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Abstract: This paper present contributions to the state-of-the art for graphics processing unit (GPU-
based) embedded intelligence (EI) research for architectures and applications. This paper gives a
comprehensive review and representative studies of the emerging and current paradigms for GPU-
based EI with the focus on the architecture, technologies and applications: (1) First, the overview and
classifications of GPU-based EI research are presented to give the full spectrum in this area that also
serves as a concise summary of the scope of the paper; (2) Second, various architecture technologies
for GPU-based deep learning techniques and applications are discussed in detail; and (3) Third,
various architecture technologies for machine learning techniques and applications are discussed.
This paper aims to give useful insights for the research area and motivate researchers towards the
development of GPU-based EI for practical deployment and applications.

Keywords: embedded intelligence; GPU; multi-GPU; parallel architecture; machine learning

1. Introduction

Embedded Intelligence (EI) in products or systems gives it the capability to reflect
on its own operational performance. EI requires the use of sensors, communications and
computational processing that are embedded into the product or system to meet specific
operational goals. In recent years, machine learning [1], deep learning [2] and artificial
intelligence (AI) have seen wide adoption across different platforms and impose new
requirements on existing computing systems and architectures. They can exist solely
as software, but in most cases, they require the use of hardware components to build
standalone intelligent machines. This is where the relation between “intelligence” and
embedded systems becomes important. There are different platforms for the deployment
of machine learning, deep learning and AI: (1) Graphics Processing Unit (GPU); (2) Field
Programmable Gate Array (FPGA); (3) Central Processing Unit (CPU); (4) Application
Specific Integrated Circuit (ASIC); and (5) Field Programmable System on Chip (FPSoC).

Over the past few years, advancements in GPU architecture have provided significant
increases in computational power. GPU has hundreds of smaller cores and is designed
for the types of computations used to render lightning-fast graphics. GPUs which were
initially designed as the drivers for video game screen-to-controller responsiveness have
impacted the entire IT industry. As accelerators have been adopted, GPUs have been
extended for a wide range of other applications and are also deployed in high-performance
computing systems to provide powerful computational capability. GPUs have been utilized
to function as hardware accelerators [3] in speeding up training and inference of machine
learning, deep learning and AI. The density of their cores and power efficiency enable
them to meet real-time requirements and the intensive computation challenges of machine
learning, deep learning and AI. Machine learning algorithms have seen wide adoption
across different hardware platforms including GPU, for energy-efficiency, small form-
factor and affordable devices and applications. Modern smartphones include hardware for
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accelerating machine learning algorithms, and software frameworks have been optimized
for embedded platforms, and hardware accelerators are being commoditized such as the
edge Tensor Processing Unit (TPU) [4].

Similarly, GPUs are also widely used to serve the purpose of accelerating deep learning
which has been demonstrated to be an effective tool for many applications. Emerging
deep learning cloud services provided by AI service providers further accelerate the
usage of deep learning in many business-critical processes. Deep learning platforms of
large companies provide customized hardware such as servers, storage and networking
communications to support the processing of high computational workloads. Different
from the above, deep learning in centralized cloud environments incurs longer latency,
energy usage and financial overheads. Research and development platforms have their
own specific features and prefer focusing on cost-effective GPUs for the development
of limited-scale computational clusters to handle diverse deep learning workloads. One
trend can be observed in recently established competitions such as “low-power image
recognition challenge” (LPIRC) [5] where there is a balanced emphasis on performance
accuracy, computational throughput and power consumption. Other evidence is the
increasing trends from major vendors and startups for providing low-power hardware
accelerators for deep learning.

Some current development trends for GPU-based EI are towards: (1) Using lower
precision arithmetic (e.g., from 32 bit to 16 bit representations); (2) Exploiting operations
on sparse matrices (e.g., convolutional neural networks (CNNs) often have many zero
weights which can be exploited with a mechanism termed ZeroSkip [6]). The ZeroSkip
mechanism is discussed further in Section 3.6; and (3) Binary neural networks (BNNs)
which are customized DNNs that use binary representations for weights and activations
values. BNNs are discussed further in Section 3.1. Therefore, embedded intelligence with
deep learning approaches for small and power efficient devices is attractive in several
domains. Some examples of GPU-based EI for real-world domains and applications
with social impacts can be found in predictive systems for disaster early warning and
forecasting management (large-scale water supply systems management [7], simulation
and forecasting for floods [8] and fires [9]) and usage in the electronics industry (circuit
solver for electronic systems with large numbers of components [10]). Further examples of
GPU-based EI applications and domains will be discussed in Sections 3 and 4.

