/ (accessed on 10
February 2021)) into the ML pipeline;

3. Stressing and analysing the performances of the classification algorithms which are
more suitable for metabolomic problems;

4. Digitalising the existing metabolomics lab infrastructure, as envisaged in [91], using
an evolution of the IoT architecture previously proposed in [9], in which each lab
machine is provided with software wrappers that allow autonomous data analysis on
the sampled data;

5. Leveraging the API-level compatibility with Tensorflow.js to implement load-balancing
algorithms that seamlessly and dynamically shift ML algorithms’ execution from
edge devices to edge servers running Tensorflow.js;

6. Deploying and stressing novel IoT architectures that rely on intra-lab sensor meshing
and a distributed MapReduce with federated execution [92].

The framework also provides Artificial Neural Network (ANN) support; however,
it suffers from the same limitations as other implementations, such as Tensorflow Lite,

https://www.rust-lang.org
https://dvc.org/


Electronics 2021, 10, 600 32 of 41

when dealing with Deep Neural Networks. Deep neural models are computationally and
memory-expensive, and require a compilation step to simplify the network model and
make it suitable for execution in a resource-constrained edge device. A possible way of
simplifying Deep Neural Networks consists of using pruning algorithms to reduce the
number of neurons and synapses [93]. As outlined in Section 3.1, the ANN inference engine
is still under development, which limits the application field to algorithms that rely on
shallow neural networks. This means, at this stage of development, that the framework
cannot efficiently deal with some kinds of application, such as, for example, efficient power
management in networked microgrids [94–96], since they require algorithms that can only
be efficiently implemented using deep convolutional neural networks [97].

6. Conclusions

This work deals with the design and implementation of an ML learning framework
suitable for embedded devices and IoT applications. The framework also provides APIs
for artificial neural networks and data-wrangling and analysis. The following stages took
place during the design process:

1. First, a set of ML algorithms suitable for IoT applications were identified through a
careful literature review;

2. Then, the core supporting software infrastructure was developed, privileging, by
design, portability to other programming languages;

3. Finally, the core infrastructure was stressed using an ad-hoc bechmarking tool in order
to gain a better insight into the limitations imposed by the software architecture and
the underlying hardware.

Although development is still at an early stage, the results are encouraging, and the
measurements demonstrate that it is possible to embed a fully fledged ML framework into
a resource-constrained computing board.

The framework was demonstrated on Raspberry Pi III and IV boards, and its perfor-
mances were evaluated for several load conditions with rank 1 and rank 2 tensors and
matrices and for several values of the dimension k. The delay in rank 1 tensor operations
on a Raspberry Pi III board ranges from a few ms (for k = 32) to roughly 70 ms for (for
k = 128). The latency increases to up to 1.1 s for some rank 2 tensor operations. The most
time-consuming operation is the matrix dot product, measured for a k × k matrix with
k = 64, whose latency is approximately 4.5 s.

Matrix and tensor operations are both computation- and memory-intensive; thus,
migrating to a Raspberry Pi IV board leads to a significant speed-up of up to 3.3 with respect
to the performances measured for the Raspberry Pi III set up. Detailed measurements are
reported in Tables 8–22.

The framework is suitable for all applications that rely on batch-data-processing and
is now being tested in a set-up suitable for metabolomics applications, focusing on ML
pipeline automation and algorithm performance and optimisation.

A further performance boost can be achieved by migrating the mathematical core
to a high-performance language suitable for embedded applications like Rust, and im-
plementing the bindings for Node.js to connect the new optimised core to the rest of
the framework.

It must be highlighted that the proposed solution differs from other solutions, such
as Tensorflow Lite. While the latter is a runtime environment that allows a pre-trained
model to be run on a small device, the solution described in this work is a full-fledged and
modular framework that offers the possibility of implementing the complete ML workflow
onto an embedded device.

Hardware and software technologies are mature enough to allow the implementation
of a lightweight, yet high-performance ML core, capable of running in embedded devices,
thus offering a path to a new pervasive computing paradigm in which the IoT devices are
not merely data collectors and forwarders, but real “smart” devices with enough computing



Electronics 2021, 10, 600 33 of 41

power. In such a context, Node.js and Rust are really appealing technologies and seem to
guarantee enough performance and flexibility to achieve this goal in the medium-term.

Author Contributions: Conceptualization, G.C. and A.T.; methodology, G.C. and A.T.; software,
G.C.; validation, G.C. and A.T.; investigation, G.C. and A.T.; writing—original draft preparation,
G.C.; writing—review and editing, G.C. and A.T.; supervision, A.T. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ALC Adaptive Linear Combiner
ANN Artificial Neural Network
API Application Programming Interface
ARC Automatic Reference Counting
BLE BlueTooth Low Emission
CEC Constant Error Carousel
CoAP Constrained Application Protocol
CSV Comma Separated Value
CPU Central Processing Unit
DT Decision Tree
EVD Eigenvalue Decomposition
GPIO General Purpose Input Output
GPU Graphics Processing Units
HMM Hidden Markov Model
HMNB Hierarchical Mixture of Naive Bayes
IoT Internet of the Things
JSON JavaScript Object Notation
KNN K-Nearest Neighbour
LAE Linear Algebra Engine
LSTM Long Short-Term Memory
LDDDR Low-Power Double Data Rate
LTS Long-Term Support
MDP Markov Decision Process
ML Machine Learning
MLR Multiple Liner Regression
MOE Margin of Error
MQTT Message Queue Telemetry Transport
NB Naive Bayes
NIPALS Nonlinear Iterative PArtial Least Squares
OS Operating System
PCA Principal Component Analysis
PDS Post-Decision State
PSV Pipe Separated Value
RAM Random Access Memory
RNN Recurrent Neural Network
ReLU Rectified Linear Unit
RF Random Forest
RME Relative Margin of Error
RT Regression Tree
SEM Standard Error of Mean
SDRAM Synchronous Dynamic RAM



