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Abstract: This paper describes and illustrates the optimization of a safe mobile robot control process
in collision situations using the model of a multistep matrix game of many participants in the form
of a dual linear programming problem. The synthesis of non-cooperative and cooperative game
control software was performed in Matlab/Simulink software to determine the safe path of the
robot when passing a greater number of other robots and obstacles. The operation of the game
motion control algorithm of a mobile robot is illustrated by computer simulations made in the
Matlab/Simulink program of two real previously recorded navigation situations while passing
dozens of other autonomous mobile robots.

Keywords: path planning; mobile robot; optimization; safe control; matrix game; computer simulation

1. Introduction

The range of autonomous mobile robots includes autonomous ground vehicles (AGVs),
autonomous aerial vehicles (AAVs), autonomous surface vehicles (ASVs)—in particular, the
maritime autonomous surface ship (MASS), described by Munim [1] and Bratic et al. [2]—
and autonomous underwater vehicles (AUVs). Path planning, as a fundamental and exten-
sively explored problem in autonomous robotic control, was described by Gwon et al. [3],
Kim et al. [4], and Casado and Bermudez [5]. Teso-Fz-Betono et al. [6] showed that effective
management of a mobile robot is the most important task of modern navigation. There are
many possible solutions to this task, from which the best solution (i.e., the optimal one) is
selected, according to the principles presented by Speyer and Jacobson [7] and Yong [8].
Optimization is as effective as the mathematical model of the actual mobile robot control
process in collision situations is adequate. Figure 1 illustrates the problem of formulating
and solving the optimization task, where the function Q(s) means assessing the quality of
the mobile robot control process and adopts the name of the goal control or the quality
index control, while s are the decision variables in the form of the strategies of the mobile
robot and passing encounters with other robots and obstacles.

According to Bist [9], Bole et al. [10], Statheros et al. [11], and Lei et al. [12], the safety
of mobile robots and other autonomous vehicles, such as autonomous ships, depends on
the quality of the control processes, both the accuracy of the radar data and the type of
model on which the steering algorithm is based.

Thus far, the following methods have been used for designing a guidance system
for a mobile robot in the area of concentrated traffic: deterministic methods of static
optimization (e.g., linear programming), heuristic methods of static optimization (e.g.,
ant colony, described by Lazarowska [13]), dynamic optimization methods (e.g., dynamic
programming, presented by Lisowski [14]), and methods of artificial intelligence (e.g.,
neural networks, fuzzy sets, and genetic algorithms, shown by Ahn et al. [15], Stateczny [16],
Szlapczynski and Szlapczynska [17], and Rodriguez-Abreo et al. [18]).
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Typically, determining vehicle anticollision strategies is easy, except for in random 
and troublemaking encounters and in game situations, which are associated with 
uncertainty of data, the effects of severe weather conditions, and high sea level, as well as 
uncoordinated actions of other objects, subjectivity in maneuvering decisions, and 
imprecise recommendations on the nature of the international collision rules, COLREGs. 
Defining safe strategies is still relevant due to the constantly increasing movement of 
objects, accompanied by increasing requirements for safe navigation and environmental 
protection. The largest type of game is about controlling the movement of dynamic 
objects, including autonomous and nonautonomous marine objects. 

The current process of a mobile robot passing other robots and obstacles is 
characterized by uncertainty and the possibility of an incident in the event of incomplete 
cooperation between mobile robots. This justifies the problem analysis and method design 
of safe mobile robot control using game theory methods, such as in the works of Spica et 
al. [19], Li and Vorobeychik [20], and Liu et al. [21]. 

The purpose of this study was to synthesize a game algorithm that controls the 
movement of the mobile robot while passing a larger number of other mobile robots and 
obstacles, minimizing the risk of collision depending on the scope of cooperation between 
mobile robots in making maneuvering decisions. 

The author's contribution consists of the innovative formulation of the control 
process of a group of autonomous mobile robots as a multi-person, multistep matrix 
game, and then the optimization of this control task using dual linear programming. 

To this end, in Section 2, the mathematical model of managing a group of mobile 
robots is presented and the form of the possible robot collision risk index is defined by 
taking into account weighting factors, depending on the intensity of traffic vehicles. 