Currently, a comprehensive survey or review for embedded intelligence research
and development on GPU is not available. Most reviews on machine learning, deep
learning or AI do not include or focus on hardware or embedded intelligence. This paper
presents a comprehensive review and several representative studies of the emerging and
current paradigms for embedded intelligence research and development on GPUs with
the focus on the enabling technologies, applications and challenges. The overview and
classifications of embedded intelligence research and development on GPUs are shown in
Table 1. The research works are classified into the various categories: (1) First, the overview
and classifications of GPU-based EI research are presented to show the full spectrum in this
area which also serves as a concise summary of the scope of the paper; (2) Second, various
architecture technologies for deep learning techniques and applications are discussed in
detail; and (3) Third, various architecture technologies for machine learning techniques
and applications are discussed. This paper aims to give useful insights for the research
area and motivate researchers towards the development of GPU-based EI for practical
deployment and applications. The remainder of the paper is as follows. Section 2 presents
the overview and the different classification areas of EI research on GPU. This is followed
by Sections 3 and 4 which give discussions on the GPU-based deep learning and machine
learning techniques and applications. Section 5 concludes the paper.
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Table 1. Classification Descriptors for Embedded Intelligence Research on GPU.

Classification Descriptor References

GPU-based Deep Learning Technologies for EI

Architecture framework and strategy [11–25]

Scheduling and communication [26–29]

Image processing and computer vision [30–40]

Medical or health [41–44]

Modeling or prediction [45–51]

Convolution or performance analysis [6,52–54]

VLSI placement [55]

GPU-based Machine Learning Technologies for EI

Architecture platform [56–65]

Applications [66–77]
GPU: Graphic Process Unit; EI: Embedded Intelligence.

2. Overview and Classifications of EI Research on GPU Architecture

Table 1 gives an overview and classification of EI research on GPU-based architecture
technologies and applications. The table shows the full spectrum in this research area, and
also serves as a concise summary of the scope of the paper. There are two main classification
descriptors which are reviewed and discussed in this paper for EI: (1) GPU-based deep
learning technologies for EI; and (2) GPU-based machine learning technologies for EI. The
classification descriptor for (1) is further divided into seven sub-descriptors (architecture
framework and strategy, scheduling and communication, image processing and computer
vision, medical or health, modeling or prediction, convolution or performance analysis
and VLSI placement). The classification descriptor for (2) is further divided into two sub-
descriptors (architecture platform and applications). The right column in the table shows
the relevant works and references which correspond to the respective sub-descriptors. This
facilitates the rapid searching of the reviewed works for readers.

3. Deep Learning on GPU Architecture

Deep learning approaches and techniques have been proposed and deployed to ad-
dress many real-world problems such as bioinformatics, manufacturing, robotics, computer
vision and natural language processing. Some well-known deep learning models are con-
volutional neural networks (CNNs) (e.g., AlexNet, GoogleNet, etc). Commercial cloud
services offered by large technology companies have expanded the adoption of deep learn-
ing in various business critical processes. Several other deep learning frameworks have
also been proposed such as TensorFlow (from Google), CNTK (from Microsoft) and Caffe
2 (from Facebook) to facilitate the training required for large datasets on GPU-enabled
computational clusters.

3.1. Architecture Framework and Strategy

Ultra-deep neural networks (UDNNs) have been proposed to produce high-quality
models. However, the training process for the UDNN is resource intensive and time-
consuming. This limits the training efficiency of UDNN on modern GPUs due to the
limited DRAM capacity. The authors in [11] proposed a new architecture called AccUDNN
which is an accelerator to optimize the limited GPU memory resources to speed up the
UDNN training. The architecture of AccUDNN consists of several interconnected modules:
(1) The information collector gathers the features and attributes to build the performance
model; (2) The performance model builder analyses the run-time characteristics and be-
havior in terms of computational performance, memory utilization and communication
requirements; (3) The constraint unit develops the conditions that do not lead to perfor-
mance degradation; and (4) The hyperparameter tuner computes the optimal minibatch
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size to meet the efficiency constraints. Their experimental results showed that the proposed
architecture resulted in a reduction of memory requirements for training the ResNet-152
from 24 GB to 8 GB.

