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Abstract: Conformal arrays may be a viable solution in many antenna applications requiring a
wide angular coverage with sufficiently high directivity values, so it is worth comparing different
2D conformal array geometries to satisfy these requirements. To this end, first, the singular value
decomposition (SVD) of the radiation operator is exploited to determine the maximum directivity
values an array can reach in the whole observation domain. A numerical study based on the
maximum directivity and, hence, on the SVD is then proposed to select the array geometry complying
with some given requirements. Therefore, the performances achievable by some array geometries (a
semi-circumference, a trapezoidal, and an angle array) are analyzed, and the one assuring a better
hemispherical coverage is suggested. Furthermore, such an SVD-based study is usefully exploited to
determine which panels of a multi-faceted array must be fed to reach some assigned specifications.
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1. Introduction

In the last decades, thanks to their electric beam scanning capability, phased array
antennas have gained great attention and have been utilized in several military and civil-
ian applications [1–7]. Many of these applications, such as satellite communications [8],
tracking surveillance [9], telemetry tracking and commanding (TT & C) systems [10], radio
astronomy [11], and SATCOM applications [12], require a hemispherical scan coverage.
Besides, the same need has raised over the last few years too, when the demand for high
data rate services has led to the birth of the 5th generation (5G) mobile communication.
Indeed, the latter uses millimeter-wave bands with large spectrum resources that suffer
from relatively severe propagation losses impairing communication performances [13].
Hence, high gain arrays able to mitigate this attenuation are needed and phased array
antennas are usually proposed to realize both the base station and mobile device [14,15].

However, there exists an intrinsic limitation on the achievable angular coverage using
a single planar phased array, since the beamwidth of a planar phased array antenna would
increase as its beam directs away from broadside direction (scan limitations typically
restricted to ±60◦), unavoidably leading to loss of gain and degradation of the side-lobe-
level [16]. To overcome this limitation, many works have aimed at a hemispherical coverage
by the combination of several planar phased array antennas: in [17], the optimal number
of planar faces was determined by a comparison between different configurations in terms
of the minimum number of elements, the smallest aperture diameter, the smallest variation
in gain throughout the hemisphere, and the maximum reflected power; in [18–20] some
choice criteria regarding multiple planar phased arrays arranged in pyramids or pyramidal
frusta were presented.

Here, a different approach based on the Singular Value Decomposition (SVD) [21] of
the radiation operator linking the radiating source to the far-field is proposed. The SVD,
indeed, represents a useful mathematical tool applicable to many electromagnetic contexts.
In particular, in [22–29], the singular spectrum of the radiation or scattering operator was
studied to foresee the information content of the data; in [30], it was used to determine
the role of the source parametrization; in [31], it was exploited to determine the number
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of independent data in the phase retrieval problems. From a numerical perspective, the
Truncated SVD (SVD) is a widespread regularized scheme to perform the inversion [32].
However, except for the rectilinear source for which it is exactly determined [33] and other
configurations where it can be approximately deduced [34], only a numeric evaluation of
the SVD can be computed. Nevertheless, since it does not constitute a big computational
effort for the analyzed configurations, a numerical routine is used to compute the SVD of
the radiation operators.

A first study about the hemispherical coverage capabilities of some sources exploiting
the singular functions was presented in [35], where two figures of merit computed on the
basis of the SVD were introduced to establish the terms of the comparison. However, the
discussion was mainly focused on continuous sources, and no analytical link of the used
figures of merit with the maximum achievable directivity of the sources was pointed out.
Besides, no optimization on the angle source was introduced.

Later, in [36], the geometric parameters of an angle source were optimized to guarantee
a uniform coverage within a π interval. Instead, in [37], the singular functions of the
radiation operator were used to predict the maximum directivity a continuous source can
reach on a full observation angle.

Here, the results shown in [37] are first extended to the case of antenna arrays and
then are exploited in the elaboration of a numerical strategy for the choice of the optimal
array geometry complying with some given requirements. In particular, with reference
to a 2D configuration (i.e., invariant along one axis), the numerical analysis is developed
to search for the conformal array returning the highest possible directivities within a π

interval. To this end, different support geometries are considered by also including the
angle array with optimal geometric parameters. Furthermore, it is shown that it is possible
to foresee the role played by each side of a multi-faceted array in the radiation of a high
directivity beam and, accordingly, to determine which panels have to be turned on, so
increasing the practical effectiveness of the approach.

