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Abstract: A cooperative state estimation framework for automated vehicle applications is presented
and demonstrated via simulations, the estimation framework is used to estimate the state of a lead
and following vehicle simultaneously. Recent developments in the field of cooperative driving
require novel techniques to ensure accurate and stable vehicle following behavior. Control schemes
for the cooperative control of longitudinal and lateral vehicle dynamics generally require vehicle state
information about the lead vehicle, which in some cases cannot be accurately measured. Including
vehicle-to-vehicle communication in the state estimation process can provide the required input
signals for the practical implementation of cooperative control schemes. This study is focused on
demonstrating the benefits of using vehicle-to-vehicle communication in the state estimation of
a lead and following vehicle via simulations. The state estimator, which uses a cascaded Kalman
filtering process, takes the operating frequencies of different sensors into account in the estimation
process. Simulation results of three different driving scenarios demonstrate the benefits of using
vehicle-to-vehicle communication as well as the attenuation of measurement noise. Furthermore, in
contrast to relying on low frequency measurement data for the input signals of cooperative control
schemes, the state estimator provides a state estimate at every sample.

Keywords: state estimation; cooperative driving; vehicle-to-vehicle communication; Kalman filter;
simulation

1. Introduction

With the implementation of communication abilities in mass production vehicles [1],
the realization of cooperative driving features in commercial vehicles is near. Cooperative
driving is a form of automated driving where vehicles exploit communication with each
other or with infrastructure [2], via vehicle-to-vehicle (V2V) communication, vehicle-
to-infrastructure (V2I) communication, or a combination of both. The most commonly
known application of cooperation among road vehicles is cooperative adaptive cruise
control (CACC) [3], which is an enhanced version of adaptive cruise control (ACC) using
information received through V2V communication. CACC can result in improvements in
safety and ride comfort [4], increased traffic throughput [3], and fuel savings up to 20% for
commercial vehicles [5].

A wide variety of communication structures and control approaches have been
proposed for CACC [2,3], varying from simple uni-directional to more complex multi-
directional communication solutions. In addition, cooperation among vehicles can be used
for exploration [6], traffic light scheduling [7], and path planning [8]. Longitudinal and
lateral cooperative driving is realized via decoupled [9–11] and combined approaches [12],
where the latter is a preferred design approach because of the coupled longitudinal and
lateral vehicle dynamics [12]. Control of lateral vehicle motions can be divided into path fol-
lowing and trajectory following [12]. Path following is a time independent spatial approach,
and trajectory following relies on a time dependent signal, imposing requirements on the
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velocity and acceleration. Platooning is a term that is used for vehicles driving together
(cooperating), typically in the form of a string of vehicles following each other on a short
distance. For platooning, where the short inter-vehicle distance can significantly limit the
view [13], a vehicle following approach is preferred [12]. Cooperative driving technologies
mostly use a combination of on-board sensor information (e.g., radar) and V2V commu-
nicated information. With use of V2V communication and on-board sensors, preceding
vehicles can be accurately followed [14]. It is shown in [15] that the localization accuracy can
be improved if more vehicles are equipped with V2V communication. However, a factor
limiting the performance of automated drivign features is the available hardware [16]. For
example, current ACC applications require sensor update rates from 10 Hz to 20 Hz, but
future safety applications may require update rates up to 50 Hz [16]. Applying a control
approach similar to [12] requires detailed information of state components of the lead
vehicle, which is typically not measurable from the following vehicle. In the remainder of
the work, the lead vehicle is referred to as the target vehicle and the following vehicle is
referred to as the host vehicle. The required state information for control approaches like
presented in [12] can be obtained via V2V communication, and an estimator can be used to
improve the signal quality and the continuity of the signals [15].

Common dynamic models used for vehicle tracking range from simple kinematic
models to more complex models like the single-track model [16]. One of the determining
factors of the model complexity is the specific state components that need to be available
for the considered controller. Some of these state components may not be directly measur-
able and therefore need to be estimated. Bayuwindra [12] presented an orientation error
observer based on an extended unicycle model. Ploeg et al. [17] presented a state estimator
for the longitudinal acceleration of the preceding vehicle in order to (partly) maintain the
favorable string stability properties during persistent loss of communication. A Singer
acceleration model is a model where the acceleration is described as a first-order system
with stochastic disturbances, and such a model has been adopted in [17], with position and
velocity measurements obtained from a radar sensor [17]. A similar approach is presented
in [18], but in [18] an adaptive Kalman filter has been used, improving the performance
compared to using the Singer acceleration model from [17] via a continuously updated
adaptive acceleration mean. Wei et al. [14] presented a longitudinal and lateral vehicle
following control approach using only a radar and V2V communication, where the heading,
acceleration, and yaw rate are communicated. The host vehicle dynamics are estimated
using a single-track model [14]. Ess et al. [19] presented an object detection and tracking
method using vision sensors. A kinematic steering model is used to track vehicles, but the
low localization accuracy increases the difficulty of generating vehicle trajectories [19]. A
survey paper [20] on vision based vehicle detection and tracking reveals that (extended)
Kalman filtering and particle filtering are common approaches to predict vehicle motions
from vision data. In addition, the use of Kalman filters applied in different applications is
widely covered in the literature, e.g., the estimation of battery state of charge and capac-
ity [21–23]. Finally, variations of a constant acceleration model with yaw rate have been
used in [24] for tracking incoming traffic in urban scenarios.

In most sampled estimation frameworks, measurements are considered to be available
at every sample. However, in practice this is often not the case, especially in multi-sensor
set-ups. In the design estimation of the framework the different sensor update rates should
be taken into account. In the literature, examples can be found of systems where different
operating frequencies are present [25–27]. In some studies the issues of multi-rate sensing
are discussed in combination with time delays ([28]) and inter-sample measurements ([26]).
In [27], a multi-rate setup is considered in the estimation and control of a vehicle. The multi-
rate Kalman filter estimate is only updated with a measurement if a new measurement is
available, which in the case of [27] is on a fixed multiple of the sampling time. In between
the measurement updates the estimate is solely based on the prediction step of the Kalman
filter [27]. The authors of [29] discuss the fusion of radar and camera measurements; the
estimates of parallel Kalman filters for the different sensors are combined via Bayesian
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estimation. The method presented in [29] could also be used to deal with multi-rate issues.
In [30], two fusion methods are discussed; measurement fusion and state fusion. In
case of a multi-rate sensor set-up, both methods could be implemented. One method of
measurement fusion is based on the augmentation of the measurement vector and the
observation matrix [30]. The observation matrix relates the measurements to the system
state components. When multiple measurements are available the measurement vector
and observation matrix can be increased in size accordingly [30]. One of the state fusion
methods, which is also known as track-to-track fusion, requires multiple estimators to
run simultaneously, and when multiple estimates are close together, they can be fused
into one state estimate [30]. In [31], the set of measurements considered includes (time-
stamped) raw radar and lidar data and bounding boxes obtained through a vision system.
Therefore, the size of the measurement set is time-varying, resulting in a measured fusion
based approach similar to an example discussed in [30]. In [28], a multi-sensor set-up is
considered where the Kalman filter is operating at a frequency over 50 times higher than
the highest measurement frequency. Similarly to methods discussed in [25,26,30,31], the
estimator in [28] is only performing a measurement update when a new measurement is
available. Another possibility is to introduce a multi-rate estimator as presented in [21];
two decoupled estimators are operating at a different frequency improving the model
accuracy and stability.

From the material presented in Section 1 thus far, it can be concluded that the longi-
tudinal and lateral control of platoons is widely investigated. However, in cooperative
technologies the inputs are typically assumed to be continuously available and of sufficient
quality, which usually is not the case in practical scenarios. Even in papers where the
use of V2V communication for state estimation or control is discussed [16,32,33], practical
impairments such as limited update rates and high measurement noise are not always
included in the analysis.

The goal of this study is to present a cooperative state estimation framework for
automotive applications. The study is focused on demonstrating the benefits of using
V2V communication in the estimation process via simulations. The vehicle dynamics and
(virtual) measurements considered in this study are modeled in a simulation environment.
Onboard sensing is used in combination with measurements received through V2V com-
munication to estimate the state of a host and target vehicle via a cascaded Kalman filtering
approach. The state estimate resulting from the framework presented in this study can be
used in a longitudinal and lateral platooning framework such as presented in [12]. The
effect of the communication frequency on the estimation performance is analyzed via a
root-mean-square error analysis. For this study perfect vehicle following behavior and a
constant time gap are considered. The state estimator is located on the host vehicle, and
onboard sensors from the host vehicle are used, such as a radar and odometer, in combi-
nation with measurements from a target vehicle received via V2V communication. The
effect of different operating frequencies for the different sensors is taken into account in the
estimator design. The performance of the state estimator is analyzed via simulations and
error analyses, where realistic measurement noise and sensor operating frequencies are
used. The framework presented in this study can easily be modified for a different sensor
set-up.

