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Abstract: The automatic speech recognition (ASR) model usually requires a large amount of training
data to provide better results compared with the ASR models trained with a small amount of training
data. It is difficult to apply the ASR model to non-standard speech such as that of cochlear implant
(CI) patients, owing to privacy concerns or difficulty of access. In this paper, an effective finetuning
and augmentation ASR model is proposed. Experiments compare the character error rate (CER) after
training the ASR model with the basic and the proposed method. The proposed method achieved
a CER of 36.03% on the CI patient’s speech test dataset using only 2 h and 30 min of training data,
which is a 62% improvement over the basic method.

Keywords: speech recognition; finetuning; CI patients; augmentation

1. Introduction

Various automatic speech recognition (ASR) models have been proposed in recent
years, including the recurrent neural network transducer (RNN-T) [1], Listen, Attend and
Spell (LAS) [2], and Deep Speech 2 [3]. ASR models trained on a large training dataset
have achieved excellent results and are used in personal phones, IoT (Internet of Things)
devices, and cloud services, examples of which include Alexa, Siri, and Bixby. However,
non-standard speech, such as amyotrophic lateral sclerosis (ALS) speech, Parkinson’s
speech, and cochlear implant (CI) patients’ speech, has a low recognition rate, whereas
ASR models are trained using standard speech data sets [4,5]. Therefore, people with
non-standard speech cannot use ASR models trained with a standard speech dataset.

People with severe hearing loss have low speech understanding even if they use
hearing aids. Therefore, speech understanding can be restored through cochlear implants
in people with severe hearing loss, especially sensorineural hearing loss. However, CI
involves some trade-offs because the patient’s residual acoustic hearing will no longer
be available and only electrical stimulation is possible. For example, the mean spectral
energy of CI patients is lower than that of normal individuals, implying that they have
difficulty in pronouncing high-frequency words. Patients with CI also pause (staccato)
in the middle of the speech and often confuse voiceless with voiced speech [6,7]. The
characteristics of CI patients’ speech differ from those of standard speech. In this study,
we experimented with an effective ASR method to increase the recognition rate of the
non-standard CI patients’ speech.

The biggest hindrance in learning a non-standard dataset is to find sufficient data to
train an ASR model [8]. Moreover, a smaller dataset often suffers from overfitting. When
overfitting occurs, an algorithm shows higher accuracy with training data but does not
work properly in test data. Adversarial training can be used to generate training data by
transforming standard speech into nonstandard speech [9]. However, this method requires
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a clinician’s knowledge to verify the transformed speech samples, which is time consuming
and impractical.

In this paper, we proposed a training method consisting of two steps to solve the
overfitting problem under smaller dataset conditions. First, we pre-trained the ASR model
with 600 h of Korean standard speech as shown in [8], with 1000 h of English standard
speech. The main difference between these two approaches is using the different dataset
(English and Korean). Second, we used a data augmentation technique and selected the
augmentation method [10,11] used for standard speech. To the best of our knowledge, there
is no previous study on whether data augment could be applied to non-standard speech
dataset. Thus, we personalized the pretrain model according to the CI patient’s speech.

In Section 2, we present the base ASR model, RNN-T, and explain the learning method.
Section 3 verifies the experimental presented in Section 2.

2. Materials and Methods

Section 2.1 describes the RNN-T [12] model that enables streaming ASR, Section 2.2
describes the pre-train process, and Section 2.3 describes three finetuning methods: Basic
finetuning (method 1), Fixed Decoder (method 2) and Data Augmentation (method 3) in
the speech of CI patients. Figure 1 illustrates the sequence of the experiments. Figure 1a
shows the steps of training procedure and Figure 1a shows the test procedure, respectively.
In Figure 1a, firstly, the base model is pre-trained with the data of standard speech. Second,
the pre-train model is finetuned with non-standard train speech. Three finetuned models
are derived through training with non-standard speech depending on the method (method
1, 2, 3). In test procedure, we evaluate the performance of the finetuned models with
non-standard test speech.
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2.1. Base Model

This study uses a unidirectional RNN transducer as a base model (Figure 2). We used
the version presented in [13]. The RNN-T model consists of an encoder network, a decoder
network, and a joint network. Intuitively, encoder networks can be considered as acoustic
models, and decoder networks are similar to language models.
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Figure 2. Architecture of the recurrent neural network transducer (RNN-T).

All the experiments used 80-dimensional log-Mel features, computed with a 20 ms
window which was a hamming window, and shifted every 10 ms.

x = (x1, x2, . . . , xT) is the input sequence of length T. y = (y1, y2, . . . , yU) is the
output sequence of length U. Set Y consists of a total of 53 Korean onset, nucleus, and coda.
For e.g., [ㄱ, ㄴ, ㄷ, . . . , ㅏ, ㅑ, ㅓ, ㅕ, . . . , ㅀ, ㅄ , “space”]. yu−1 ∈ Y ∪ [< sos >],
where < sos > is a special label indicating the beginning of a sentence. Both xt and yu
are fixed-length real-valued vectors. In the encoder network, the input sequence is used
to calculate the output vector f = ( f1, f2, . . . , fT) through the unidirectional RNN and
projection layer. In the decoder network, the previous label prediction (y0, y1, y2, . . . , yU)
calculates the output vector g = (g1, g2, . . . , gU+1) through the unidirectional RNN and
projection layer, where y0 is < sos >.