Electronics 2021, 10, 600 34 of 41

SVD Singular Value Decimposition
SVM Support Vector Machine
TSV Tab Separated Value
UCB Upper Confidence Bound
USB Universal Serial Bus
WiFi Wireless Fidelity

Appendix A. Optimal Data Fitting

Overfitting and underfitting are causes of poor performance in machine learning models.
More specifically:

• Overfitting is related to a lack of generalization of the ML model due to a too-accurate
training. Namely, the model is very specific and too fit for the training data, and fails
when it is applied to data collected in the future, generating erroneous outcomes;

• Underfitting happes when the learning model is not accurate enough to capture the
relationship among new data. Namely, the model fails to learn the problem from the
training dataset.

The approximation with a simple straight line of Figure A1a is not a good approxi-
mation because it does not render the nonlinear relationship between between the model
variables x and y. This model is underfit to the data and it does not perform well, even
with the training data. Conversely, the model of Figure A1c is an example of overfitting.
This model learns all the details and noise of the training data; namely, the model captures
the random fluctuations in the training data and incorporates them as part of the model.
The problem is that irrelevant details and noise do not apply to new data and can negatively
impact the model’s ability to generalise. Finally, Figure A1b depicts a model with optimal
fit. Optimal fit lies between underfitting and overfitting. The optimal fit can be found by
analysing the model’s behaviour for the training and test datasets. During the training
process, the error on both training and test datasets decreases; however, when the model
is overtrained, the error in the training dataset decreases (i.e., the model is overfitting),
whereas the error in test dataset starts to increase. The optimal fit is the point just before
the error on the test dataset starts increasing.

(a) (b) (c)
Figure A1. Different model approximations: (a) model with underfitting, (b) model with optimal fit, and (c) model
with overfitting.

Underfitting is not a problem, because it can be easily detected by selecting a good
performance metric. Conversely, overfitting is a very common problem in nonparametric
and nonlinear models, and can be tackled using resampling techniques or suitably tun-
ing the model’s hyperparameters to limit or constrain the amount of details learned by
the model.



Electronics 2021, 10, 600 35 of 41

Appendix B. Key Requirements for ML Models

Appendix B.1. Accuracy

In machine learning, accuracy is the measure of the effectiveness of an ML model in
terms of correct predictions or classifications. Accuracy can be measured using classification
accuracy. Classification accuracy (or simply Accuracy) is defined as the ratio of the number
of correct predictions to the number of total predictions performed on the dataset, namely

Accuracy =
number of correct predictions
total number of predictions

(A1)

However, relying only on this metric to evaluate the effectiveness of a ML algorithm
could be misleading, especially in the case of heavily unbalanced datasets. This is not allow-
able in cases when the cost of a misclassification is high (e.g., not detecting a rare disease).

Several metrics can be used to suitably evaluate the performance of an ML algorithm;
the interested reader may refer to [98,99] for a detailed treatment.

Appendix B.2. Training Time

In supervised learning, training time is the time spent training the ML model using
historical data in order to build a model which minimises the prediction errors. The training
time is strictly related to accuracy and to the type of ML algorithm used.

Appendix B.3. Linearity

A prediction function can be either linear or non-linear. Given a feature vector xi ∈ Rk,
a linear prediction function can be represented as

ŷi = w0 +
k

∑
j=1

wj · x
j
i (A2)

where xj
i denotes a property of the of the feature vector xi, ŷi is the predicted target (or

label), and the coefficients w0, . . . , wk are the parameters of the model. Examples of linear
ML algorithms are linear regression, logistic regression, and support vector machine.
Conversely, a non-linear ML algorithm is characterized by a non-linear prediction function.
Examples of non-linear ML algorithms are naive Bayes, Gaussian naive Bayes, and K-
nearest neighbours.

Usually, linear algorithms are a good starting point, since they used to be algorithmi-
cally simpler and faster to train with respect their non-linear counterparts. However, they
are not always the best choice, as shown in the examples of Figure A2.

(a)
(b)

Figure A2. Linear approximation of the prediction function for (a) a binary classifier with a non-linear boundary, and (b) a
dataset with non-linear trend.

In the case of Figure A2a, a linear approximation to classify the dataset would lead to
low accuracy, since the class boundary is clearly non-linear. Analogously, as depicted in



Electronics 2021, 10, 600 36 of 41

Figure A2b, a linear approximation of a dataset with a non-linear trend would result in
large prediction errors.

Appendix B.4. Number of Parameters and Hyperparameters

The terms parameter and hyperparameter are sometimes used interchangeably in ma-
chine learning; however, they are not the same thing. If we refer to the simple regression
model of Equation (A2), the coefficients w0, w1, . . . wk represent the model parameters.
Thus, parameters are properties of the training data that are not set manually but tcan be
learned or estimated from data during model training. An ML model can be either paramet-
ric or nonparametric, depending on whether it has a fixed number of parameters. Examples
of model parameters are the coefficients in a linear or logistic regression, or the weights
in an artificial neural network. Conversely, a hyperparameter is a configuration external
to the model that cannot be learnt from the data and must be set manually and properly
tuned to a specific problem. Hyperparameters are necessary for the correct set-up of the
estimation process of the learning parameters. Examples of model hyperparameters are
the k of the K-nearest neighbour algorithm, C and σ for support vector machine algorithm,
and the number and size of the hidden layers of a neural network.