The authors in [12] proposed the DeepSpotCloud architecture to execute deep learning
tasks with cost efficiency and fault-tolerance. Figure 1 shows a system architecture of
DeepSpotCloud. There are several important modules in this architecture: (1) The Spot
Instance Orchestrator which executes the tasks for spot price monitoring, recommendation
and arbitration; (2) The Spot Price Monitor which accesses the current GPU spot price; and
(3) The Instance Arbitrator which monitors the running spots to identify the interrupted
tasks. Their experimental results showed significant cost gain with a marginal increase in
the task running time.

Figure 1. (a) DeepSpotCloud architecture and (b) the implementation of DeepSpotCloud [12]. AWS:
Amazon Web Services. (Reprinted with permission from ref. [12]. Copyright 2021 IEEE).
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The authors in [13] proposed a scalable architecture for large-scale DNN training in a
distributed environment. The framework consists of a four-tier technology stack: (1) Hard-
ware infrastructure consisting of Nvidia CUDA GPU cluster and nodes; (2) Nvidia CUDA
drivers; (3) Middleware for HDFS storage and cluster resource management (Apache Flink);
and (4) The application framework which enables the user to manage the storage of huge
amounts of data (GB). The framework also includes the learning pipeline for scaling across
distributed environments, a neural network package and deep architecture builder, GPU
executor, linear algebra library and data format parsers.

A significant challenge for training DNNs such as CNNs is the high amount of compu-
tational resources and memory bandwidth. The design optimization requires the accurate
modelling of how the GPU performance increases with the available computational and
memory resources. The authors in [14] proposed DeLTA which is an analytical GPU model
for CNNs for various parameters (arithmetic performance, memory hierarchy traffic, data
reuse) to optimize computation throughput and memory bandwidth. Their work deployed
two NVIDIA Pascal GPUs (P100 and TITAN Xp) and a Volta GPU (V100) and was validated
on four CNN architectures (AlexNet, VGG, GoogLeNet, ResNet). Their experimental re-
sults showed that the DeLTA architecture could be used for the resource space exploration
and the identification of tradeoffs using various scaling parameters for GPU designs to
meet different design requirements.

The authors in [15] proposed GRAMARCH, a heterogeneous 3D NoC-enabled GPU
and ReRAM (Resistive random-access memory) architecture that exploits the advantages
of ReRAM and GPUs for 3D Network-on-Chip. Figure 2 shows the proposed GRAMARCH
architecture. The GRAMARCH architecture consists of two layers: (1) The bottom layer
contains the GPU and Last Level Cache (LLC) titles, and (2) The top layer contains the
ReRAM for storage and computation, and includes the eDRAM buffers, in-situ multiple-
accumulate units (IMA), output registers, shift-and-add, sigmoid and max-pool units.
Their experimental results showed performance improvement of up to 53 times compared
to conventional GPUs for image segmentation. A further paper by the authors in [16]
proposed an M3D-enabled architecture termed AccuReD, that combined ReRAM arrays
together with GPU cores for training CNNs with high performance and accuracy. Their
experimental results showed that the proposed architecture could accelerate the CNN
training process by up to twelve times compared to conventional GPU platforms.

Figure 2. Proposed GRAMARCH architecture [15]. (Reprinted with permission from ref. [15]. Copy-
right 2021 IEEE). (a) Top view of proposed architecture, (b) Lower logic layer, (c) Upper ReRAM layer,
(d) ReRAM tile, (e) In-situ Multiply Accumulate (IMA) and (f) Stochastic rounding implementation.

The authors in [17] proposed a performance model for an asynchronous SGD deep
learning system called SPRINT on GPU supercomputers. There are two stages in the
training strategy: (1) Computation of cost derivatives, and (2) Addition of derivatives and
current weights for weights updating. In their proposed architecture, the GPU threads



Electronics 2021, 10, 952 6 of 20

process computes the gradient of randomly-picked samples and accumulate them to the
host memory, and the update threads process executes MPI all-reduce to update the weights.
Their experimental results used 192 GPUs and gave an average error of 5% to 19% for
various DCNN architectures to perform image classification tasks on GPU supercomputers.