A joint network calculates the output vector ht,u by concatenating ht and gu:

ht,u = Joint Network(concat[ ft, gu]) (1)

where ht,u obtained through the joint network defines the probability distribution through
the softmax layer.

Our model’s encoder network consists of five unidirectional layers of 512 LSTM cells
and 320 projection layers. The decoder network consists of two layers of 512 LSTM cells
and 320 projection layers. The joint network consists of 320-feedforward layers and has
13.5 M parameters in total.

2.2. Pre-Train Process

The work of Shor et al. [8] was pre-trained with the Librispeech [14] dataset, an open-
source dataset of 1000 h, while we pretrained with the AI hub’s Korean open-source dataset,
KsponSpeech [15]. KsponSpeech audio files have a format of 16 KHz/16 bits of sample/bit
rate. The learning rate was set to 10−4 using the Adam optimizer [16].



Electronics 2021, 10, 807 4 of 9

2.3. Finetuning

This section deals with finetuning the RNN-T model to the CI patient’s speech, which
is pre-trained with standard speech. Sections 2.3.1 and 2.3.2 propose efficient finetuning
methods that are more effective than basic finetuning.

2.3.1. Fixed Decoder

Intuitively, the structure of the RNN-T can be considered an acoustic model, while the
decoder network can be thought of as a language model. In this study, we used the fixed
decoder method proposed in [8], which does not train decoder networks corresponding to
language models within the RNN-T model structure.

2.3.2. Data Augmentation

An augmentation method was used to solve the overfitting problem. Data augmenta-
tion can enhance the model performance by preventing overfitting. The augmentations
used in this study were pitch perturbation, speed perturbation [10], and SpecAugment [11],
all of which achieved good performance in ASR.

Pitch Perturbation

The spectral mean of CI patients is lower than that of normal individuals. These
characteristics are used to perform pitch perturbation. Figure 3 shows examples of the
individual pitch perturbation applied to a single input. The pitch factor range is between
−1 and 1. The mean spectral energy of CI patient is 50 Hz higher than standard speech or
150 Hz lower than standard speech, thus determining the factor from −1 to 1. A number
within the pitch factor range for each iteration was randomly selected. We modified the
pitch using the pitch shift function of the librosa function.
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Figure 3. (a) Original input legend. (b) Speech signal after pitch perturbation.

Speed Perturbation

Refence [10] created two additional original training data by modifying the speed to
90% and 110% of the original speed. In our study, we randomly selected the speed factor as
a number between 0.9 and 1.1 for each iteration based on [10]. Figure 4 shows examples of
the individual speed perturbation applied to a single input. We modified the speed using
the time-stretch function of the librosa function.
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Spec Augmentation

Speed perturbation and pitch perturbation were applied to the raw audio. Unlike the
modification of the raw audio, SpecAugment is a method that operates on the log-Mel
spectrogram of the input audio. We used time masking and frequency masking modified
from “cutout” [17] proposed in the field of computer vision. The log-Mel spectrograms
were normalized to have zero mean value, and thus setting the masked value to zero is
equivalent to setting it to the mean value. Time warping was not performed. This method
does not distort the characteristics and is simple and computationally inexpensive to apply.
Figure 5 shows examples of the individual augmentations applied to a single input.

1. Frequency masking was performed so that the frequency channels [ f0, f0 + F) were
masked, where F is a frequency mask parameter, and f0 is selected from [0, v− F],
where v is the number of log-Mel channels.

2. Time masking was performed so that the frequency channels [m0, m0 + T) were
masked, where T is a time mask parameter, and m0 is selected from [0, t− T], where t
is the length of the log-Mel frequency.
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2.4. Dataset & Metric

In 2018, the AI Hub released 1000 h of the Korean dialog dataset, KsponSpeech [14].
We pretrained our model with approximately 600 h of speech (a total of 540,000 speech
utterances within a 10 s timeframe from KsponSpeech). Phonometrically, in many cases, the
Korean alphabet is made up of onset, nucleus, and coda, so one phoneme is expressed dif-
ferently depending on the location. Among general sentences, the frequency of consonants
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and vowels in Korean speech is much different than English. In addition, while English
sentences are right branching language as subject-verb-object structure, Korean sentences
are left branching language as subject-object-verb structure. Therefore, Korean speech has
many different characteristics than English in sentence structure and vocalization [18]. CI
data was collected for about 3 h from 15 CI patients on YouTube. The speech was recorded
through the subjects’ cell phones and then uploaded to YouTube. The training data and
evaluation data were divided into 2 h and 30 min, respectively.