The paper is divided as follows. In Section 2, the radiation operator is introduced.
The maximum directivity achievable by an array is determined in Section 3; then, this
result is applied to determine the array geometry satisfying some coverage requirements
in Section 4. The conclusions end the paper.

2. The Radiation Operator

In this paper, the radiating properties of some conformal array configurations are
analyzed for the 2D case. Accordingly, the array is made up of Na filamentary elements ar-
ranged along an arbitrary curve (the array support). Such array radiates in a homogeneous
medium with wavenumber β = 2π/λ, where λ denotes the wavelength.

The radiated field is angularly observed in the variable θ ∈ [−π,π], and, up to an
inessential factor, it can be written as:

E(θ) = ∑Na
m=1 Imh(θ − θNm)ejβ[xm sin θ+zm cos θ] = D I, (1)

where (xm, zm) is the position of the m-th element, Im is its excitation coefficient (the m-th
entry of the vector I), and h(θ − θNm) is its element factor.

The element factor is supposed as:

h(θ − θNm) = rect
(

θ − θNm
π

)
cos(θ − θNm), (2)

with θNm being the direction orthogonal to the array support in (xm, zm) (see Figure 1).
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Figure 1. The geometrical setting of the array source: the m-th element location is (xm, zm) with
element factor h(θ − θNm).

The operator D is a semi-discrete operator mapping the complex excitation vectors
belonging to CNa to functions in L2

[−π,π], the latter being the subspace of finite energy
functions supported over the interval [−π,π].

As regards the analysis of the directive behavior of the arrays that will be developed
in the following, the main mathematical tool exploited is the SVD of the operator, which
consists of the right singular vectors vn spanning the subspace in CNa of possible excitation
coefficients vectors, the left singular functions un(θ) spanning the operator range, and the
singular values σn. Another quantity involved in the analysis is the Number of Degrees
of Freedom (NDF) [38,39]. For the particular case of compact operators, which D belongs
to, there is a deep connection between the SVD of the operator and the NDF: the singular
values of a compact operator accumulate to 0 and, accordingly, the NDF can be assumed as
the number of the principal (i.e., above a fixed threshold) singular values of the relevant
operator [40]. The importance of this quantity is twofold: on the one hand, it gives a
measure of the number of “significant” and independent parameters needed to represent
the radiated field, so that it can be identified as the dimension of the subspace of patterns a
source (discrete, as for the excitation coefficients of an array, or continuous, when the source
is represented by a current density function supported on a continuous domain) can radiate.
On the other hand, it represents the minimum number of radiating elements of an array
assuring the same patterns subspace dimension of the corresponding continuous source.

3. The Maximum Directivity Function

In [37], a directivity upper-bound for a continuous conformal source in the 2D space
was found, and the expression of the field assuring the highest possible directivity was
provided. Similarly to the continuous source case, when the source is discrete (as for
the case of antenna arrays), the SVD of the corresponding semi-discrete operator can be
introduced, and the orthonormality property of the left singular functions can be exploited
for the determination of a directivity upper-bound.

For the following discussion, the directivity definition has been adapted to the bidi-
mensionality of the configuration by considering the power radiated per unit plane angle.
Once the directive gain is indicated by D(θ), for fields focusing in the θ0 direction, the
directivity (which is the value of the directive gain at the direction of strongest emission) is
given by D(θ0) (see (A2) in Appendix A). Accordingly, what here is indicated as directivity
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upper-bound or maximum directivity Dmax(θ0), should be intended as the directivity due
to a particular field focusing in θ0 that maximizes it, that is:

Dmax(θ0) = max
E∈L2

[−π,π]

D(θ0). (3)

The same manipulations reported in [37] on the directivity lead to the following
directivity upper-bound:

D(θ0) ≤ 2π∑NDF
m=1|um(θ0)|2 = Dmax(θ0), (4)

whose average value is related to the NDF according to the following relation

Dmax = NDF. (5)

The latter coincides with the maximum directivity when |um(θ0)| does not depend on
θ0, for example, when the singular functions are complex exponentials.