Then, in Section 3, on the basis of the formulated model, the game control algorithm 
is synthesized in its three possible versions—as a multistep cooperative game, as a non-
cooperative game, and as an optimal non-game control. 

Section 4 presents the results of simulation studies of the three algorithms in the 
navigational passing situation of several autonomous aerial vehicles and in the 
navigational passing situation of a dozen or so maritime autonomous surface ships. 

The results of the research are discussed in Section 5, and detailed conclusions are 
included in Section 6, indicating the scope of work to be performed in the future. 

Figure 1. The formulation and solution of the tasks of steering a mobile robot in a game environment:
s—permissible strategies; s*—optimal strategies; Q(s)—quality control index; Q*(s*)—optimal value
of quality control index.

Typically, determining vehicle anticollision strategies is easy, except for in random and
troublemaking encounters and in game situations, which are associated with uncertainty of
data, the effects of severe weather conditions, and high sea level, as well as uncoordinated
actions of other objects, subjectivity in maneuvering decisions, and imprecise recommenda-
tions on the nature of the international collision rules, COLREGs. Defining safe strategies
is still relevant due to the constantly increasing movement of objects, accompanied by
increasing requirements for safe navigation and environmental protection. The largest type
of game is about controlling the movement of dynamic objects, including autonomous and
nonautonomous marine objects.

The current process of a mobile robot passing other robots and obstacles is character-
ized by uncertainty and the possibility of an incident in the event of incomplete cooperation
between mobile robots. This justifies the problem analysis and method design of safe mo-
bile robot control using game theory methods, such as in the works of Spica et al. [19], Li
and Vorobeychik [20], and Liu et al. [21].

The purpose of this study was to synthesize a game algorithm that controls the
movement of the mobile robot while passing a larger number of other mobile robots and
obstacles, minimizing the risk of collision depending on the scope of cooperation between
mobile robots in making maneuvering decisions.

The author’s contribution consists of the innovative formulation of the control process
of a group of autonomous mobile robots as a multi-person, multistep matrix game, and
then the optimization of this control task using dual linear programming.

To this end, in Section 2, the mathematical model of managing a group of mobile
robots is presented and the form of the possible robot collision risk index is defined by
taking into account weighting factors, depending on the intensity of traffic vehicles.

Then, in Section 3, on the basis of the formulated model, the game control algorithm
is synthesized in its three possible versions—as a multistep cooperative game, as a non-
cooperative game, and as an optimal non-game control.

Section 4 presents the results of simulation studies of the three algorithms in the
navigational passing situation of several autonomous aerial vehicles and in the navigational
passing situation of a dozen or so maritime autonomous surface ships.
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The results of the research are discussed in Section 5, and detailed conclusions are
included in Section 6, indicating the scope of work to be performed in the future.

2. Mathematical Model of Managing a Group of Mobile Robots

The correct model of mobile robot management system process in the situation of k
encountered other mobile robots can be mathematically described as a differential game
of K participants, as introduced by Isaacs [22]. This mathematically complex description
simplifies to a multistep matrix game model, which takes into account the risk of collisions
between mobile robots and their possible movement strategies, according to Engwerda [23],
Millington and Funge [24], Osborne [25], and Wells [26].

The anticollision radar system ensures automatic monitoring, in which k = 1, 2, . . . , K
encountered mobile robots, showing the quantities describing their movement (speed vk
and course ψk) and the parameters of their passing: dk,min is the shortest approach distance
and tk,min is the time until the critical approach (Figure 2).
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Figure 2. Illustrating the situation of a mobile robot with speed v and course ψ and the met k mobile
robot moving with speed vk and course ψk.

Simplifying the dynamic properties of mobile robots until the maneuver is carried out
ahead of time allows for the formulation of a matrix game model.