The remainder of this study is organized as follows. In Section 2, the methodology
is discussed, consisting of the sensor set-up, driving scenario, vehicle and measurement
model, state estimator design, and the selection of the estimator setting. The simulation
results and discussion are presented in Section 3 followed by the conclusions of this study
in Section 4.

2. Methodology

Multi-vehicle state estimation is realized with cascaded Kalman filtering using sensors
located on the host vehicle in combination with V2V communicated measurements from
the preceding vehicle. First, the sensor set-up considered in this study is discussed. Second,
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the dynamic model representing the vehicles is discussed, including the available sensor
signals. Finally, the design and selection of the process noise values of the state estimator is
discussed in detail.

2.1. Sensor Set-Up

In the i-CAVE project [34] two Renault Twizys have been modified such that au-
tonomous and cooperative driving features can be implemented and tested. Considering
the implementation of the framework onto a vehicle set-up in future work, these vehicles
define the available sensors and sensor signals considered in this study. The vehicles are
shown in Figure 1, where the labels host and target refer to the following vehicle and lead
vehicle, respectively. Each vehicle is equipped with its own set of sensors and a WiFi-P
module [35], facilitating communication between the two vehicles. An overview of the
relevant sensors and the respective operating frequencies is listed in Table 1. Furthermore,
the real-time operating system of both vehicles is running at a base frequency of 100 Hz.

Target
Host

Figure 1. Two Renault Twizys modified for autonomous and cooperative driving in the i-Cave
project [34,36]. The host vehicle (left) is following the target vehicle (right) in both longitudinal and
lateral direction.

Table 1. List of sensors considered in this study, including the respective operating frequencies.

Vehicle Sensor Operating Frequency

Host

IMU 100 Hz
Odometer 100 Hz
GPS 5.0 Hz
Radar 14.3 Hz

Target
IMU 25 Hz
Odometer 25 Hz
GPS 1.0 Hz

2.2. Dynamic Model and Measurements

The state estimator presented in this study is based on a Kalman filter framework [37].
Such a framework requires a model of the vehicle dynamics and the considered mea-
surements. First, the selected model and the equations of motion in continuous time are
presented, followed by the transition into state-space formulation. Next, the discretization
of the model is discussed such that it can be used in a sampled application.

2.2.1. Continuous Time Equations of Motion and System Output

The dynamics of each vehicle are modeled using a unicycle model [12,38]. A schematic
drawing of the two unicycle models including the relevant degrees of freedom is shown
in Figure 2. The subscripts t and h represent the target and host vehicle, respectively.
Furthermore, the X- and Y-coordinates define the position in a global frame, θ is the global
heading angle and vs. is the longitudinal vehicle velocity. The global X- and Y-coordinates
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considered in this study correspond with the east and north direction of an earth-centered,
earth fixed coordinate system, respectively. The global heading angle is the angle between
the X- and Y-axis and indicated in Figure 2. The global X- and Y-position is defined as

Ẋi = vi cos(θi), i = {t, h} (1)

Ẏi = vi sin(θi), i = {t, h} (2)

respectively. Note that the lateral velocity is assumed to be zero. The longitudinal accelera-
tion ai of the vehicle is

ai = v̇i, i = {t, h} (3)

and the derivative of the heading angle θi is the yaw rate θ̇i, i = {t, h}. Finally, the longitu-
dinal acceleration and yaw acceleration of the unicycle are considered constant, giving

ȧi = v̈ = 0 + wa,i, i = {t, h} (4)

θ̈i = 0 + wθ̇,i, i = {t, h} (5)

where wθ̇ and wa are zero-mean Gaussian white noise on the yaw acceleration and lon-
gitudinal jerk. These noise terms will be used in the Kalman filter, which is discussed in
Section 2.3. The total system dynamics of a single unicycle is thus described with (1) to (5).

X

Y

vh

θh

vt
θt

Figure 2. Schematic drawing of a unicycle vehicle model including the relevant degrees of freedom.

The system output (measurements) is determined by the available sensors, which are
listed in Table 1. In this study indirect measurements such as the GPS velocity are not
considered with the exception of the heading angle obtained from the GPS sensor. The
heading angle is required for observability of the system, which is elaborated on in the end
of Section 2.2.2. Except for the measurements of the radar sensor, all measurements are
direct state measurements. The IMU sensor measures the longitudinal accelerations and
the yaw rate of the vehicle. The odometer measures the motor speed, which is translated to
a vehicle speed using a fixed gear ratio and the effecting rolling radius, and is therefore also
considered as a direct state measurement. The GPS sensors measures the global X- and Y-
position and the global heading angle, the latter is pre-filtered. The position measurements
of the GPS sensor correspond with the centers gravity of the respective vehicles and the
initial position of the host vehicle is used to null the measurements, therefore creating
the origin (Xh(t = 0), Yh(t = 0)) := (0, 0). The radar sensor is located on the front of the
host vehicle and measures the relative speed and distance to the rear bumper of the target
vehicle. The relative distance r is defined as

r =
√
(Xt − Xh)

2 + (Yt −Yh)
2 − L (6)

where L is the length the vehicle and the X- and Y-positions of the host and target vehicle
correspond with their center of gravity. Note that the expression in (6) is a simplification
where the difference in heading angle between the two vehicles is ignored. The effects of
this simplification can be included in the measurement noise, which also accounts for the
uncertainty of the measurement location on the target vehicle’s bumper. The relative speed
ṙ is defined as
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ṙ = (vt − vh) cos(θr) (7)

where θr is the azimuth angle measured by the radar. The relative speed is derived from a
constant radius cornering assumption where the vehicles drive with the same curvature
and have no relative lateral offset with respect to the desired trajectory. In this study the
azimuth angle θr is not considered as a measurement because the measurement quality
cannot be defined [39].

2.2.2. State-Space Formulation

In order to adopt a state-space notation as required for practical cascaded Kalman
filtering, a cascading system description is considered, allowing us to transform the system
dynamics into state-space form. The schematics of the cascading systems approach is
shown in Figure 3, where w1 and w2 are process noise vectors, y1 and y2 measurement
vectors and x1 a state vector. It should be noted that adopting the cascading system
description influences the propagation of process noise through the system, hence the term
cascaded Kalman filtering. The process noise w1 entering system 1, the yaw dynamics,
influences the state x1 and measurements y1. As shown in Figure 3, the state x1 enters
system 2, the unicycle dynamics, resulting in an indirect injection of the process noise w1
filtered by the dynamics of system 1 into system 2. Therefore, the process noise term w1 is
propagated to system 2 via system 1, influencing system 2 as filtered noise. The system and
output dynamics are described via the linear functions f1, f2, h1 and non-linear function h2
according to

ẋj = f j
(
xj, uj, wj

)
, j = {1, 2} (8)

y = h(x, u, v), j = {1, 2} (9)

where x is the state vector, u the input vector, w the process noise vector, y the measurement
vector, v the measurement noise vector and j refers to the system number corresponding
with Figure 3. The state vectors

x1 =
[
θt θ̇t θh θ̇h

]T , (10)

x2 =
[
Xt Yt vt at Xh Yh vh ah

]T , (11)

measurement vectors

y1 =
[
θt θ̇t θh θ̇h

]T , (12)

y2 =
[
Xt Yt vt at θ̇t Xh Yh vh ah θ̇h r ṙ

]T (13)

and process noise vectors

w1 =
[
wθ̇,t wθ̇,h

]T
, (14)

w2 =
[
wa,t wa,h

]T . (15)

are introduced. In state-space form, the system dynamics are described as

ẋj = Ajxj + Bjuj + Ejwj, j = {1, 2} (16)

yj = Cjxj + Djuj + Jjvj, j = {1, 2} (17)

where A is the system matrix, B the input matrix and E the process noise matrix. Fur-
thermore, C is the observation matrix, D the observed input matrix, and J and v are the
measurement noise matrix and vector. The explicit expressions for A, B, u and E are pre-
sented in Appendix A.1. It should be noted that via the adoption of the cascading systems
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approach, Figure 3, the system matrix A2 representing the unicycle dynamics is a function
of the state vector x1, giving A2 := A2(x1).

System 1

System 2

w1

w2

x1

y2

y1Yaw dynamics

Unicycle dynamics

Figure 3. Schematic drawing of the cascading systems approach used to allow the transformation of
the system dynamics into state-space form.