Moreover, it can be shown that the field assuring the highest reachable directivity in
the θ0 direction can be built as an expansion of left singular functions:

Ê(θ) = ∑NDF
n=1 u∗n(θ0)un(θ), (6)

where the expansion coefficients are set as

cn = u∗n(θ0), n = 1, . . . , NDF. (7)

Let us point out that the left singular functions can always be numerically computed
for compact operators; hence, independently from the array geometry, the directivity upper
bound and the corresponding radiated field can always be expressed as in (4) and (6).

Hereafter, confirmation of the effectiveness of (4) is provided by comparing it with
the directivity due to a source excitation typically used in conformal array applications,
i.e., the so-called phase compensation one. To this end, let us consider both a linear and
semi-circumference array. For a linear array with semi-extension a and center point (x0, z0),
the m-th element can be individualized by the arc length sm = (−a + (m− 1)∆s) belonging
to the interval [−a, a], with ∆s = L/(Na − 1) and L being the total length of the array (see
Figure 2a). In cartesian coordinates, if φ0 is the angle formed by the array with the z-axis, the
m-th element will be individualized by the couple
(xm, zm) = (x0 + sm sin φ0, z0 + sm cos φ0). As for the element factor (2), instead,
θNm = φ0 − π/2 ∀m. Finally, the combination of M linear arrays can be studied by
resorting to the superposition principle: the resulting field is simply the summation of the
field contribution of each linear sub-array, whose parameters are identified by the subscript
i = 1, 2, . . . , M.
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When a semi-circumference array of radius R is considered (see Figure 2b), if the Na
elements are uniformly distributed in angle, the m-th element is individualized by the
angle φm = −π/2 + (m− 1)∆φ belonging to [−π/2,π/2], with ∆φ = π/(Na − 1). Accord-
ingly, (xm, zm) = (R sin φm, R cos φm), whereas the focusing direction of each element is
θNm = φm∀m.

A typical way to impose a beam focusing in a specific direction θ0 in conformal antenna
design is by compensating the different path lengths characterizing the radiation from the
source current elements to a reference plane orthogonal to the maximum direction [16],
namely by choosing the excitation coefficients as:

Im = e−jβ[xmsinθ0 +zmcosθ0]. (8)

When (8) is substituted in (1), the directivity expression is generally provided by:

D(θ0) =
N2

a

∑Na
m=1 ∑Na

n=1 e−jβ[(xm−xn)sinθ0+(zm−zn)cosθ0] J0(βdmn)
, (9)

(see Appendix A). The latter can be recast for the linear and semi-circumference cases,
respectively, as:

D(θ0) =
N2

a

∑Na
m=1 ∑Na

n=1 e−jβ(m−n)∆∆s sin θ0 J0(β(m− n)∆s)
, (10)

and

D(θ0) =
N2

a

∑Na
m=1 ∑Na

n=1 ej2βR sin (θ0−
(n+m)∆φ

2 ) sin (
(n−m)∆φ

2 ) J0

(
2βR sin

(
(n−m)∆φ

2

)) . (11)

Let us consider the simple example of an array with rectilinear or semi-circumference
support of length L = 20λ, and Na = NDF = 41 isotropic elements uniformly distributed.
Then, the effectiveness of the upper-bound (4) is tested for both the geometries by com-
paring it with (10) and (11): in Figure 3, indeed, it is shown that the directivities values
relative to the field produced by (8) (dashed red line) when changing the focusing angle are
always less than or equal to the upper-bound (blue line), which represents the directivity
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value due to the field (6). In particular, when the linear array is considered (Figure 3a), the
two curves almost overlap, meaning that the field due to (8) can be expanded as in (6), i.e.,
element excitations (9) provide the maximum directivity in a wide angular range.
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4. Application to Conformal Arrays

This section shows that the results summarized above can be exploited to choose an
array meeting certain assigned requirements.