The control variables of the mobile robot are represented by course ψ and speed v,
while the control variables for the kth encountered mobile robot are represented by course
ψk and speed vk. For the mobile robot, the state variables are represented by risk of collision
rk, while for encountered mobile robot, state variations are represented by distance dk and
bearing βk (Figure 3).
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Figure 3. Block representation of a matrix game model of a group of mobile robots: s0(ψ0,v0)—mobile
robot strategies, sk(ψk, vk)—kth encountered mobile robot strategies, and rk(s0,sk)—collision risk of
the mobile robot with the kth encountered mobile robot.
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Matrix game R, in which a player-mobile robot has the ability to use s0 clean strategies
and the player-encountered kth mobile robot has sk clean strategies, can be described using
the following collision risk matrix:

R
(
rs0,sk

k
)
=

∣∣∣∣∣∣
r1,s1

1 . . . r1,sk
k . . . r1,sK

K
. . .
rs0,s1

1 . . . rs0,sk
k . . . rs0,sK

K

∣∣∣∣∣∣ (1)

The number of rows in the R matrix is equal to the number of acceptable strategies of
mobile robots in the form of maneuvers with the course ∆ψ0 and speed ∆v0:

s0 = (0, ±∆ψ0, ±2∆ψ0, . . . , −∆v0, −2∆v0, . . .) (2)

The number of columns consists of the total number of permissible strategies for all
the players involved in a collision situation by analogy with all changes in the course ∆ψκ

and speed ∆vk of each encountered mobile robot:

sk = (0, ±∆ψk, ±2∆ψk, . . . − ∆vk, −2∆vk, . . .) (3)

Constraints of acceptable strategies (s0, sk) are derived from the limitations of the area
of operation.

The risk of a collision, rs0,sk
k , of the mobile robot with a encountered kth other mobile

robot can be formulated in the form of the mean square form of the three components of
mobile robots approach: the relative shortest approach distance in relation to the previously
adopted safe passing distance, dk,min and ds, the relative time, tk,min, of the closest approach
to the previously adopted ts value, and the relative distance, dk, between mobile robots in
relation to to the early adopted value for ds (Figure 4):

rs0,sk
k =

√
ζd

(
dk,min(s0, sk)

ds

)−2

+ ζt

(
tk,min(s0, sk)

ts

)−2

+

(
dk
ds

)−2
(4)

where ζd and ζt are the weighting factors, depending on the intensity of vehicle traffic,
from 0 to 1.
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traffic—ζd= 0.4; ζt = 0.4; dk/ds = 5; heavy traffic—ζd= 0.1; ζt = 0.4; dk/ds = 2.
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3. Game Control Algorithm

According to Nisan et al. [27] and Basar and Olsder [28], in most real-world control
situations, it is not possible to reach the saddle point in the matrix game and guarantee
balance when using pure strategy objects. Therefore, an acceptable solution to the real game
can be achieved using a mixed strategy, which represents the probability of implementing
the pure player strategy. The probability matrix P of the implementation of pure strategies
in the game control of mobile robots takes the following form:

P
(

ps0,sk
k
)
=

∣∣∣∣∣∣
p1,s1

1 . . . p1,sk
k . . . p1,sK

K
. . .
ps0,s1

1 . . . ps0,sk
k . . . ps0,sK

K

∣∣∣∣∣∣ (5)

The optimal game control of a mobile robot is the strategy with the highest probability:

u∗
0 = u0

(
ps0,sk

k
)

max (6)

This optimization problem is convex and can be solved for a small number of per-
missible strategies using standard Matlab Optimization Toolbox software. In practice,
however, it may be necessary to use a greater number of acceptable players strategies,
then the solution of such a real-time game control task can be achieved using parallel
continuous-time solvers, as presented by Hosseinzadeh et al. [29] for multi-agent smart
systems and Nicotra et al. [30] in relation to the problem of optimal control, which can be
embedded in the internal states of a dynamic control law running in parallel to the system.

The quality index, Q, of optimal safe control of the mobile robot in the cooperative
matrix game takes the following form:

Q∗
c = min

s0
min

sk
rs0,sk

k (7)

In the non-cooperative matrix game, it takes the form of

Q∗
nc = min

s0
max

sk
rs0,sk

k (8)

In the usual case of non-game control, the quality index is reduced to the following form:

Q∗
ng = min

s0
rs0,sk

k (9)

As a result, by using the principle of dual linear programming, represented by the lp
function in the Optimization Toolbox Matlab/Simulink software, the following algorithms
were developed for controlling a group of mobile robots:

• MG_c of a multistep cooperative game for rule (7);
• MG_nc of multistep non-cooperative play for rule (8);
• NG_oc of non-game optimal control for rule (9) (Figure 5).
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The following (Algorithm 1) is a Matlab/Simulink program for creating a collision
risk matrix:
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Algorithm 1. Matrix game R