The system output is defined in (12) and (13) using the relative distance and speed
from (6) and (7). The matrices C, D and J are obtained by calculating the Jacobian matrices
of h(x, u, v) with respect to x, u and v. The measurement noise vectors are described as

v1 =
[
vθt vθ̇t

vθh
vθ̇h

]T
, (18)

v2 =
[
vXt vYt vvt vat vXh vYh vvh vah vr vṙ

]T . (19)

Again, the explicit expressions for C, D, J and v are presented in Appendix A.1.
As mentioned in Section 2.2.1, the heading angles obtained from pre-filtered measure-

ment data are included in the measurement vector y1 to ensure observability. A system is
observable if for any initial state and any final time the initial state can be uniquely deter-
mined from the measured input and output signals [37]. Whether a system is observable
can be determined by analyzing the rank of the observability matrix O. The observability
matrix is defined as

Oj =


Cj

CjAj
...

CjAn−1
j

 (20)

and observability is achieved if rank
(
Oj
)
= nj where nj is the length of the state vector

xj [37]. Since y1 and y2 contain all state components described in x1 and x2, respectively, it
is evident that both system 1 and system 2 are observable (rank

(
Cj
)
= nj).

2.2.3. Model Discretization

Finally, because the vehicles are operated using a discrete-time (sampled) platform,
the expressions from (16) and (17) need to be discretized. From hereon, all equations are
expressed in discrete-time, and are therefore a function of sample number k. The state-space
expressions from (16) and (17) are expressed in discrete-time as

xj,k+1 = Fj,kxj,k + Gj,kuj,k + Mj,kwj,k, j = {1, 2} (21)

zj,k = Hj,kxj,k + Lj,kuj,k + Nj,kvj,k, j = {1, 2} (22)

In the expressions in (21) and (22) Fk is the system matrix, Gk the input matrix, Mk the
process noise matrix, Hk the observation matrix, Lk the observed input matrix and Nk the
measurement noise matrix. The discrete-time form of the relevant matrices are obtained
according to [37]

Fk = eATs
∣∣∣
t=kTs

, Gk =

(∫ Ts

τ=0
eAτdτ

)
B
∣∣∣∣
t=kTs

, Mk =

(∫ Ts

τ=0
eAτdτ

)
E
∣∣∣∣
t=kTs

,

Hk = C|t=kTs
, Lk = D|t=kTs

, Nk = J|t=kTs
. (23)
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The matrices in (23) are evaluated at the current time t = kTs where Ts is the sampling
time of the estimator (in this study Ts = 0.010 s). The discrete-time state vector, input vector
and measurement vector are equivalent to their continuous-time counterparts, giving

xj,k = xj
∣∣
t=kTs

, uj,k = uj
∣∣
t=kTs

, wj,k = wj
∣∣
t=kTs

, zj,k = yj
∣∣
t=kTs

, vj,k = vj
∣∣
t=kTs

(24)

for j = {1, 2}, which evidently results in

x1,k =
[
θt,k θ̇t,k θh,k θ̇h,k

]T , (25)

x2,k =
[
Xt,k Yt,k vt,k at,k Xh,k Yh,k vh,k ah,k

]T , (26)

z1,k =
[
θt,k θ̇t,k θh,k θ̇h,k

]T , (27)

z2,k =
[
Xt,k Yt,k vt,k at,k Xh,k Yh,k vh,k ah,k r̄k ṙk

]T . (28)

The algebraic expressions for Fk, Gk, Mk, Hk, Lk and Nk obtained by using (23) are
presented in Appendix A.2.

2.3. State Estimator Design

The state estimation of the system consisting of the host and target vehicle is realized
using a cascaded Kalman filter [37,40,41]. A Kalman filter is an estimator where the gain is
chosen such that the estimation error covariance is minimized. In this section, the general
equations of a Kalman filter are presented in combination with the amendments following
from the cascading systems formulation. In addition, the use of multi-rate sensors in the
estimation process is discussed.

2.3.1. General Kalman Filtering Process

The Kalman filter considered in this study is based on a discrete-time model repre-
senting the system dynamics, which in this case is the combination of a host and target
vehicle. The dynamics from (21) and (22) are modeled with

x̂j,k+1 = Fj,k x̂j,k + Gj,kuj,k, j = {1, 2} (29)

ẑj,k = Hj,k x̂j,k + Lj,kuj,k, j = {1, 2} (30)

where x̂k is the state estimate and ẑk the estimated measurement. Do note that from the
cascading systems approach it follows that F2,k(x̂1,k). Because the model presented in
Section 2.2 does not include any inputs, it is evident that uk = 0, allowing us to simplify
the estimation model to

x̂j,k+1 = Fj,k x̂j,k, j = {1, 2} (31)

ẑj,k = Hj,k x̂j,k, j = {1, 2}. (32)

Generally, a Kalman filtering process consists of two steps, a prediction and a correc-
tion step. Through the use of the cascading systems approach, in this study four steps are
considered. The cascaded Kalman filtering process for a single time step is summarized
with the four steps [37]:

(1) State estimation and update of the state estimation covariance matrix for system 1,
the yaw dynamics
The a priori state estimate x̂1,k+1|k is obtained via the modeled system dynamics
from (31), resulting in

x̂1,k+1|k = F1,k x̂1,k|k, (33)
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after which the state estimation covariance P1,k|k is updated according to

P1,k+1|k = F1,kP1,k|kFT
1,k + M1,kQ1,kMT

1,k, (34)

resulting in the a priori state estimation covariance P1,k+1|k. In (34) Q1,k is the process
noise covariance.

(2) Measurement correction and update of the state estimation covariance matrix for
system 1 (only executed when a new measurement is available in z1,k)
The estimated output is obtained via

ẑ1,k = H1,k x̂1,k+1|k (35)

followed by a calculation of the Kalman gain K1,k according to

K1,k = P1,k+1|kHT
1,k

(
H1,kP1,k+1|kHT

1,k + N1,kR1,kNT
1,k

)−1
. (36)

Using the Kalman gain, the a posteriori state estimation covariance P1,k+1|k+1 is
obtained using

P1,k+1|k+1 = (I−K1,kH1,k)P1,k+1|k(I−K1,kH1,k)
T + K1,kN1,kR1,kNT

1,kKT
1,k (37)

where R1,k is the measurement noise covariance. Note that (37) can be simplified to
P1,k+1|k+1 = (I−K1,kH1,k)P1,k+1|k, both forms are described in the literature. Finally,
a measurement correction on the state estimate is performed using

x̂1,k+1|k+1 = x̂1,k|k+1 + K1,k(z1,k − ẑ1,k), (38)

resulting in the a posteriori state estimate x̂1,k+1|k+1. If there is no new measurement
available in z1,k at sample k, it follows that x̂1,k+1|k+1 = x̂1,k+1|k.

(3) State estimation and update of the state estimation covariance for system 2, the
unicycle dynamics
The a priori state estimate x̂2,k+1|k and state estimation error covariance P2,k+1|k are
obtained via

x̂2,k+1|k = F2,k

(
x̂1,k+1|k+1

)
x̂2,k|k, (39)

P2,k+1|k = F2,k

(
x̂1,k+1|k+1

)
P2,k|kFT

2,k

(
x̂1,k+1|k+1

)
+ M2,kQ2,kMT

2,k. (40)

(4) Measurement correction and update of the state estimation error covariance for
system 2
Similar to step (2), this step is only executed if z2,k contains a new measurement. The
estimated output z2,k and the Kalman gain K2,k are obtained using

ẑ2,k = H2,k x̂2,k+1|k, (41)

K2,k = P2,k+1|kHT
2,k

(
H2,kP2,k+1|kHT

2,k + N2,kR2,kNT
2,k

)−1
. (42)

Subsequently, the a posteriori state estimation error covariance is calculated as

P2,k+1|k+1 = (I−K2,kH2,k)P2,k+1|k(I−K2,kH2,k)
T + K2,kN2,kR2,kNT

2,kKT
2,k (43)

followed by the measurement correction

x̂2,k+1|k+1 = x̂2,k|k+1 + K2,k(z2,k − ẑ2,k) (44)

where x̂2,k+1|k+1 = x̂2,k|k+1 if no new measurement is located in z2,k.
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The process noise covariance and measurement noise covariance matrices are deter-
mined using the expected state and measurement noise:

Q1,k = E
{

wnwT
m

}
=

[
σ2

wθ̇t
0

0 σ2
wθ̇h

]
δnm = Q1, (45)

Q2,k = E
{

wnwT
m

}
=

[
σ2

wat
0

0 σ2
wah

]
δnm = Q2, (46)