We use the character error rate (CER) as a metric:

CER(%) = D
L × 100, D = DistanceLEV(X, Y) (2)

where X and Y are predicted, and represent the ground truth scripts. The distance D is the
Levenshtein distance between X and Y, and the length L is the length of the ground truth
script Y.

3. Results & Discussion

Section 3.1 compares the performance of pre-train in Section 2.2, and Sections 3.2 and 3.3
compares the finetuning method of Section 2.3.

3.1. Method 1 Result: The Pre-Train Process

Our first experiment was to evaluate the performance of the pre-train process. Table 1
compares a CI patient’s speech model (E1) and the finetuning model (E2) after pre-training.
Model E2 was pre-trained with standard speech and finetuned with a CI patient’s speech.
The table shows that the model pre-trained with standard speech performed better. The
pre-train method stabilizes the learning of insufficient datasets.

Table 1. Comparison of character error rate (CER) with and without pretrain.

Exp RNN-T

- Standard-Speech 1 CI-Speech 2

E1 - 98.40
E2 18.09 42.13

1 Standard speech test dataset [14]. 2 CI patient’s speech test dataset.

3.2. Method 2 Result: Fixed Decoder without Augmentation

Section 3.1 shows that the CER improved after pre-training. However, it still demon-
strated overfitting with insufficient datasets. Table 2 compares the finetuning model (E2) of
all the models and that of only the encoder and the joint network (E3). It is improved by
fixing the decoder network corresponding to the language model.

Table 2. Comparison of CER between basic finetuning and finetuning with a fixed decoder.

Exp RNN-T

- CI-Speech

E2 42.13
E3 37.35

3.3. Method 3 Resul: Fixed Decoder with Augmentation

Table 3 compares the performance of the pitch perturbation (E4) and speed perturbation
(E5) described in Section 2.3.2. As shown, because the CI patient’s speech is already distorted,
it can be confirmed that the augmentation that modifies the raw audio is not effective.
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Table 3. Comparison of CER between speed perturbation and pitch perturbation.

Exp RNN-T

- CI-Speech

E4 41.33
E5 44.86

Table 4 shows the result of SpecAugment described in Section 2.3.2. Here, experiments
(E6, E7, E8 and E9) confirmed that the SpecAugment masking the log-Mel spectrogram is
more effective than the augmentation modifying the raw audio.

Table 4. Comparison of CER for various policies of SpecAugment. mF and mT denote the number of
frequency and time masks applied, respectively.

Exp SpecAugment Policy RNN-T

- mF F mT T CI-Speech

E6 1 15 1 50 37.23
E7 1 15 2 25 36.07
E8 2 7 2 25 36.03
E9 1 7 1 25 36.41

3.4. Comparison of the Results of the Three Methods

Table 5 compares the performances of the three methods presented in this study. The
finetuning method proposed in [8] to train ALS patients’ speech to the ASR model has the
same effect on the speech of CI patients. In addition, it was confirmed that the [11] method
for augmentation of standard speech is effective for the speech of CI patients. The final
result, E8, shows a 62% improvement over E1 learned with only the CI patients’ speech.

Table 5. Comparison of CER for methods 1, 2, and 3.

Exp RNN-T

- CI-Speech

E2(Method 1) 42.13
E3(Method 2) 37.35
E8(Method 3) 36.03

Table 6 compares the results of previous study as in [10] with the results of our
experiments. The data in the previous paper were experimented with ALS speech, which
is English, but our paper was experimented with CI speech, which is Korean. Although
the dataset is different, it was possible to confirm that it could be improved through the
finetuning method. Furthermore, the learning data from the previous paper was 36 h, but
our work was trained with limited data of 4 h. We confirm that these problems can be
improved through data augmentation.

Table 6. Comparison of performance for method 3 and Personalizing ASR for Dysarthric and
Accented Speech with Limited Data.

Model CER (%) WER (Word Error Rate) (%)

- Base CI-Speech Base ALS

RNN-T (Method 3) 98.40 36.03 - -
RNN-T [8] - - 59.7 20.9
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4. Conclusions

In this study, we proposed a finetuning method that can effectively train CI patients’
speech. We were able to train the speech of a few of CI patients’ by applying pre-train to
a standard speech dataset. We did not train the decoder corresponding to the language
model for the RNN-T architecture, thus achieving better performance. This claim is not
precise, but the fixed decoder method can prevent overfitting for insufficient scripts. In
addition, performance can be improved using SpecAugment from among the various data
augmentation methods. SpecAugment does not distort raw audio, so it can improve the
performance of CI patients’ speech, in cases where the raw audio is already distorted.
The proposed finetuning method achieves a 62% CER improvement over the other basic
methods. In future, we plan to continuously improve the recognition rate for non-standard
speech by studying models and methods that are robust to non-standard speech.

Author Contributions: Conceptualization, J.J., S.I.M.M.R.M. and S.L.; methodology, J.J., S.I.M.M.R.M.
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