The number of parameters and hyperparameters of an ML model determine the
algorithm performance, since their training time is sensitive to their number.

Appendix B.5. Number of Features

A feature xj
i ∈ xi is a measurable property or characteristic of the phenomenon under

observation. A feature is the basic building block of a dataset. More specifically, one row of
the dataset represents an observation or experiment xi, whereas each column of the dataset
represents a feature. The number of features depends on the type of phenomenon observed;
for example, genetic and textual data are characterized by a large number of features.

The performance of a machine-learning algorithm heavily depends on the number of
features to be analysed, since this can make the training time extremely long.

The quality of a dataset can be improved with processes like feature selection and feature
engineering. Feature selection is aimed at removing properties that are either redundant
or not relevant from the dataset, without sacrificing the accuracy of the ML algorithm.
The benefits of good feature selection are:

1. Reducing the chance of overfitting the model;
2. Reducing the ML algorithm training time;
3. Improving the model’s interpretability by highlighting only those properties that are

more relevant to performing a good prediction.

Feature engineering is the process of combining an existing model’s features to create
new ones that can provide a deeper understanding of the problem, improving the accuracy
of the model and helping it to converge faster to an optimal solution.

Appendix C. Benchmarking Tool Architecture and Implementation

Figure A3 depicts the architecture of the benchmark tool used to evaluate the perfor-
mances of the ML framework presented in this work. The tool used was built on top of
the Benchmark.js (https://benchmarkjs.com (accessed on 10 February 2021)) library. This
library provides low-level APIs, to control system timers and perform statistical operations
on the measured data.

The benchmark tool comprises the following modules:

1. A benchmark suite; namely, a module that invokes the primitives of the ML framework
that must be evaluated;

2. A benchmark runner, in charge of executing the measurements on both synchronous
and asynchronous modules of the ML framework and collecting the measured data
by leveraging the primitives provided by Benchmark.js;

https://benchmarkjs.com


Electronics 2021, 10, 600 37 of 41

3. A data log and export module in charge of logging results and preparing and formatting
the data in several text-exporting formats (CSV, TSV, etc.) that are suitable for import
into a spreadsheet;

4. A configuration module that parses a configuration file with the general benchmark
set-up (number of simulations, duration, data output format, etc.) and configures all
the benchmark modules accordingly.

Figure A3. Architecture of the benchmark tool.

References
1. Ahamed, F.; Farid, F. Applying Internet of Things and Machine-Learning for Personalized Healthcare: Issues and Challenges.

In Proceedings of the 2018 International Conference on Machine Learning and Data Engineering (iCMLDE), Sydney, Australia,
3–7 December 2018; pp. 19–21.

2. Sen, S.; Datta, L.; Mytra, S. (Eds.) Machine Learning and IoT: A Biological Perspective; CRC Press: Boca Raton, FL, USA, 2019;
ISBN 978-1-13-849269-1.

3. Walter, K.-D. AI-based sensor platforms for the IoT in smart cities. In Big Data Analytics for Cyber-Physical Systems. Machine
Learning for the Internet of Things; Dartmann, G., Song, H., Schmeink, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019;
pp. 145–166, ISBN 978-0-12-816637-6.

4. Cornetta, G.; Touhafi, A.; Muntean G.-M. (Eds.) Social, Legal, and Ethical Implications of IoT, Cloud, and Edge Computing Technologies;
IGI Global: Hershey, PA, USA, 2020; ISBN 978-1-79-983817-3.

5. Kumar Koditala, N.; Shekar Pandey, P. Water Quality Monitoring System Using IoT and Machine Learning. In Proceedigs of the
2018 International Conference on Research in Intelligent and Computing in Engineering (RICE), San Salvador, El Salvador, 22–24
August 2018; pp. 1–5.

6. Ullo, S.L.; Sinha, G.R. Advances in Smart Environment Monitoring Systems Using IoT and Sensors. Sensors 2020, 20, 3113.
[CrossRef]

7. Hossam, M.; Kamal, M.; Moawad, M.; Maher, M.; Salah, M.; Abady, Y.; Hesham, A.; Khattab, A. PLANTAE: An IoT-Based
Predictive Platform for Precision Agriculture. In Proceedings of the 2018 International Japan-Africa Conference on Electronics,
Communications and Computations (JAC-ECC), Alexandria, Egypt, 17–19 December 2018; pp. 87–90.

8. Araby, A.A.; Abd Elhameed, M.M.; Magdy, N.M.; Said, L.A.; Abdelaal, N.; Abd Allah, Y.T.; Darweesh, M.S.; Fahim, M.A.;
Mostafa, H. Smart IoT Monitoring System for Agriculture with Predictive Analysis. In Proceedings of the 2019 8th International
Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 13–15 May 2019; pp. 1–4.

9. Cornetta, G.; Touhafi, A.; Togou, M.A.; Muntean, G.-M. Fabrication-as-a-Service: A Web-Based Solution for STEM Education
Using Internet of Things. IEEE Internet Things J. 2020, 7, 1519–1530. [CrossRef]

10. Mathur, P. Machine Learning Applications Using Python Cases Studies from Healthcare, Retail, and Finance; Springer Science + Business
Media: New York, NY, USA, 2019; ISBN 978-1-4842-3787-8.

11. Ray, P.P. An Introduction to Dew Computing: Definition, Concept and Implications. IEEE Access 2018, 6, 723–737. [CrossRef]
12. Reddy, R. R.; Mamatha, C.; Reddy, R. G. A Review on Machine Learning Trends, Application and Challenges in Internet of Things.

In Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI),
Bangalore, India, 19–22 September 2018; pp. 2389–2397.

http://doi.org/10.3390/s20113113
http://dx.doi.org/10.1109/JIOT.2019.2956401
http://dx.doi.org/10.1109/ACCESS.2017.2775042


Electronics 2021, 10, 600 38 of 41

13. Sharma, K.; Nandal, R. A Literature Study On Machine Learning Fusion with IOT. In Proceedings of the 2019 3rd International
Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 1440–1445.

14. Zou, Z.; Jin, Y.; Nevalainen, P.; Huan, Y.; Heikkonen, J.; Westerlund, T. Edge and Fog Computing Enabled AI for IoT-An Overview.
In Proceedings of the IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Hsinchu, Taiwan,
18–20 March 2019; pp. 51–56.

15. Shafique, M.; Theocharides, T.; Bouganis, C.-S.; Hanif, M.A.; Khalid, F.; Hafiz, R.; Rehman, S. An Overview of Next-Generation
Architectures for Machine Learning: Roadmap, Opportunities and Challenges in the IoT Era. In Proceedings of the Design,
Automation and Test in Europe Conference (DATE), Dresden, Germany, 19–23 March 2018; pp. 827–832.

16. Lee, J.; Stanley, M.; Spanias, A.; Tepedelenlioglu, C. Integrating machine learning in embedded sensor systems for Internet-of-
Things applications. In Proceedings of the 2016 IEEE International Symposium on Signal Processing and Information Technology
(ISSPIT), Limassol, Cyprus, 12–14 December 2016; pp. 290–294.

17. Suresh, V.M.; Sidhu, R.; Karkare, P.; Patil, A.; Lei, Z.; Basu, A. Powering the IoT through embedded machine learning and LoRa.
In Proceedings of the IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 349–354.

18. Han, T.; Muhammad, K.; Hussain, T.; Lloret, J.; Baik, S.W. An Efficient Deep Learning Framework for Intelligent Energy
Management in IoT Networks. IEEE Internet Things J. 2020, 8, 3170–3179. [CrossRef]

19. Barba-Guaman, L.; Eugenio Naranjo, J.; Ortiz, A. Deep Learning Framework for Vehicle and Pedestrian Detection in Rural Roads
on an Embedded GPU. Electronics 2020, 9, 589. [CrossRef]

20. Li, H.; Ota, K.; Dong, M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing. IEEE Netw. 2018,
32, 96–101. [CrossRef]

21. Lyu, L.; Bezdek, J. C.; He X.; Jin, J. Fog-Embedded Deep Learning for the Internet of Things. IEEE Trans. Ind. Inform. 2019, 15,
4206–4215. [CrossRef]

22. El-Rashidy, N.; El-Sappagh, S.; Islam, S.M.R.; El-Bakry, H.M.; Abdelrazek, S. End-To-End Deep Learning Framework for
Coronavirus (COVID-19) Detection and Monitoring. Electronics 2020, 9, 1439. [CrossRef]

23. Sakr, F.; Bellotti, F.; Berta, R.; De Gloria, A. Machine Learning on Mainstream Microcontrollers. Sensors 2020, 20, 2638. [CrossRef]
24. Merenda, M.; Porcaro, C.; Iero, D. Edge Machine Learning for AI-Enabled IoT Devices: A Review. Sensors 2020, 20, 2533.

[CrossRef] [PubMed]
25. Doyu, H.; Morabito, R.; Höller, J. Bringing Machine Learning to the Deepest IoT Edge with TinyML as-a-Service. IEEE IoT

Newsletter. 2020. Available online: https://iot.ieee.org/newsletter/march-2020 (accessed on 10 February 2021).
26. Khan, A.I.; Al-Badi, A. Open Source Machine Learning Frameworks for Industrial Internet of Things. Procedia Comput. Sci. 2020,

170, 571–577. [CrossRef]
27. Dingee, D. k3OS Takes Kubernetes to the Edge. Available online: https://containerjournal.com/topics/container-ecosystems/k3

os-takes-kubernetes-to-the-edge/ (accessed on 10 February 2021).
28. Melendez, C. Architecture Patterns for Kubernetes at the Edge. Available online: https://blog.equinix.com/blog/2020/12/14

/architecture-patterns-for-kubernetes-at-the-edge/ (accessed on 10 February 2021).
29. Gepperth, A.; Hammer, B. Incremental learning algorithms and applications. In Proceedings of the European Symposium on

Artificial Neural Networks (ESANN), Bruges, Belgium, 27–29 April 2016; pp. 357–368.
30. Ying, X. An overview of overfitting and its solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [CrossRef]
31. Zheng, A.; Casari, A. Feature Engineering for Machine Learning. Principles and Techniques for Data Scientists; O’Reilly Media:

Sebastopol, CA, USA, 2018; ISBN 978-1-491-95324-2.
32. Caruana, R.; Niculescu-Mizil, A. An Empirical Comparison of Supervised Learning Algorithms. In Proceedings of the Interna-

tional Conference on Machine Learning (ICML), Pittsburgh, PA, USA, 25–29 June 2006; pp. 161–168.
33. Van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn 2020, 109, 373–440. [CrossRef]
34. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement Learning: A Survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
35. Gosavi, A. Reinforcement Learning: A Tutorial Survey and Recent Advances. INFORMS J. Comput. 1996, 21, 178–192. [CrossRef]
36. Sutton, R.S. Integrated architectures for learning, planning, and reacting based on approximating dynamic programming.