R1,k = E
{

vnvT
m

}
=


σ2

θt,k
0 0 0

0 σ2
θ̇t,k

0 0

0 0 σ2
θh,k

0
0 0 0 σ2

θ̇h,k

δnm = R1, (47)

R2,k = E
{

vnvT
m

}
=



σ2
Xt,k

0 0 0 0 0 0 0 0 0

0 σ2
Yt,k

0 0 0 0 0 0 0 0

0 0 σ2
vt,k

0 0 0 0 0 0 0

0 0 0 σ2
at,k

0 0 0 0 0 0

0 0 0 0 σ2
Xh,k

0 0 0 0 0

0 0 0 0 0 σ2
Yh,k

0 0 0 0

0 0 0 0 0 0 σ2
vh,k

0 0 0

0 0 0 0 0 0 0 σ2
ah,k

0 0

0 0 0 0 0 0 0 0 σ2
r̄k

0
0 0 0 0 0 0 0 0 0 σ2

ṙk



δnm = R2, (48)

where σ2 is the standard deviation of the respective signals defined in w and v. Zero-mean
Gaussian white noise is considered for both the process noise and measurement noise
(however, note the previous comment about filtered process noise entering system 2), and
because of the Kroneckerdelta function δnm the noise matrices do not depend on time (there
is no correlation between different samples), giving Q1,k = Q1, Q2,k = Q2, R1,k = R1
and R2,k = R2 [37]. The power of the process and measurement noise is considered to be
constant, yielding constant Q and R matrices. The measurement noise values described in
R1 and R2 are obtained through experiments performed prior to this study. In Table 2, a
list of the measurements signals together with their respective noise levels is provided. The
values for the noise levels in Table 2 are expressed as standard deviations. The matrices
Q and R considered in this study are square and diagonal, giving Q = QT and R = RT .
Furthermore, Q and R are considered positive definite.

2.3.2. Multi-Rate Sensing

Set-ups including a variety of sensors typically deal with different sensor update rates.
In Table 1, it is shown that this is also the case for the sensor set-up considered in this
study. Taking the different sensor update rates into account in the estimator design can
increase the estimation performance. In this study it is assumed that all measurements
are a multitude of the base frequency of the state estimator, and therefore the effect of
inter-sample measurements is not considered. Furthermore, the effect of time delays is not
considered in this work. From the literature presented in Section 1 it can be concluded
that performing measurement updates only when new measurements are available is a
common approach. Although this methodology results in a size-varying measurement
vectors, observation matrices and measurement noise matrices, it is a straightforward
approach which ensures measurements are only used once to update the state estimator.
This method is implemented by removing the elements of zk, Hk, and Nk which do not
correspond with new measurements [25]. This is realized with the introduction of Sk,
which is a matrix of dimension mk× n with mk the number of new measurements at sample
k and n the total number of rows of Hk [25]. The elements of Sk are 1 at the positions
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(1, s1), . . . ,
(
mk, smk

)
and 0 elsewhere, with s1 to smk corresponding with the row numbers

of Hk belonging to the new measurements. Using the matrix Sk results in modified versions
of the observation vectors zk, observation matrices Hk, and measurement noise matrices Nk:

z∗j,k = Sj,kzj,k, H∗j,k = Sj,kHj,k, N∗j,k = Sj,kNj,k, j = {1, 2}. (49)

Note that in (33) to (44) the vectors and matrices zk, Hk, Nk should be replaced with
z∗k , H∗k , N∗k . This methodology is similar to what is presented in [26], where all measure-
ments which are unavailable are set to the measurement prediction, thus not resulting in
any measurement corrections. However, setting the unavailable measurement equal to
the prediction does result in a modified estimation error covariance matrix (see (35) to (37)
and (41) and (43)).

Table 2. List of the available measurements considered in this chapter. The noise levels are obtained
via experiments and are expressed in terms of standard deviation (SD).

Sensor Measurement Signal Noise Level (SD)

IMU (host) Longitudinal acceleration ah 0.189 m/s2

Yaw rate θ̇h 0.0138 rad/s

Odometer (host) Longitudinal velocity vh 0.0721 m/s

GPS (host)
Global X-position Xh 0.702 m
Global Y-position Yh 0.702 m
Global heading angle θh 0.0347 rad

Radar (host) Relative distance r 0.0106 m
Relative speed ṙ 0.138 m/s

IMU (target) Longitudinal acceleration at 0.294 m/s2

Yaw rate θ̇t 0.0139 rad/s

Odometer (target) Longitudinal velocity vt 0.0814 m/s

GPS (target)
Global X-position Xt 0.493 m
Global Y-position Yt 0.493 m
Global heading angle θt 0.0910 rad

One of the issues that may arise using the method resulting in (49), is that the majority
of the measurement corrections, Equations (38) and (44), is based on one or a limited
number of sensors. For example, considering a system with two equivalent sensors, of
which sensor 1 operates at a significantly higher frequency in comparison to sensor 2, the
state estimate will be mostly based on the information coming from sensor 1. This might
lead to drift and/or large estimation errors of state components which are measured less
frequently, either direct or indirect. In order to prevent large estimation errors, the weight
of the measurement is adjusted with the ratio between the sampling frequency of Kalman
filter f0 and the sampling frequency of the sensor fs. In essence, this approach normalizes
the weight of a measurement based on the sensor sampling frequency. The weighting
factor is implemented in the Kalman filter by multiplying the sensor standard deviation σ
with the ratio between the sampling frequency of the specific sensor and of the operating
system, resulting in

σ∗ =
f0

fs
σ (50)

where fs is the sampling frequency of the corresponding sensor and f0 the sampling
frequency of the operating system. Note that for the measurements obtained through
V2V communication, the communication frequency may influence the weighting factor
from (50). For all sensors located on the host vehicle it follows that fs is upperbounded by
the communication frequency. Implementing this approach can decrease the sensitivity to
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sensor faults and errors of sensors with a relatively high sampling frequency. The effect of
the weighting factor on the estimation performance is demonstrated in Appendix B.

2.4. Selection of the Process Noise Values

The performance of a Kalman filter depends on the specific setting, which is generally
determined by the Q and R matrices. More specifically, the ratio between Q and R is of
importance. In the literature various methods to acquire the process and/or measurement
noise values (hence Q and R) can be found, examples are [42–46]. Bian et al. [47] pre-
sented a two-step parameter optimization method for low-order model based estimation,
where a particle swarm optimization algorithm is used to optimize the model parameters
and to tune the error covariance matrices of an extended Kalman filter. Saha et al. [42]
presented a selection procedure based on a robustness and sensitivity metric, allowing
the estimator to be tuned via a weighted trade-off between the two metrics. Gelen and
Atasoy [43] presented a selection procedure based on three metrics, and two parameter
were defined in order to test consistency of the Kalman filter (the normalized estimation
error squared and the normalized innovation squared). Shu et al. [44] presented a de-
tailed error analysis and optimize the estimation error with respect to the process noise
covariance. Åkesson et al. [45] presented a generalized autocovariance method for tuning
of estimators with correlated noise. Note that noise might become correlated after dis-
cretizing continuous-time systems [45]. Correlated noise results in the Kalman filter to
lose its optimality, yielding sub-optimal results and invalidity of (a part of) the stability
and convergence proofs of Kalman filters. Lastly, Matisko and Havlena [46] presented a
method for noise covariance estimation using a Bayesian approach next to Monte Carlo
numerical methods.