Suppose it is needed to ensure that on an angular interval of π, the directivity values
have a certain degree of uniformity and are greater than a given threshold, let say the mean
directivity value (5). Intuitively, because of its geometric symmetry, one could think that a
semi-circumference array is a good candidate for a π coverage, expecting that arrays built
with this shape or similar (for example, a trapezoidal shape made up of three segments)
may represent a valid solution to the posed problem. Instead, on the basis of the results in
Section 3, it will be shown that the angle array is the configuration that better meets the
required specifications. Furthermore, it will be illustrated that it is not only possible to
predict the performance of the array but also how to manage the activation of the panels
to obtain good coverage when, for example, the object on which the antennas have to be
mounted does not allow the use of the angle array considered here.

In order to compare the radiation properties of the arrays, the following parameters
are introduced:

• the mean value of Dmax computed on the dB curve only over the interval [−π/2,π/2]

and indicated by
=
Dmax;

• the variance σ2 of the Dmax curve in dB with respect to
=
Dmax in the interval [−π/2,π/2];

• the Dmax range, ∆Dmax, in the angular sector to cover;
• the maximum coverage angle θmax, individualizing the angular interval |θ0| ≤ θmax

where Dmax(θ0) ≥ Dmax.

As for the number of elements Na, it is chosen to assure the same patterns subspace
dimension of the corresponding continuous source, namely, equal to the NDF. For a set of
rectilinear sources and curved convex geometries, it is possible to estimate the NDF [36,41]
as approximately given by:

NDF ≈
[

2L
λ

]
, (12)

where L is the source length.
Note that different array geometries with the same length have the same NDF. More-

over, looking at both (5) and (12), a direct link between Dmax and the support length can
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be deduced: different source geometries with the same length can reach the same mean
directivity but different directive behavior point by point within the observation space.

Now, let us consider geometries with supports of the same length L. As a test case, L
is chosen equal to 20λ; accordingly, Na = NDF = 41 and Dmax = 16.13 dB.

In the case of a semi-circumference array, since L = 20λ, the radius R of the array
must be set equal to 6.37 λ (blue stars of Figure 4).
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As can be observed in Figure 5, Dmax(θ0) ≥ Dmax ∀θ0 ∈ [−π/2,π/2], as required.
However, the corresponding directivity interval range is 2.79 dB with a variance σ2 of 0.67.
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Then, let us see if one can do better by approximating the semi-circumference shape
with three rectilinear sources (the trapezoidal shape of Figure 4).

To build an array of length L with minimum discrepancy from a semi-circumference
shape, the trapezoidal support must have segments of length a1 = a2 = a3 = a = 3.33λ
which form the angles φ01 = 5π/6, φ02 = π/2, φ03 = π/6 with the z-axis.

In Figure 6, the Dmax curve relative to the case when all the three linear arrays are
active (blue line) and to the case when only the arrays 1 and 2 are turned on (dotted red
line) is reported (the one referring to the combined action of the arrays 2 and 3 is a mirror
curve of the latter). As can be seen, the combined action of the three linear arrays has the
effect of increasing the achievable directivity around the θ0 = 0 direction. However, even
though the constrained hemispherical coverage is guaranteed, by keeping all the arrays
active, ∆Dmax = 3.30 dB and σ2 = 0.83, namely, both the values are greater than the ones
related to the semi-circumference array. Instead, if just one couple of arrays at a time is
turned on (the couple 1–2 for 0 ≤ θ0 ≤ π/2 and 2–3 for −π/2 ≤ θ0 < 0), ∆Dmax drops to
2.68 dB and σ2 to 0.60, resulting in a more uniform coverage in the half angular interval.
Moreover, a further advantage of a selective activation is that not all the Na elements must
be simultaneously fed.
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The price to pay is a small decrease of the average directivity value in this sector

(
=
Dmax = 18.04 dB for the trapezoidal array and

=
Dmax = 18.16 dB for the semi-circumference

array) and non-rigorous compliance of the directivity constraint close to
±π/2 (θmax = 1.54 rad).