Vx = Vo. * sin(Fi) − Vj. * sin(Fij);
Vy = Vo. * cos(Fi) − Vj. * cos(Fij);
Vw = sqrt((Vx.ˆ2) + (Vy.ˆ2));
Dmin = abs((xj. * Vy − yj. * Vx)./abs(Vw));
Tmin = 60 * ((xj. * Vx + yj. * Vy)./(Vw.ˆ2));
q0jj = (Njj − Fi);
id = find((Fi >= (90 * (2 * pi/360)))&(Fi < 180 * (2 * pi/360)));
q0jj(id) = (2 * pi) − Fi(id) + Njj(id);
id = find(q0jj >= (360*(2 * pi/360)));
q0jj(id) = q0jj(id) − (2 * pi);
id = find(q0jj < 0);
q0jj(id) = q0jj(id) + (2 * pi);
Td = 60. * (xj. * sin(Fi) + yj. * cos(Fi))./(Vx. * sin(Fi) + Vy. * cos(Fi));
Dt = (xj. * Vy − yj. * Vx)./(Vx. * sin(Fi) + Vy. * cos(Fi));
BB = Fij − Fi;
id = find(Vw == 0);
Dmin(id) = Dj(id);
id = find(isnan(Tmin));
Tmin(id) = 0;
id = find(Tmin < 0);
Dmin(id) = Dj(id);
Tmin(id) = 0;
wdj = ((Db./Dj).ˆ2) − 0.04;
id = find(wdj < 0);
wdj(id) = 0;
wdm = –0.6213. * log(Dmin./Db) + 1;
id = find(wdm < 0);
wdm(id) = 0;
wtm = ((–Tmin./Tb) + 5)./4;
id = find(wtm < 0);
wtm(id) = 0;
Rj = wdj + wdm. * wtm;
id = find((q0jj >= (90 * (2 * pi/360))) & (q0jj < 270 * (2 * pi/360)));
Rj(id) = 0;
for I = 1:(m * mj);

for j = 1:n;
if (Dt(i,j) >= (0.2 * Db) & (BB(i,j) >= 0 * (2 * pi/360) & BB(i,j) <= 270 * (2 * pi/360)));

Rj(i,j) = 0;
end
if (Dt(i,j) < (–0.2 * Db) & (BB(i,j >= 90 * (2 * pi/360) & BB(i,j) <= 360 * (2 * pi/360)));

Rj(i,j) = 0;
end

end
end
if cala == 0;
id = find(Rj > 1);
Rj(id) = 1;
end
if (max(sum(Rj’)) == n);
cala = 1;
end

4. Results

The developed path-planning algorithms of autonomous mobile robots were subjected
to a computer simulation on two examples of real navigation situations of groups of
mobile robots—autonomous aerial vehicles (AAV) and maritime autonomous surface
ships (MASS).



Electronics 2021, 10, 675 8 of 14

The simulation studies included a different number of autonomous mobile robots:
K = 3 and K = 17. Moreover, the calculations of the safe path of vehicles were carried out for
different values of the safe distance: ds = 4 m and ds = 12 m or ds = 0.5 nm and ds = 1.5 nm,
corresponding to good and restricted weather conditions.

4.1. Computer Simulation of the Navigational Situation of Autonomous Aerial Vehicles Traffic

The simulation of MG_c, MG_nc, and NG_oc computer programs was made in Mat-
lab/Simulink in a small-traffic situation of the mobile robot passing K = 3 other encountered
mobile robots in good weather conditions (ds = 4 m) and in unfavorable weather conditions
(ds = 12 m) (Table 1 and Figures 6–8).

Table 1. Data of mobile robot 0 and encountered (K = 3) mobile robots.

Mobile Robot Distance dk (m) Bearing βk (◦) Speed vk (m/s) Course ψk (◦)

0 - - 20.0 0
1 88 326 14.5 90
2 143 6 16.2 180
3 75 11 16.0 200
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Figure 9. Comparison of safe mobile robot paths when passing K = 3 encountered mobile robots in
good weather conditions (ds = 4 m) and unfavorable weather conditions (ds = 12 m), determined by
the MG_c, MG_nc and NG_oc algorithms.