Although numerous procedures used to determine the estimator setting can be found
in the literature, the methods are often relatively complex to implement because of the large
number of equations, assumptions and parameters, and are subject to manual selection
of relevant parameters. In this study, the setting of the estimator is solely determined by
optimization of the estimator performance through the Q matrices, since the values in the
R matrices are available from prior experiments. The estimator setting is determined by the
minimization of a global error function for different levels of process noise covariances Q1
and Q2, which in essence is similar to the approach from [44]. Because each unicycle model
contains two noise terms, wa for the longitudinal jerk in (4) and wθ̇ for the yaw acceleration
in (5), the process noise covariance for each unicycle consists of two parameters that can be
selected. Note that it is assumed that process noise is uncorrelated as is described with (45)
and (46). Furthermore, the process noise on the target vehicle is assumed to be equal to
the process noise on the host vehicle, reducing the total optimization to a two-parameter
problem. Similarly to the method presented in [42], the process noise covariance is varied
according to

Q1 =

[
10Pθ̇ 0

0 10Pθ̇

]
Q0, Q2 =

[
10Pa 0

0 10Pa

]
Q0 (51)

by adapting Pa and Pθ̇ and where Q0 = I. The performance of the state estimator can
be analyzed for different settings of the process noise covariance, and based on an error
function a preferred setting can be selected. The error function E, which has to be minimized
for Pa and Pθ̇ , is defined as

E =
N1

∑
n=1

√√√√ 1
K

K

∑
k=1

g1,n

(
xgt

1,n,k − x̂1,n,k

)2
+

N2

∑
n=1

√√√√ 1
K

K

∑
k=1

g2,n

(
xgt

2,n,k − x̂2,n,k

)2
(52)

where g1 and g2 describe the relative weights for the different states and N1 and N2 are
the number of elements in x1,k and x2,k as well as g1 and g2. Furthermore, K is the total
number of samples used in the calculation of E and the superscript gt refers to the ground
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truth signals. The error function is a weighted summation of the root-mean-square (RMS)
errors of all the states. The weight vectors g are defined as

g1 =
[

g2
h g2

y g2
h g2

y

]
, g2 =

[
g2

p g2
p g2

v g2
a g2

p g2
p g2

v g2
a

]
(53)

where the subscripts h, y, p, v, a are short for the heading, yaw rate, position, velocity and
acceleration, respectively. Note that the weights in g are also used to make the individual
state components dimensionless, allowing for summation of the errors. The final setting
Q1,final and Q2,final of the estimator is obtained by minimizing E for Q1 and Q2. Note
that using the methodology presented here, in Section 2.4, locating a global minimum is
not guaranteed.

3. Simulation Results

The performance of the state estimator is analyzed through simulations based on a
multi-body vehicle model and different driving scenarios. All simulations presented in
this study are realized with Matlab/Simulink R2019b [48]. After setting the process noise
covariance values of the estimator via the method presented in Section 2.4, the performance
is analyzed via a RMS error analysis, where the effect of the V2V communication frequency
is investigated in more detail.

3.1. Multi-Body Vehicle Model

In order to ensure the simulations are a realistic representation, a detailed multi-body
vehicle model is used. The model is developed as part of the i-CAVE project and can be used
to investigate the vehicle behavior in presence of sensor and actuator faults, indicating the
high level of detail [34,49]. The model is validated through measurements and experiments
in previous work [49], and serves as a suitable representation for the vehicles from Figure 1.
For more information about this model the reader is referred to [49]. It is assumed that
the host vehicle is accurately following the target vehicle via a longitudinal and lateral
cooperative control approach. The distance between the vehicle is defined by a constant
time gap h. In the simulations it is assumed the host vehicle follows the target vehicle
perfectly. The simulation data obtained with the multi-body model is used as a ground
truth in the analysis of the estimation performance. All ground truth data is provided as a
file supplementary to this study.

3.2. Driving Scenarios

The performance of the state estimator is analyzed for different driving scenarios,
such that it can be shown that the state estimator is suited for multiple scenarios. In this
study, three different scenarios are considered:

1. Straight line driving
2. Constant curvature cornering
3. 8-shape cornering

In each scenario a constant forward velocity is considered. The ground truth trajecto-
ries for all driving scenarios are shown in Figure 4, with the x-axis truncated to maintain
visibility of scenario 1 and 2. The first scenario is the most simple one, where all states
except for the global X-position are constant. In scenario 2 a constant radius cornering ma-
neuver is considered, resulting in valid modeling assumptions of a constant yaw rate and
acceleration. Scenario 3 contains a varying road curvature which results in a non-constant
yaw rate, thus making the constant yaw rate assumption in the model invalid. In all driving
scenarios the lateral acceleration remains limited, yielding linear tyre characteristics [50],
and each simulation is terminated after 30 s.
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Figure 4. Ground truth trajectories for all scenarios.

3.3. Process Noise Covariance Selection

The setting of the state estimator is obtained by minimizing E from (52) for Q1 and Q2
for one driving scenario. By using only one scenario to select the process noise covariance
values of the state estimator, the other two scenarios provide more objective results of
the performance. Furthermore, this gives an indication of the estimation performance for
different scenarios. Scenario 3, the 8-shape driving maneuver, is used to tune the estimator.
This scenario is the most complex where the model assumption of a constant yaw rate is
not valid, therefore being most representative for a regular driving scenario. The default
process noise covariance matrices are chosen as Q1,0 = Q2,0 = I. The error function E
from (52) is minimized for Pa and Pθ̇ . The weights that have been used in this study are
summarized in Table 3. The effect of the weighting values in Table 3 on the estimation
behavior is not considered and can be analyzed in future work. The error is calculated in
the time interval [5, 30] s, such that initialization errors do not affect the error E and thus
the eventual setting of the estimator.

Table 3. Weighting values for the different system states.

Weight gh gy gp gv ga

Value 1
0.1 1/rad 1

0.1 s/rad 1
0.05 1/m 1

0.5 s/m 1
0.1 s2/m

In Figure 5, the error function is plotted for different values of Pa and Pθ̇ , and the
minimum is indicated with a black dot. The results are generated by varying Pa and Pθ̇
with a step-size of 0.5. The resulting process noise covariance matrices Q1,final and Q2,final
are obtained for Pa = −3.5 and Pθ̇ = 0.0. As can be observed in Figure 5, the surface of E
is relatively flat around the minimum, and therefore the estimator has a low sensitivity
for (limited) variations in Q. Figure 5 shows that variations of Pθ̇ with Pθ̇ >= 1.0 do not
visibly influence the error E, which is caused by the low measurement noise of the yaw
rate measurement (Table 2).

3.4. Estimation Performance

Now that the setting of the state estimator is selected via a RMS error analysis, the
performance of the estimator can be analyzed in more detail. First the estimated trajectories
are presented in combination with the ground truth trajectories. Next, the performance
is analyzed via RMS and absolute maximum errors, and finally the effect of the V2V
communication frequency is investigated. In the latter, the values of the process noise
matrices Q1 and Q2 is considered to be fixed.
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Figure 5. Error function E for different scaling factors of the default process noise covariance matrix.
The black dot indicates the minimum, corresponding with the final setting.

3.4.1. Trajectory Estimation

The estimated spatial trajectories are shown in Figure 6 and serve as a graphical way
of indicating the estimation performance. Quantitative results corresponding with the
spatial trajectories from Figure 6 are summarized in Table 4 via mean values and standard
deviations. The estimator setting obtained from Figure 5, which is solely based on driving
scenario 3, is used for all three scenarios. The estimated trajectories visually correspond
relatively well with the ground truth trajectories for all three scenarios. The mean values
and standard deviations of the error signals listed in Table 4 demonstrate that the mean
values of the estimation error (groundtruth− estimation) are generally higher than the
mean values of the measurement error (groundtruth −measurement). Looking at the
results from Figure 6 this is as expected, since mean error values are affected by offsets.
Furthermore, since the measurement noise is generated in simulations, the mean value
should go to zero for t→ ∞. The standard deviations from Table 4 demonstrate that the
estimation of the host vehicle outperforms the target vehicle for all scenarios, with an
reduction of around 25 to 65% for different scenarios. In interesting observation is that
the improvement are the smallest for the scenario which is used to obtain the estimator
settings, but considering that scenario (number 3) is most complex this is a reasonable
result. For the target vehicle, the standard deviation of the estimation error increases with
approximately 5 to 45%, this increase is most likely caused by delayed estimator behavior
clearly demonstrated in Figure 6b,c. This effect is caused by the limited update frequency
of the GPS sensor located on the target vehicle in combination with the communication
device limiting the update rates of all measurements belonging to the target vehicle. It
is expected that the standard deviation of the estimation error can become smaller than
the standard deviation of the measurement error by increasing the relative weight of the
GPS measurements of the target vehicle, for example by modifying the measurement noise
of the measured position (Xt, Yt). The results in Figure 6 and Table 4 confirm that the
trajectory of the host vehicle has smaller errors with respect to the ground truth compared
to the trajectory of the target vehicle. The errors in the estimated Y-positions in Figure 6a
remain below 2 m. Furthermore, all results in Figure 6 show limited estimation errors
considering the quality of the available measurements. It should be noted that the initial
conditions of the state estimator correspond exactly with the initial states of the vehicles.
The effect of the initial conditions might be investigated in future work. Figure 6b reveals
that during the time in between the GPS measurements, the estimator is able to follow the
curvature of the cornering maneuver.

The value of the error function E for the different scenarios is shown in Figure 7. The
results show that the value of E is similar for scenario 2 and scenario 3, where the error for
scenario 3 is slightly smaller. This may be caused by the fact that scenario 3 is used to select
the setting of the estimator. The error E for scenario 1 is smaller compared to the values for
the other scenarios, most likely caused by the limited complexity of the driving scenario,
i.e., in scenario 1 no cornering maneuver is considered.
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Figure 6. The spatial ground truth trajectories in combination with the estimation results for all scenarios. (a) Scenario 1.
(b) Scenario 2. (c) Scenario 3.