Finally, let us consider an angle shape as in Figure 4, whose segments have a length
a1 = a2 = a = 5λ and form the angles φ01 = 2.59 rad, φ02 = π− φ01 with the z-axis.
According to [36], such angles assure a uniform coverage for |θ0| ≤ π/2 with an element
factor as in (2). From Figure 7, one can observe that, again, the effect of the combined action
of both the linear arrays is to increase the directivity values around the 0 direction. However,
differently from the trapezoidal case, it has the further effect to assure that Dmax ≥ Dmax
around 0. Hence, the two linear arrays forming the source must be simultaneously fed;
if only one array acts, the desired coverage requirements are not satisfied. As for the
comparing parameters, ∆Dmax and σ2 are significantly lower than those of the other array
shapes. Accordingly, the angle array can radiate, on average, fields with the highest and
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most uniform values of directivity (fluctuating around
=
Dmax = 17.97 dB) over a π angular

interval. Moreover, the observation interval where Dmax ≥ Dmax is wider than the one of
the previous cases, reaching a semi-extension of almost 2 rad. The values assumed by these
parameters in all the analyzed cases are gathered in Table 1.
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Table 1. Table of the values of the parameters used to compare the arrays.

Array Shape
=
Dmax[dB] σ2 ∆Dmax[dB] Coverage Angle [rad]

Semi-circumference 18.16 0.67 2.79 1.59
Trapezoidal 18.24 0.83 3.30 1.54

Trapezoidal (sides 1–2 or
2–3 active) 18.04 0.60 2.68 1.54

Angle 17.97 0.05 0.91 1.93

In Figure 8, the high directivity fields built as in (6) for the three array configurations
are reported with reference to the interval [0,π/2], since for the other half, there are
symmetric results. The semi-circumference and trapezoidal arrays (with all the sides
working together) follow similar trends with similar radiated fields, as expected since
the two arrays are geometrically similar. When only two sides of the trapezoidal array
are turned on, the field amplitude around 0 conforms to its value at π/4, but at π/2 the
amplitude lowers, and the beam width enlarges. Instead, the angle array radiates a field
with almost the same amplitude and beamwidth, even in the π/2 direction.
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Figure 8. The amplitude of the field Ê(θ) radiated by the semi-circumference array (solid blue
lines), the trapezoidal array (dash-dotted yellow lines), the sides 1–2 of the trapezoidal array (dotted
violet line), and the angle array (dashed red lines) of Figure 4. The plots present the field am-
plitudes for the choice L = 20λ. From left to right, the three panels refer to the focusing angles
θ0 = 0,π/4,π/2, respectively.

5. Conclusions

The SVD of the radiation operator, numerically computed, provides the basic elements
(left singular functions and NDF) necessary for a deep analysis of the directive behavior of
a conformal array. This paper has shown that the resulting knowledge about the maximum
directivity can be exploited to select the array shape that better meets some prescribed
requirements. In particular, the capability of a given array to guarantee a hemispherical
coverage with directivity values greater than a certain threshold and with a certain degree
of uniformity has been investigated. Concerning a 2D configuration, a semi-circumference,
a trapezoidal, and an angle array with the same support length are compared using some
parameters adequately introduced. The semi-circumference and trapezoidal arrays have
similar behaviors; moreover, for the trapezoidal array, the maximum directivity study
suggests that to feed a couple of sides at a time is sufficient to satisfy the requirements.
However, contrary to what one would expect, the angle array with an optimized angle
can provide better uniformity results: it guarantees the highest and most uniform values
of directivity within the interval [−π/2,π/2], and the wider coverage with directivities
greater than the prescribed threshold.
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Appendix A

In this appendix, the mathematical steps to derive (9) are sketched. To do this, let us
consider an array with elements distributed along a certain curve. In the case of isotropic
elements (unitary element factor), when the excitation coefficients are chosen as in (8) to
focus at the θ0 direction, the radiated field is:

E(θ) = ∑Na
m=1 ejβ[xm(sin θ−sin θ0)+zm(cos θ−cos θ0)]. (A1)