In Proceedings of the the 7th International Conference on Machine Learning, Austin, TX, USA, 21–23 June 1990; pp. 353–357.
37. Sutton, R.S. Planning by incremental dynamic programming. In Proceedings of the 8th International Workshop on Machine

Learning, Evanston, IL, USA, 1 June 1991; pp. 353–357.
38. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
39. Priakanth, P.; Gopikrishnan, S. Machine Learning Techniques for Internet of Things. In Integrating the Internet of Things Into

Software Engineering Practices; Jeya Mala, D., Ed.; IGI Global: Hershey, PA, USA, 2019; pp. 160–181, ISBN 978-1-52-257790-4.
40. Al-Turjman, F. (Ed.) Artificial Intelligence in IoT; Springer: Cham, Switzerland, 2019; ISBN 978-3-030-04109-0.
41. Shafique, M.; Hafiz, R.; Javed, M.U.; Abbas, S.; Sekanina, L.; Vasicek, Z.; Mrazek, V. Adaptive and Energy-Efficient Architectures

for Machine Learning: Challenges, Opportunities, and Research Roadmap. In Proceedings of the Annual Symposium on VLSI
(ISVLSI), Bochum, Germany, 3–5 July 2017; pp. 627–632.

42. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep Learning for IoT Big Data and Streaming Analytics: A Survey.
IEEE Commun. Surv. Tutor. 2018, 20, 2923–2960. [CrossRef]

http://dx.doi.org/10.1109/JIOT.2020.3013306
http://dx.doi.org/10.3390/electronics9040589
http://dx.doi.org/10.1109/MNET.2018.1700202
http://dx.doi.org/10.1109/TII.2019.2912465
http://dx.doi.org/10.3390/electronics9091439
http://dx.doi.org/10.3390/s20092638
http://dx.doi.org/10.3390/s20092533
http://www.ncbi.nlm.nih.gov/pubmed/32365645
https://iot.ieee.org/newsletter/march-2020
http://dx.doi.org/10.1016/j.procs.2020.03.127
https://containerjournal.com/topics/container-ecosystems/k3os-takes-kubernetes-to-the-edge/
https://containerjournal.com/topics/container-ecosystems/k3os-takes-kubernetes-to-the-edge/
https://blog.equinix.com/blog/2020/12/14/architecture-patterns-for-kubernetes-at-the-edge/
https://blog.equinix.com/blog/2020/12/14/architecture-patterns-for-kubernetes-at-the-edge/
http://dx.doi.org/10.1088/1742-6596/1168/2/022022
http://dx.doi.org/10.1007/s10994-019-05855-6
http://dx.doi.org/10.1613/jair.301
http://dx.doi.org/10.1287/ijoc.1080.0305
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1109/COMST.2018.2844341


Electronics 2021, 10, 600 39 of 41

43. Shanthamallu, U.S.; Spanias, A.; Tepedelenlioglu, C.; Stanley, M. A brief survey of machine learning methods and their sensor
and IoT applications. In Proceedings of the International Conference on Information, Intelligence, Systems & Applications (IISA),
Larnaca, Cyprus, 17–18 June 2017; pp. 1–8.

44. Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for internet of things data
analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [CrossRef]

45. Samie, F.; Bauer, L.; Henkel, J. From Cloud Down to Things: An Overview of Machine Learning in Internet of Things. IEEE
Internet Things J. 2019, 6, 4921–4934. [CrossRef]

46. Sharmeen, S.; Huda, S.; Abawajy, J.H.; Ismail, W.N.; Hassan, M.M. Malware threats and detection for industrial mobile-IoT
networks. IEEE Access 2018, 6, 15941–15957. [CrossRef]

47. Azariadi, D.; Tsoutsouras, V.; Xydis, S.; Soudris, D. ECG signal analysis and arrhythmia detection on IoT wearable medical
devices. In Proceedings of the International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki,
Greece, 12–14 May 2016; pp. 173–176.

48. Li, G.; Lee, B.-L.; Chung, W.-Y. Smartwatch-based wearable EEG system for driver drowsiness detection. IEEE Sens. J. 2015, 15,
7169–7180. doi:10.1109/JSEN.2015.2473679. [CrossRef]

49. Chauhan, J.; Seneviratne, S.; Hu, Y.; Misra, A.; Seneviratne, A.; Lee, Y. Breathing-Based Authentication on Resource-Constrained
IoT Devices using Recurrent Neural Networks. Computer 2018, 51, 60–67. doi:10.1109/MC.2018.2381119. [CrossRef]

50. Bakar, U.; Ghayvat, H.; Hasanm, S.; Mukhopadhyay, S. Activity and anomaly detection in smart home: A survey. In Next
Generation Sensors; Mukhopadhyay, S.C., Ed.; Springer: Cham, Switzerland, 2016; pp. 191–220, ISBN 978-3-319-21670-6.

51. Ni, P.; Zhang, C.; Ji, Y. A hybrid method for short-term sensor data forecasting in Internet of Things. In Proceedings of the
International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Xiamen, China, 19–21 August 2014; pp. 369–373.

52. Derguech, W.; Bruke, E.; Curry, E. An Autonomic Approach to Real-Time Predictive Analytics using Open Data and Internet of
Things. In Proceedings of the International Conference on Ubiquitous Intelligence and Computing, and International Conference
on Autonomic and Trusted Computing, and International Conference on Scalable Computing and Communications and its
Associated Workshops (UTC-ATC-ScalCom), Bali, Indonesia, 9–12 December 2014; pp. 204–211.