Table 4. Mean values and standard deviations corresponding to the results presented in Figure 6
(*: scenario that is used to select the estimator setting).

(Scenario 1) (Scenario 2) (Scenario 3) *
Error Signal Mean (m) St.d. (m) Mean (m) St.d. (m) Mean (m) St.d. (m)

Xgt
t − Xt −0.0215 0.415 −0.0215 0.415 −0.0215 0.415

Xgt
t − X̂t 0.0448 0.187 −0.123 0.604 −0.0788 0.432

Ygt
t −Yt −0.0961 0.476 −0.0961 0.476 −0.0961 0.476

Ygt
t − Ŷt 0.846 0.577 −0.0542 0.6278 −0.346 0.536

Xgt
h − Xh 0.0823 0.713 0.0823 0.713 0.0823 0.713

Xgt
h − X̂h −0.111 0.253 −0.0591 0.354 0.141 0.414

Ygt
h −Yh −0.0447 0.723 −0.0447 0.723 −0.0447 0.723

Ygt
h − Ŷh −0.136 0.0657 0.0118 0.495 −0.0518 0.527

The ground truth and estimation results over time are presented in Figure 8 for
the global heading of both the target and host vehicle. The mean values and standard
deviations of the error signals corresponding with the results from Figure 8 are listed in
Table 5. The results in Figure 8 demonstrate that the estimated signals correspond well
with the ground truth. This is confirmed with Table 5, which also demonstrates that the
errors in the heading angles can be significantly reduced using the proposed estimator.
Although the mean values show an increase comparing the estimation errors with the
measurement errors, the standard deviations of the error are reduced by roughly 25 to
65% during cornering maneuvers and over 90% for straight line driving. Interestingly,
comparing the results from Table 5 for the three scenarios shows that the presence of
cornering behavior influences the estimation errors, but the complexity of the cornering
maneuver seems to have minimal effect on the estimation errors (scenario 2 vs. scenario 3).
Finally, Figure 8b,c clearly show that the results for the host vehicle have a constant lag
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with respect to the target vehicle. This is caused by the constant time gap, ensuring a
constant inter-vehicle distance.

1 2 3
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Figure 7. Error function E for all three scenarios.
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Figure 8. The ground truth and estimation result for the global heading for all three scenarios.
(a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

Table 5. Mean values and standard deviations corresponding to the results presented in Figure 8
(*: scenario that is used to select the estimator setting).

(Scenario 1) (Scenario 2) (Scenario 3) *
Error Signal Mean (rad) St.d. (rad) Mean (rad) St.d. (rad) Mean (rad) St.d. (rad)

θ
gt
t − θt 0.0293 0.0845 0.0293 0.0845 0.0293 0.0845

θ
gt
t − θ̂t 0.0845 0.0076 0.0292 0.0641 0.0292 0.0641

θ
gt
h − θh −0.000731 0.0333 −0.000731 0.0333 −0.000731 0.0333

θ
gt
h − θ̂h −0.00217 0.00218 −0.00130 0.0124 −0.00122 0.0124
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3.4.2. State and Measurement Errors

The estimator performance can be analyzed numerically by calculating the errors
between the estimation and ground truth signals, and compare these with the errors
between the ground truth and the measurements. The RMS and absolute maximum errors
between the estimated state components and ground truth are listed in Table 6, where the
superscript gt refers to ground truth. In addition, the errors between the measurement
and ground truth signals are also included in Table 6. For the expressions of the RMS and
maximum errors the estimated heading of the target vehicle is selected as an example,
resulting in

RMS =

√√√√ 1
K

K

∑
k=1

(
θ

gt
t,k − θ̂t,k

)2
(54)

Max =

√(
θ

gt
t − θ̂t

)2
(55)

where K is the number of samples considered.
First, let us focus on the top part of Table 6. Similarly to Section 3.3, the errors are

calculated over the time interval [5, 30] s to limit the effect of initialization. The difference in
errors between the states of the host vehicle and target vehicle are small for the individual
scenarios. Comparing the scenarios with each other reveals that all errors are similar in
magnitude and the results for scenario 1 show smaller errors compared to scenario 2 and 3.
Considering the overall agreement in errors for the different scenarios, it can be concluded
that the estimator has a small sensitivity to the complexity of the driving scenario. The
results do indicate that including a cornering maneuver increases the errors, which is in
line with the expectation. The setting of the estimator is based on scenario 3 only, and the
maximum and RMS errors are similar or smaller for the other scenarios, which implies
the setting is suitable for a variety of scenarios. Considering the implementation onto the
vehicle set-up in future work, these results are positive, since the setting of the estimator
is independent of the driving maneuver. The results listed in Table 6 are in line with the
results from Figure 5.

By continuing to the middle and bottom part of Table 6, the estimation performance
can be compared with the quality of the measurements, providing a more objective perfor-
mance analysis. The RMS and maximum errors for measurements of direct state compo-
nents are equal for all scenarios, because the measurement noise is created in simulation
via pre-specified noise levels (Table 2). Furthermore, in simulation the measurements are
not influenced by external disturbances. Comparing the errors between the measurements
and the ground truth, and the estimates and the ground truth, allows us to analyze the
attenuation of measurement noise. For the majority of the state components the measure-
ment noise is attenuated. Noteworthy is the increase RMS and maximum error for the
longitudinal velocity, which is caused by the corrections using the GPS measurements. Fur-
thermore, the errors in the position estimate of the target vehicle are larger compared with
the measurements, this is caused by estimation errors in the heading angle. For the host
vehicle this is not the case, because the measured noise on the host vehicle’s heading angle
is smaller, the position estimation is more accurate. Furthermore, it should be noted that
the results depend on the weights described in Table 3, the sensor operating frequencies
from Table 1 and the noise levels from Table 2. The results from Table 6 reveal that while
using the state estimator, measurement noise can be reduced to over 50%, depending on
the state component. From Table 6 it can be concluded that the estimator can significantly
reduce the measurement noise, which confirms the benefits of using a state estimator for
cooperative applications. However, the results also indicate the measurement noise on
the heading angles have a significant influence on the quality of the position estimate.
In contrast to solely relying on limited frequency measurement data, using the estimator
results in a state estimate which is both available and updated every sample.
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Table 6. Maximum and RMS errors between the ground truth, the estimates and the measurements for all three driving
scenarios (*: scenario for which the state estimator setting is selected). The top part contains the errors between the ground
truth and estimation results, the middle part contains the errors between the ground truth and the measurements of direct
state components, and the bottom part contains errors related to the radar sensor (**: reconstructed via (6) and (7)).

(Scenario 1) (Scenario 2) (Scenario 3) *
Error Signal RMS Abs. max RMS Abs. max RMS Abs. max

Xgt
t − X̂t (m) 1.75 × 10−1 5.60 × 10−1 6.63 × 10−1 13.8 × 10−1 4.63 × 10−1 12.9 × 10−1

Ygt
t − Ŷt (m) 11.2 × 10−1 18.4 × 10−1 6.80 × 10−1 17.6 × 10−1 6.89 × 10−1 17.7 × 10−1

vgt
t − v̂t (m/s) 7.63 × 10−2 19.7 × 10−2 30.6 × 10−2 73.1 × 10−2 25.0 × 10−2 48.0 × 10−2

agt
t − ât

(
m/s2) 2.81 × 10−2 8.32 × 10−2 11.4 × 10−2 24.3 × 10−2 8.94 × 10−2 23.2 × 10−2

θ
gt
t − θ̂t (rad) 6.47 × 10−2 15.2 × 10−2 6.47 × 10−2 15.2 × 10−2 6.47 × 10−2 15.2 × 10−2

θ̇
gt
t − ˆ̇θt (rad/s) 13.6 × 10−3 42.3 × 10−3 13.6 × 10−3 42.3 × 10−3 14.0 × 10−3 44.4 × 10−3

Xgt
h − X̂h (m) 2.80 × 10−1 7.95 × 10−1 3.77 × 10−1 7.93 × 10−1 4.66 × 10−1 9.60 × 10−1

Ygt
h − Ŷh (m) 1.61 × 10−1 2.62 × 10−1 5.41 × 10−1 12.1 × 10−1 5.80 × 10−1 11.7 × 10−1

vgt
h − v̂h (m/s) 8.70 × 10−2 27.3 × 10−2 20.4 × 10−2 49.6 × 10−2 24.9 × 10−2 51.0 × 10−2

agt
h − âh

(
m/s2) 3.23 × 10−2 9.88 × 10−2 9.02 × 10−2 27.3 × 10−2 8.79 × 10−2 20.2 × 10−2

θ
gt
h − θ̂h (rad) 1.26 × 10−2 3.38 × 10−2 1.26 × 10−2 3.38 × 10−2 1.26 × 10−2 3.38 × 10−2