As for the directivity, since the geometry is invariant along one direction, the basic
array element is a filamentary current, and the antenna theory results available in literature
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cannot be directly applied. However, by considering the power radiated per unit plane
angle instead of the unit solid angle, the directivity definition can be adapted to the 2D
case as:

D(θ0) =
|E(θ0)|2

1
2π

∫ π
−π|E(θ)|

2 dθ
, (A2)

Then, by simply substituting (A1) into (A2), one obtains:

D(θ0) =
2πN2

a∫ π
−π ∑Na

m=1 ∑Na
n=1 ejβ[(xm−xn)(sin θ−sin θ0)+(zm−zn)(cos θ−cos θ0)] dθ

. (A3)

By exchanging the integral and summation operations and moving out the constant
term under the integral sign, the latter becomes:

D(θ0) =
2πN2

a

∑Na
m=1 ∑Na

n=1 e−jβ[(xm−xn) sin θ0+(zm−zn) cos θ0]
∫ π
−π ejβ[(xm−xn) sin θ+(zm−zn) cos θ] dθ

.

(A4)
Observing that the phase function of the exponential inside the integral can be inter-

preted as the scalar product between the vector connecting the m-th and the n-th element
and the observing direction, the integral can be recast as:∫ π

−π
ejβ[(xm−xn) sin θ+(zm−zn) cos θ] dθ =

∫ π

−π
ejβdmn cos α dθ, (A5)

where dmn =
√
(xm − xn)

2 + (zm − zn)
2 and α is the angle between the difference vector

and the observation angle direction. Since the integral (A5) is equal to 2πJ0(βdmn) [42], the
directivity finally writes as:

D(θ0) =
N2

a

∑Na
m=1 ∑Na

n=1 e−jβ[(xm−xn) sin θ0+(zm−zn) cos θ0] J0(βdmn)
. (A6)

For a linear array with elements located along the x-axis (φ0 = π/2), since
xm = −a + (m− 1)∆s and zm = 0 ∀m, Equation (A6) becomes:

D(θ0) =
N2

a

∑Na
m=1 ∑Na

n=1 e−jβ(m−n)∆s sinθ0 J0(β(m− n)∆s)
. (A7)

However, a simpler expression can be derived when 2a� λ and θ ∼= θ0. For a linear
array, Equation (A4) reduces to:

D(θ0) =
2πN2

a

∑Na
m=1 ∑Na

n=1 e−jβ(m−n)∆s sin θ0
∫ π
−π ejβ(m−n)∆s sin θdθ

. (A8)

Let us focus, now, on the integral at the denominator. By exploiting the periodicity of
the sine function, the integral is written as:

∫ π

−π
ejβ(m−n)∆s sin θdθ = 2

∫ π/2

−π/2
ejβ(m−n)∆s sin θdθ, (A9)

whereas the introduction of the variable t = sin θ allows recasting it as

2
∫ 1

−1

ejβ(m−n)∆st

cos θ
dt. (A10)
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Since the field in (A1) focuses in the θ0 direction, the main contribution to the integral
comes from direction angles close to θ0. This allows a first approximation to be introduced
into the denominator:

2
cos θ0

∫ 1

−1
ejβ(m−n)∆stdt =

4sinc(β(m− n)∆s)
cos θ0

. (A11)

Accordingly, for a linear array:

D(θ0) '
π

2
N2

a cos θ0

∑Na
m=1 ∑Na

n=1 e−jβ(m−n)∆s sin θ0 sinc(β(m− n)∆s)
. (A12)

When ∆s = λ/2, (A12) becomes

D(θ0) '
Naπ∆ cos θ0

2
, (A13)

which resembles the corresponding 3D case of isotropic point sources.
Instead, if the array has a semi-circumference geometry, the expression of the di-

rectivity cannot be simplified and, taking into account that dmn = 2R sin
(

φn−φm
2

)
, it is

written as:

D(θ0) =
N2

a

∑Na
m=1 ∑Na

n=1 ej2βR sin (θ0−
(n+m)∆φ

2 ) sin (
(n−m)∆φ

2 ) J0

(
2βR sin

(
(n−m)∆φ

2

)) . (A14)
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