53. Kraemer, F.A.; Ammar, D.; Braten, A.E.; Tamkittikhun, N.; Palma, D. Solar energy prediction for constrained IoT nodes based on
public weather forecasts. In Proceedings of the International Conference on the Internet of Things, Linz, Austria, 22–25 October
2017; pp. 1–8.

54. Ayele, T.W.; Mehta, R. Air pollution monitoring and prediction using IoT. In Proceedings of the 2nd International Conference on
Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; pp. 1741–1745.

55. Esther Pushpam, V.S.; Kavitha, N.S.; karthik, A.G. IoT Enabled Machine Learning for Vehicular Air Pollution Monitoring.
In Proceedings of the 2019 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India,
23–25 January 2019; pp. 1–7.

56. Pourbehzadi, M.; Niknam, T.; Kavousi-Fard, A.; Yilmaz, Y. IoT in Smart Grid: Energy Management Opportunities and Security
Challenges. In Internet of Things. A Confluence of Many Disciplines; IFIP Advances in Information and Communication Technology;
Casaca, A., Katkoori, S., Ray, S., Strous, L., Eds.; Springer: Cham, Switzerland, 2020; Volume 574, pp. 319–327, ISBN 978-3-030-
43604-9.

57. Fouhad, M.; Mali, R.; Lmouatassime, A.; Bousmah, M. Machine Learning and IoT for Smart Grid. In Proceedings of the 5th
International Conference on SMart City Applications (SCA), Safranbolu, Turkey, 7–9 October 2020.

58. Dias, G.M.; Nurchis, M.; Bellalta, B. Adapting sampling interval of sensor networks using on-line reinforcement learning.
In Proceedings of the IEEE World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 460–465.

59. Chafii, M.; Bader, F.; Palicot, J. Enhancing coverage in narrow band-IoT using machine learning. In Proceedings of the IEEE
Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018; pp. 1–6.

60. Min, M.; Wan, X.; Xiao, L.; Chen, Y.; Xia, M.; Wu, D.; Dai, H. Learning-Based Privacy-Aware Offloading for Healthcare IoT with
Energy Harvesting. IEEE Internet Things J. 2019, 6, 4307–4316. [CrossRef]

61. Carpentier, A.; Lazaric, A.; Ghavamzadeh, M.; Munos, R.; Auer, P. Upper-Confidence-Bound Algorithms for Active Learning
in Multi-armed Bandits. In Algorithmic Learning Theory. ALT 2011. Lecture Notes in Computer Science; Kivinen, J., Szepesvári, C.,
Ukkonen, E., Zeugmann, T., Eds.; Springer: Berlin, Germany, 2011; Volume 6925, pp. 189–203, ISBN 978-3-6-42-24411-7.

62. Powell, W.B., Ryzhov, I.O. Optimal Learning and Approximate Dynamic Programming. In Reinforcement Learning and Approximate
Dynamic Programming for Feedback Control; Lewis, F.L., Liu, D., Eds.; IEEE Press: Piscataway, NJ, USA, 2012; pp. 410–431,
ISBN 978-1-118-10420-0.

63. Tkachenko, R.; Izonin, I.; Kryvinska, N.; Dronyuk, I.; Zub, K. An Approach towards Increasing Prediction Accuracy for the
Recovery of Missing IoT Data based on the GRNN-SGTM Ensemble. Sensors 2020, 20, 2625. [CrossRef] [PubMed]

64. Izonin, I.; Tkachenko, R.; Verhun, V.; Zub, K. An approach towards missing data management using improved GRNN-SGTM
ensemble method. Eng. Sci. Technol. 2020, in press. [CrossRef]

65. Nguyen, G.; Dlugolinsky, S.; Bobák, M.; Tran, V.; López Garcá, A.; Heredia, I.; Malík, P.; Hluchý, L. Machine Learning and Deep
Learning frameworks and libraries for large-scale data mining: A survey. Artif. Intell. Rev. 2019, 52, 77–124. [CrossRef]

66. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]
67. Véstias, M.P.; Duarte, R.P.; de Sousa, J.T.; Neto, H.C. Moving Deep Learning to the Edge. Algorithms 2020, 13, 125. [CrossRef]

http://dx.doi.org/10.1016/j.dcan.2017.10.002
http://dx.doi.org/10.1109/JIOT.2019.2893866
http://dx.doi.org/10.1109/ACCESS.2018.2815660
http://dx.doi.org/10.1109/JSEN.2015.2473679
http://dx.doi.org/10.1109/MC.2018.2381119
http://dx.doi.org/10.1109/JIOT.2018.2875926
http://dx.doi.org/10.3390/s20092625
http://www.ncbi.nlm.nih.gov/pubmed/32375400
http://dx.doi.org/10.1016/j.jestch.2020.10.005.
http://dx.doi.org/10.1007/s10462-018-09679-z
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.3390/a13050125


Electronics 2021, 10, 600 40 of 41

68. Lozinski, L. The Uber Engineering Tech Stack, Part I: The Foundation. Available online: https://eng.uber.com/tech-stack-part-
one/ (accessed on 10 February 2021).

69. Dayley, B. Assessing Node.js and JavaScript to Build APIs, Microservices, and Event-Driven Web and Mobile Apps. Available
online: https://www.gartner.com/en/documents/3759663 (accessed on 10 February 2021).

70. Software AG. Software AG Acquires Built.io to Accelerate Leadership in Hybrid Cloud Integration. Available online:
https://www.softwareag.com/pl/company/press/news/dyn_press?id=175223-158077&isMobile=False&utm_source=
adwords&utm_medium=cpc&utm_campaign=brand_exact&utm_adgroup=software_ag_exact&utm_term=software%20ag&
matchtype=e&gclid=cj0kcqjw45_bbrd_arisaj6wuxsadi3hsy9v0ok-skcwrmmvorcr9mqm (accessed on 10 February 2021).