θ̇
gt
h −

ˆ̇θh (rad/s) 8.74 × 10−3 42.1 × 10−3 8.74 × 10−3 42.1 × 10−3 8.87 × 10−3 42.3 × 10−3

Xgt
t − Xt (m) 3.72 × 10−1 9.97 × 10−1 3.72 × 10−1 9.97 × 10−1 3.72 × 10−1 9.97 × 10−1

Ygt
t − Yt (m) 5.00 × 10−1 12.0 × 10−1 5.00 × 10−1 12.0 × 10−1 5.00 × 10−1 12.0 × 10−1

vgt
t − vt (m/s) 7.87 × 10−2 24.4 × 10−2 7.87 × 10−2 24.4 × 10−2 7.87 × 10−2 24.4 × 10−2

agt
t − at

(
m/s2) 30.0 × 10−2 105 × 10−2 30.0 × 10−2 105 × 10−2 30.0 × 10−2 105 × 10−2

θ
gt
t − θt (rad) 8.20 × 10−2 17.9 × 10−2 8.20 × 10−2 17.9 × 10−2 8.20 × 10−2 17.9 × 10−2

θ̇
gt
t − θ̇t (rad/s) 13.9 × 10−3 42.8 × 10−3 13.9 × 10−3 42.8 × 10−3 13.9 × 10−3 42.8 × 10−3

Xgt
h − Xh (m) 7.31 × 10−1 20.7 × 10−1 7.31 × 10−1 20.7 × 10−1 7.31 × 10−1 20.7 × 10−1

Ygt
h − Yh (m) 7.36 × 10−1 21.2 × 10−1 7.36 × 10−1 21.2 × 10−1 7.36 × 10−1 21.2 × 10−1

vgt
h − vh (m/s) 7.18 × 10−2 26.4 × 10−2 7.18 × 10−2 26.4 × 10−2 7.18 × 10−2 26.4 × 10−2

agt
h − ah

(
m/s2) 18.7 × 10−2 69.6 × 10−2 18.7 × 10−2 69.6 × 10−2 18.7 × 10−2 69.6 × 10−2

θ
gt
h − θh (rad) 3.38 × 10−2 8.09 × 10−2 3.38 × 10−2 8.09 × 10−2 3.38 × 10−2 8.09 × 10−2

θ̇
gt
h − θ̇h (rad/s) 13.8 × 10−3 46.8 × 10−3 13.8 × 10−3 46.8 × 10−3 13.8 × 10−3 46.8 × 10−3

rgt − r̂ ** (m) 12.1 × 10−3 34.8 × 10−3 25.7 × 10−3 61.3 × 10−3 14.1 × 10−3 37.8 × 10−3

rgt − r (m) 15.3 × 10−3 46.8 × 10−3 120 × 10−3 154 × 10−3 60.9 × 10−3 146 × 10−3

ṙgt − ˆ̇r ** (m/s) 5.95 × 10−2 15.2 × 10−2 36.2 × 10−2 74.3 × 10−2 30.5 × 10−2 62.6 × 10−2

ṙgt − ṙ (m/s) 13.9 × 10−2 47.7 × 10−2 13.9 × 10−2 47.7 × 10−2 13.9 × 10−2 47.7 × 10−2

3.4.3. V2V Communication Frequency

The effect of the communication frequency on the estimation performance is analyzed
by varying the communication frequency fc while keeping all other parameters fixed,
including the setting of the estimator. Note that varying fc does have an effect on the
specific weighting of the communicated measurements through (50). The communication
frequency is varied by taking multitudes of the sampling time of the operating frequency.
The error function for different sampling times of the V2V communication is shown in
Figure 9 for all three scenarios. The results show that the shape of the error function is
somewhat similar for all scenarios. The trend of the error functions shown in Figure 9
reveals that the error increases for an increasing sampling time of the V2V communication
with the exception of the results for scenario 1. This is most likely caused by constant
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velocity and the lack of cornering maneuvers in scenario 1, reducing the sensitivity to
delays caused by limited sensor update rates.

0 0.1 0.2 0.3 0.4 0.5

V2V communication sampling time (s)

0

20

40

60

80

100

E
 (

-)

Scenario 1

Scenario 2

Scenario 3

Default V2V comm.

Figure 9. Error function E versus the V2V communication sampling time for all three scenarios.
The black dotted line indicates the default sampling frequency of the V2V communication device
(Table 1).

It is evident that the results presented in Figure 9 depend on the sensor operating
frequencies and thus the relative weights, (50), the measurement noise levels and the
weights used in the error function (Table 3). This is demonstrated with Figure 10, which
displays the RMS error between the ground truth and estimate of the yaw rate and longitu-
dinal acceleration for different communication frequencies. The shapes of the curves in
Figure 10a,b show clear differences. Because the yaw rate estimate of the target vehicle is
predominantly based on the yaw rate measurement, it is expected that the estimation error
decreases for an increasing communication frequency which is confirmed with Figure 10a.
The estimate of the longitudinal acceleration, however, is also influenced by velocity and
position measurements as well as the relative measurements from the radar sensor. The
weight of the these measurements depends on the communication frequency through (50).
A smaller sampling time for the V2V communication results in a relatively higher weight of
the GPS measurements of the target vehicle, visibly affecting the longitudinal acceleration
estimates. For communication samplings times above approximately 0.10 s most curves
in Figure 10 show a constant or increasing trend, which is in agreement with the general
expectation that the error increases for a larger sampling time.
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Figure 10. The RMS errors of selected state components for different values of the V2V communi-
cation sampling time. All three scenarios are included. (a) The RMS values of θ̇

gt
t − ˆ̇θt and θ̇

gt
h −

ˆ̇θh.

(b) The RMS values of agt
t − ât and agt

h − âh.

3.5. Discussion

The presented framework can be used for the state estimation of a host and target
vehicle and thus cooperative lateral vehicle following. For selected state components,
measurement noise is significantly attenuated. Moreover, using the presented approach
results in availability of the state of the target vehicle on every sample, in contrast to
methods which rely solely on V2V communication [14], with potentially a limited number
of samples. This contribution relaxes the high update rate requirements of future safety
applications [16]. Relating this work to previous works on state estimation for cooperative
automotive applications such as [17] shows that the use of V2V communication in state
estimation can significantly improve the estimation performance. It has to be noted that the
approach presented in [17] serves as a fall-back in case communication is lost, rather than a
general solution. The framework presented in this study provides accurate information
of the state components of the host and target vehicle, which can be used in cooperative
control frameworks. Moreover, depending on the required input signals for the considered
cooperative control approach, the use of V2V communication might become a necessity
to ensure observability of the system. With the presented approach it is possible to esti-
mate state components which are otherwise difficult to estimate, for example the yaw rate
of the target vehicle. Comparing the obtained results with other works, mostly control
techniques ([32,33,51]), reveals that the presented framework does not solely rely on one
or two sensors of which the measurements are communicated wireless, but instead uses a
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combination of on-board sensors and V2V communication, and takes different update rates
into account. Therefore, the presented approach is potentially more robust to sensor faults
and missing information due to for example packet loss. However, studies as [52,53] con-
sider these kind of communication specifications in more detail. The presented approach is
potentially more robust compared to approaches using only on-board information such
as [13]. The statements presented in this paragraph clearly define the benefits of using V2V
communication for state estimation, especially considering the application in a cooperative
control framework, providing detailed information of the relevant state components.

Regarding the simulation results, the estimation errors have the same level of magni-
tude for all scenarios, implying a small sensitivity to the specific scenario. In other words,
the estimator is likely to display a similar performance throughout different scenarios of
varying complexity. The results also show that during cornering maneuvers the estimation
errors increase compared to straight line driving. Furthermore, the effect of measurement
noise can be significantly reduced, depending on the setting of the estimator and the
measurement noise of relevant sensors. In general, increasing the V2V communication
frequency decreases the estimation errors. However, the results depend on the weighting
values defined in Table 3 as well as the operating frequencies of the different sensors.