4.2. Computer Simulation of Navigational Situation of Maritime Autonomous Surface
Ships Traffic

The simulation of MG_c, MG_nc, and NG_oc computer programs was made in
Matlab/Simulink in the situation a heavy traffic of the maritime autonomous surface ship
passing K = 17 other encountered autonomous surface ships in good (ds = 0.5 nm) and
restricted (ds = 1.5 nm) visibility at sea (Table 2 and Figures 10–12).

Table 2. Kinematic data of the autonomous surface vessel 0 and the encountered (K = 17) autonomous
surface ships.

Autonomous
Surface Ship

Distance dk
(nm) Bearing βk (◦) Speed vk (kn) Course ψk (◦)

0 - - 13 100
1 4 140 3 350
2 9 120 4 330
3 3 47 5 220
4 1 200 5 100
5 4 105 5 120
6 5 140 7 58
7 6 48 5 150
8 5 85 1 150
9 10 120 3 20
10 4 140 2 350
11 6 140 4 350
12 8 65 10 205
13 4 155 5 50
14 3 20 8 140
15 8 145 7 0
16 5 10 15 150
17 4 300 10 100
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(ds = 0.5 nm) and restricted (ds = 1.5 nm) visibility at sea, determined by MG_n algorithm of non-cooperative matrix game.
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Figure 12. Autonomous surface ship safe path when passing K = 17 encountered other autonomous surface ships in good
(ds = 0.5 nm) and restricted (ds = 1.5 nm) visibility at sea, determined by NG_oc algorithm of non-game control.

Figure 13 shows a comparison of the autonomous surface ship safe path when passing
other encountered autonomous surface ships, determined in good and restricted visibility
at sea, according to three controlling programs. The measure of the control quality is the
deflection of the autonomous surface ship’s path from the initial direction of movement.
Greatest deflection occurs with non-cooperative movement of autonomous surface ships,
and smaller deflection occurs with cooperation of ships. On the other hand, with non-game
control, encountered autonomous surface ships maintain their course and speed; they pass
each other optimally at a previously set safe distance, but with higher risk of collision.
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5. Discussion

The presented synthesis and computer simulation of the path-planning algorithms
of autonomous mobile robots, taking into account the conditions of optimal and game
control, in terms of cooperation or lack of cooperation between autonomous mobile robots,
demonstrate a more reliable and safe solution to the task of controlling this process.

The measure of solving the control task is the final deviation of the mobile robot’s
trajectory from the initial direction of movement. The game ended at the moment tk, when
the risk of own ship, rk, in relation to each ship, k, reached the value of zero (rk(tk) = 0).
Then, the final deflection of the trajectory of the own ship from the reference trajectory was
assessed. The greatest deviation occurs with non-cooperative movement of objects, and
smaller deviation occurs with cooperation of objects. On the other hand, with non-game
control, the encountered mobile robots maintain their course and speed; they pass each
other optimally at a previously set safe distance, but with a higher risk of collision.

An important factor influencing the course of the safe trajectory of an autonomous
mobile robot is the environmental conditions. In the case of autonomous aerial robots, it is
the density of vehicle traffic, and in the case of marine autonomous surface ships, it is the
visibility conditions at sea.

Additionally, the control algorithm must be equipped with a procedure for semantic
interpretation of the legal rules of anticollision maneuvering COLREGs, depending on the
state of visibility at sea.

6. Conclusions

The application of a model of cooperative and non-cooperative multistep matrix
games for designing control programs enables the determination of an optimal and safe
path for an autonomous mobile robot in situations where it passes a greater number of
other autonomous mobile robots.

The path planning of an autonomous surface ship was treated as a combination of
course and speed change maneuvers of autonomous surface ships.

The synthesis of the game control programs takes into account the degree of coopera-
tion in maneuvering decisions between autonomous surface ships, the time of the advance
maneuver, and the path deflection from the given direction of movement.

The final deflection of the current path from the reference path significantly depends
on the cooperation of the mobile robot with other encountered robots.

In following studies, the use of selected methods of computational intelligence can
be analyzed; in particular, fuzzy control, allowing for better adjustment of control to the
environmental conditions, and neural network, allowing for more accurate mapping of
vehicles encountered as mobile obstacles.

The potential application of the research presented in this article can be especially indi-
cated in the improvement of maritime autonomous surface ship (MASS) control software.
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