71. Bhagat, V. Why Is Node.js the Future of IOT Platforms All Around the Globe? Available online: https://www.experfy.com/blog/
why-is-node-js-the-future-of-iot-platforms-all-around-the-globe/ (accessed on 10 February 2021).

72. Gupta, M.M.; Bukovsky, I.; Homma, N.; Solo, A.M.; Hou, Z. Fundamentals of Higher Order Neural Networks for Modeling and
Simulation. In Artificial Higher Order Neural Networks for Modeling and Simulation; Zhang, M., Ed.; IGI Global: Hershey, PA, USA,
2013; pp. 103–133, ISBN 978-1-46-662175-6.

73. Aggarwal, C.C. Linear Algebra and Optimization for Machine Learning; Springer Nature: Cham, Switzerland, 2020; ISBN 978-3-030-
40343-0.

74. Wold, H. Estimation of principal components and related models by iterative least squares. In Multivariate Analysis; Krishnajah,
P.R., Ed.; Academic Press: Cambridge, MA, USA, 1966; pp. 391–420.

75. Chester, M. Neural Networks. A Tutorial; Prentice Hall: Englewood Cliffs, NJ, USA, 1994; ISBN 0-13-368903-4.
76. Fausett, L. Fundamentals of Neural Networks. Architectures, Algorithms, and Applications; Prentice Hall: Englewood Cliffs, NJ, USA,

1994; ISBN 0-13-334186-0.
77. Mhaskar, N.H.; Micchelli, C.A. How to choose an activation function. In Proceedings of the 6th International Conference on

Neural Information Processing Systems (NIPS), Denver, CO, USA, 29 November–2 December 1993; pp. 319–326.
78. Ding, B.; Qian, H.; Zhou, J. Activation functions and their characteristics in deep neural networks. In Proceedings of the Chinese

Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 1836–1841.
79. Zhang, G.P. Neural networks for classification: A survey. IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev. 2000, 30, 451–462.

[CrossRef]
80. Bhattacharyya, S. Neural Networks: Evolution, Topologies, Learning Algorithms and Applications. In Cross-Disciplinary

Applications of Artificial Intelligence and Pattern Recognition: Advancing Technologies; Mago, V.K., Bathia, N., Eds.; IGI Global:
Hershey, PA, USA, 2012; pp. 450–498, ISBN 9-78-161-350429-1.

81. Greff, K.; Srivastava, R.K.; Koutiník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural
Netw. Learn. Syst. 2017, 28, 2222–2232. [CrossRef] [PubMed]

82. Raza, A.; Ikram, A.A.; Amin, A.; Ikram, A.J. A review of low cost and power efficient development boards for IoT applications.
In Proceedings of the Future Technologies Conference (FTC), San Francisco, CA, USA, 6–7 December 2016; pp. 786–790.

83. Ojo, M.O.; Giordano, S.; Procissi, G.; Seitanidis, I.N. A Review of Low-End, Middle-End, and High-End IoT Devices. IEEE Access
2018, 6, 70528–70554. [CrossRef]

84. Khan, D. Understanding Garbage Collection and hunting Memory Leaks in Node.js. Available online: https://www.dynatrace.
com/news/blog/understanding-garbage-collection-and-hunting-memory-leaks-in-node-js/ (accessed on 10 February 2021).

85. The Computer Language Benchmarks Game. Available online: https://benchmarksgame-team.pages.debian.net/benchmarksgame/
fastest/rust.html (accessed on 10 February 2021).

86. Goyal, A. Rust and Node.js: A match made in heaven. Available online: https://blog.logrocket.com/rust-and-node-js-a-match-
made-in-heaven/ (accessed on 10 February 2021).

87. Ta-Shma, P.; Akbar, A.; Gerson-Golan, G.; Hadash, G.; Carrez, F.; Moessner, K. An Ingestion and Analytics Architecture for IoT
Applied to Smart City Use Cases. IEEE Internet Things J. 2018, 5, 765–774. [CrossRef]

88. Pfandzelter, T.; Bermbach, D. IoT Data Processing in the Fog: Functions, Streams, or Batch Processing? In Proceedings of the IEEE
International Conference on Fog Computing (ICFC), Prague, Czech Republic, 24–26 June 2019; pp. 201–206.

89. Taher, N.C.; Mallat, I.; Agoulmine, N.; El-Mawass, N. An IoT-Cloud Based Solution for Real-Time and Batch Processing of Big
Data: Application in Healthcare. In Proceedings of the 3rd International Conference on Bio-engineering for Smart Technologies
(BioSMART), Paris, France, 24–26 April 2019; pp. 1–8.

90. Liebal, U.W.; Phan, A.N.T.; Sudhakar, M.; Raman, K.; Blank, L.M. Machine Learning Applications for Mass Spectrometry-Based
Metabolomics. Metabolites 2020, 10, 243. [CrossRef] [PubMed]

91. Agilent Technologies. Enhancing Labs with Digitalization. Available online: https://www.agilent.com/about/features/en/
enhancing-labs-with-digitalization.html (accessed on 10 February 2021).