Limitations of the presented approach include the effect of time delays, the assump-
tions on the measurement noise, the requirements in measurement quality, and the effect
of vehicle dynamics and external disturbances, as is explained further in the remainder of
this section. Typically, sensors are subject to time delays, which results in measurement
obtained at t actually correspond with t− τ where τ is the delay. In this study, the effect
of time delays is not considered and therefore set to zero for all sensors. The values for
the measurement noise are considered to be known exactly and they are assumed to be
constant. Although one can calculate the measurement noise through experiments, as is
done in this study, it remains difficult to determine the noise level exactly, like in any other
practical set-up. The wide variety of automotive sensors, each with their own signal quality
and operating frequency, makes it difficult to present a fixed or optimal setting. For that
reason, the properties of the sensors already located on the vehicle set-up are considered
fixed except for the operating frequency of the V2V communication. Furthermore, excited
vehicle dynamics and external disturbances also influence the measurements in practice.
Regarding the required measurement quality, in the preparation of the simulations it was
found that the quality of the measurement signals can have a significant effect on the
estimation performance. Specifically the quality of the measured heading angles is of
importance, high measurement noise in the measured heading angles leads to poor esti-
mation results. This is in part caused by the adaptation of the cascaded systems approach.
With this approach some relations between the different state components are ignored, for
example those between the heading angle and position (the heading angle estimates are
not corrected using the position measurements). Finally, the effect of sensor offsets is also
not considered in this study.

Several opportunities for future work are identified, in part based on the results
presented in this study. First and foremost is the implementation of the presented approach
onto a full-size vehicle setup, such that the methodology can be verified and demonstrated
with experiments. With the implementation onto a vehicle setup, the effect of external
disturbances, e.g., driving on a poor quality road, on the performance of the methodology
presented in this study can be analyzed. In addition, investigating the effect of sensor
time delays on the estimation performance is considered an interesting route for future
work. Furthermore, the effect of relevant V2V communication properties, including packet
loss and communication delays, is a compelling direction for future work. The effect of
the weighting values listed in Table 3 on the estimation performance as mentioned in
Section 3.3 as well as the effect of the initial conditions as mentioned in Section 3.4.1 are
items that can also be analyzed in future work. The effect of measurement noise and
process noise can be investigated in future work as well. Although measurement noise can
be determined from experiments, in the preparation of the work presented in this study, the
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specific noise levels demonstrated to play a significant role in the estimation performance.
Finally, in Section 1 it is noted that future safety applications may require high update
rates, and therefore it would be interesting to research the extent to which the methodology
presented in this study can provide a solution for the increasing safety requirements.

4. Conclusions

A framework for state estimation using V2V communication for cooperative driving
applications is presented and demonstrated by means of simulations. The main contri-
bution of this study is the successful demonstration of a cooperative state estimation
framework, which has good potential for a diverse selection of cooperative driving appli-
cations. The framework can be implemented on a wide variety of vehicles with different
sensor and communication setups, given that observability of the system is maintained.
The estimator provides detailed information of relevant state components, which can be
used as input for longitudinal and lateral cooperative driving control schemes. Via simula-
tions it is shown that the estimator has a small sensitivity to the specific setting as well as
the complexity of the driving scenario. The effect of measurement noise can be significantly
reduced, although the results vary for the different state components, which is presented by
means of both quantitative and qualitative results. The operating frequencies of different
sensors are taken into account in the estimator design. The analysis of the effect of the
V2V communication frequency on the estimation performance indicates the estimation
quality increases for higher communication frequencies. Limitations of this work include
the assumptions on the measurement noise, the magnitude of the measurement noise and
the exclusion of external disturbances. The effect of sensor time delays and implemen-
tation onto a vehicle set-up is considered in future work. Practical implementation and
performing experiments will automatically include the effect of external disturbances.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-929
2/10/6/651/s1.

Author Contributions: Conceptualization, W.S.; methodology, W.S.; software, W.S.; validation, W.S.;
formal analysis, W.S.; investigation, W.S.; resources, W.S., T.S. and H.N.; data curation, W.S.; writing–
original draft preparation, W.S.; writing–review and editing, T.S. and H.N.; visualization, W.S.;
supervision, T.S. and H.N.; project administration, W.S. and T.S.; funding acquisition, T.S. and H.N.
All authors have read and agreed to the published version of the manuscript.

Funding: This work is part of the research programme i-CAVE with project number 14893, which is
partly financed by the Dutch Research Council (NWO).

Data Availability Statement: All ground truth data that is used in the simulations presented in this
study is available supplementary to this article. Supplementary to this study, the relevant simulation
data is available in a separate data file.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data, or in the writing of the
manuscript. All funders agreed on the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ACC Adaptive cruise control
CACC Cooperative adaptive cruise control
RMS Root-mean-square
V2V Vehicle-to-vehicle
V2I Vehicle-to-infrastructure

Appendix A. State-Space Formulation of the System Dynamics

In this part of the appendix, the explicit expressions for matrices and vectors used in
the state-space formulation of the system dynamics are presented. First, the continuous
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time matrices and vectors from (16) and (17) are presented, followed by their respective
discrete time counterparts from (21) and (22).

Appendix A.1. Continuous Time System Matrices

First, let us focus on the dynamics of the system. Considering the formulation
from (16), the dynamics in (1) to (5) are described in state-space form using the cascading
systems approach from Figure 3 with

A1 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

, E1 =


0 0
1 0
0 0
0 1

, B1 = 0, u1 = 0

for system 1 and

A2(t) =



0 0 cos(θt(t)) 0 0 0 0 0
0 0 sin(θt(t)) 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 cos(θh(t)) 0
0 0 0 0 0 0 sin(θh(t)) 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


, E2 =



0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 1


,

B2 = 0, u2 = 0

for system 2 in which the state components of system 1 are used.
As mentioned in Section 2.2, the matrices C, D and J are obtained by taking the

Jacobian of h(x, u, v). This gives C = ∂h(x,u,v)
∂x , D = ∂h(x,u,v)

∂u and J = ∂h(x,u,v)
∂v , which

results in

C1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, D1 = 0, J1 = I

and

C2(t) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

c1(t) c2(t) 0 0 −c1(t) −c2(t) 0 0
0 0 cos(θr(t)) 0 0 0 − cos(θr(t)) 0



, D2 = 0, J2 = 0

with

c1(t) =
Xt(t)− Xh(t)√

(Xt(t)− Xh(t))
2 + (Yt(t)−Yh(t))

2
, c2(t) =

Yt(t)−Yh(t)√
(Xt(t)− Xh(t))

2 + (Yt(t)−Yh(t))
2

.
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Appendix A.2. Discrete Time System Matrices

Using the discretization procedure from (23) allows us to obtain an algebraic expres-
sions for Fk, Gk, Mk, Hk, Lk and Nk, resulting in

F1,k =


1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1

, M1,k =


T2

s
2 0

Ts 0

0 T2
s

2
0 Ts

,

H1,k = C1|t=kTs
, L1,k = D1|t=kTs

, N1,k = J1|t=kTs
,

and

F2,k =



1 0 Ts cos(θt,k+1)
T2

s
2 cos(θt,k+1) 0 0 0 0

0 1 Ts sin(θt,k+1)
T2

s
2 sin(θt,k+1) 0 0 0 0

0 0 1 Ts 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0 1 0 Ts cos(θh,k+1)
T2

s
2 cos(θh,k+1)

0 0 0 0 0 1 Ts sin(θh,k+1)
T2

s
2 sin(θh,k+1)

0 0 0 0 0 0 1 Ts
0 0 0 0 0 0 0 1


,

M2,k =

[
T3

s
6 cos(θt,k)

T3
s

6 sin(θt,k)
T2

s
2 Ts 0 0 0 0

0 0 0 0 T3
s

6 cos(θh,k)
T3

s
6 sin(θh,k)

T2
s

2 Ts

]T

,

H2,k = C2|t=kTs
, L2,k = D2|t=kTs

, N2,k = J2|t=kTs
.

Appendix B. The Effect of Scaling for Multi-Rate Sensing on the Estimation Performance

In this section, the effect of using the weighting factor from (50) on the estimation
performance is demonstrated. This weighting factor is implemented to prevent large
estimation errors or drift in a multi-rate sensor setup. Analyzing the performance through
the cost function from (52) allows us to compare the performance for the case where the
weighting factor from (50) is implemented versus when this is not implemented. The cost
function for different settings, i.e., different values for Pa, Pθ̇ , is shown in Figure A1 for both
cases. Comparing the results without additional weights in Figure A1b to the results where
the weighting from (50) is used in Figure A1a demonstrates that the use of the weighting
factor from (50) overall results in a smaller error. In addition, including the weighting
factor reduces the sensitivity of the estimation performance with respect to the setting of
the estimator. That is, the gradient of the error E around the minimum of E is smaller
when (50) is used.
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(a) (b)

Figure A1. The cost function results for different settings of the estimator for the case with and without the weighting factor
from (50). (a) Case where the weighting from (50) is implemented. (b) Case where no weighting factor is implemented.
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