92. Kholod, I.; Yanaki, E.; Fomichev, D.; Shalugin, E.; Novikova, E.; Filippov, E.; Nordlund, M. Open-Source Federated Learning
Frameworks for IoT: A Comparative Review and Analysis. Sensors 2021, 21, 167. [CrossRef]

93. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning Convolutional Neural Networks for Resource Efficient Inference.
In Proceedings of the 5th International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

94. Zhou, Q.; Shahidehpour, M.; Paaso, A.; Bahramirad, S.; Alabdulwahab, A.; Abusorrah, A. Distributed Control and Communication
Strategies in Networked Microgrids. IEEE Commun. Surv. Tutor. 2020, 22, 2586–2633. [CrossRef]

https://eng.uber.com/tech-stack-part-one/
https://eng.uber.com/tech-stack-part-one/
https://www.gartner.com/en/documents/3759663
https://www.softwareag.com/pl/company/press/news/dyn_press?id=175223-158077&isMobile=False&utm_source=adwords&utm_medium=cpc&utm_campaign=brand_exact&utm_adgroup=software_ag_exact&utm_term=software%20ag&matchtype=e&gclid=cj0kcqjw45_bbrd_arisaj6wuxsadi3hsy9v0ok-skcwrmmvorcr9mqm
https://www.softwareag.com/pl/company/press/news/dyn_press?id=175223-158077&isMobile=False&utm_source=adwords&utm_medium=cpc&utm_campaign=brand_exact&utm_adgroup=software_ag_exact&utm_term=software%20ag&matchtype=e&gclid=cj0kcqjw45_bbrd_arisaj6wuxsadi3hsy9v0ok-skcwrmmvorcr9mqm
https://www.softwareag.com/pl/company/press/news/dyn_press?id=175223-158077&isMobile=False&utm_source=adwords&utm_medium=cpc&utm_campaign=brand_exact&utm_adgroup=software_ag_exact&utm_term=software%20ag&matchtype=e&gclid=cj0kcqjw45_bbrd_arisaj6wuxsadi3hsy9v0ok-skcwrmmvorcr9mqm
https://www.experfy.com/blog/why-is-node-js-the-future-of-iot-platforms-all-around-the-globe/
https://www.experfy.com/blog/why-is-node-js-the-future-of-iot-platforms-all-around-the-globe/
http://dx.doi.org/10.1109/5326.897072
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://www.ncbi.nlm.nih.gov/pubmed/27411231
http://dx.doi.org/10.1109/ACCESS.2018.2879615
https://www.dynatrace.com/news/blog/understanding-garbage-collection-and-hunting-memory-leaks-in-node-js/
https://www.dynatrace.com/news/blog/understanding-garbage-collection-and-hunting-memory-leaks-in-node-js/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/rust.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/rust.html
https://blog.logrocket.com/rust-and-node-js-a-match-made-in-heaven/
https://blog.logrocket.com/rust-and-node-js-a-match-made-in-heaven/
http://dx.doi.org/10.1109/JIOT.2017.2722378
http://dx.doi.org/10.3390/metabo10060243
http://www.ncbi.nlm.nih.gov/pubmed/32545768
https://www.agilent.com/about/features/en/enhancing-labs-with-digitalization.html
https://www.agilent.com/about/features/en/enhancing-labs-with-digitalization.html
http://dx.doi.org/10.3390/s21010167
http://dx.doi.org/10.1109/COMST.2020.3023963


Electronics 2021, 10, 600 41 of 41

95. Zhou, Q.; Tian, Z.; Shahidehpour, M.; Liu, X.; Alabdulwahab, A.; Abusorrah, A. Optimal Consensus-Based Distributed Control
Strategy for Coordinated Operation of Networked Microgrids. IEEE Trans. Power Syst. 2020, 35, 2452–2462. [CrossRef]

96. Wu, Y.; Wu, Y.; Guerrero, J.M.; Vasquez, J.C.; Palacios-García, E.J.; Guan, Y. IoT-enabled Microgrid for Intelligent Energy-aware
Buildings: A Novel Hierarchical Self-consumption Scheme with Renewables. Electronics 2020, 9, 550. [CrossRef]

97. Leonori, S.; Martino, A.; Mascioli, F.M.F.; Rizzi, A. ANFIS Microgrid Energy Management System Synthesis by Hyperplane
Clustering Supported by Neurofuzzy Min–Max Classifier. IEEE Trans. Emerg. Top. Comput. Intell. 2019, 3, 193–204. [CrossRef]

98. Japkowicz, N.; Shah, M. Evaluating Learning Algorithms. A Classification Perspective; Cambridge University Press: New York, NY,
USA, 2011; ISBN 978-0-521-19600-0.

99. Zheng, A. Evaluating Machine Learning Models. A Beginner’s Guide to Key Concepts and Pitfalls; O’Reilly Media: Sebastopol, CA,
USA, 2015; ISBN 978-1-491-93246-9.

http://dx.doi.org/10.1109/TPWRS.2019.2954582
http://dx.doi.org/10.3390/electronics9040550
http://dx.doi.org/10.1109/TETCI.2018.2880815

	Introduction
	A Review of Machine Learning Algorithms and Applications
	Supervised Learning
	Unsupervised Learning
	Semi-Supervised Learning
	Reinforcement Learning
	Machine Learning for IoT

	Software Architecture
	Overall Architecture
	Multidimensional Array Engine
	Linear Algebra Engine
	Artificial Neural Network Engine
	Perceptron
	Long Short-Term Memory Network

	Data Frame and Data Wrangling

	Hardware Platforms and Framework Performance
	Set-Up of the Benchmarking Environment
	Performance Evaluation
	Summary of Raspberry Pi III measurements
	Summary of Raspberry Pi IV Measurements


	Discussion
	Conclusions
	Optimal Data Fitting
	Key Requirements for ML Models
	Accuracy
	Training Time
	Linearity
	Number of Parameters and Hyperparameters
	Number of Features

	Benchmarking Tool Architecture and Implementation
	References