The authors in [18] proposed the vDNN++ (virtualized DNN) architecture. The
proposed VDNN++ had three main solutions: (1) improved asynchronous transfer; (2)
usage of heuristics to reduce the memory fragmentation; and (3) compression to reduce
the memory footprint. Their experimental results showed that the performance of the
proposed approach (vDNN++) gave an improvement of up to 60% compared with a
previous approach (vDNN).

The authors in [19] proposed an approach for training RNNs (recurrent neural net-
works) on multiple GPUs. Their approach partitions the training data using map-reduce
and batch-bucketing optimization and is distributed among the GPU processes. Their
experimental results validated the approach and compared the approach using a different
number of buckets for a number of performance parameters (clock cycle time, number of
epochs and loss value).

The authors in [20] proposed a pipeline-hybrid parallelism training approach for
training DNNs termed Pipe-Torch. In their approach, they formulated DNN training with
pipeline-hybrid parallelism, and designed an algorithm to map and model the GPU cluster
with a heterogeneous network environment. Their experimental results showed that the
Pipe-Torch architecture and approach gave a 1.4 times performance speedup improvement.

The authors in [21] proposed a combination design of parameter-server and all-reduce
schemes. Their proposed design deploys the asynchronous parameter-server aggregation
for node communications among worker nodes and the synchronous all-reduce method for
aggregation among intranode GPUs. Their experimental results showed that the approach
led to computational performance improvement and increased the resource utilization in
the GPU cluster.

The authors in [22] proposed an architecture to pipeline the training of multiple deep
learning models on a GPU cluster. The dataset is partitioned to be handled by a specific
GPU computation node. In their approach, each computation node uses preloaded data
for training a new model or refining a partially trained model from a previous node. The
authors also proposed a circle-based pipeline where data are distributed at each compu-
tation node. Their experimental results showed that the proposed pipeline architecture
and framework could reduce the overall training time by several hours compared to the
baseline method.

Another significant challenge is for the deployment of DNNs which have high com-
putational complexity on mobile devices with the power and performance constraints. A
solution is to use binary neural networks (BNNs) which are customized DNNs that use
binary representations for weights and activations values. The authors in [23] proposed
PhoneBit, a GPU-accelerated BNN inference engine which can be deployed on Android-
based mobile devices. Their work was validated using BNN variants for DNNs (AlexNet,
YOLOv2 Tiny and VGG16). Their experimental results showed that the PhoneBit gave
significant performance speedup and energy efficiency advantages when compared with
other DNN approaches and deployments on mobile devices.

The authors in [24] proposed a BNN hardware accelerator design. Figure 3 shows
their proposed BNN accelerator design. The architecture consists of many PEs (processing
elements) which can be increased or decreased. The architecture can be scaled by adding
more PEs. The proposed accelerator approach supports the hardware operations to perform
the computations for the BNNs. Figure 4 illustrates the sequences of operations that a
processing element takes to process a BNN layer. Their architecture was implemented on
Aria 10 FPGA and their experimental results showed that the FPGA BNN implementation
gave higher performance efficiency over the CPU (Xeon server) and GPU implementations
(Titan X and TX1).



Electronics 2021, 10, 952 7 of 20

Figure 3. BNN hardware accelerator architecture [24]. (Reprinted with permission from ref. [24].
Copyright 2021 IEEE).

Figure 4. Sequences of operations that a processing element takes to process a BNN layer [24].
(Reprinted with permission from ref. [24]. Copyright 2021 IEEE).

The authors in [25] proposed a power-efficient CNN implementation for FPGAs and
GPUs to accelerate the DNN computations. Their GPU-FPGA approach implemented
a DNN architecture (CNN). It contained six layers (three convolutional layers, two max
pooling layers and one fully-connected softmax activation layer). The DNN architecture
implemented the fully-connected layer on the FPGA and used the GPU for the other
components. Their experimental work used a TX2 GPU (from Nvidia) and a proposed
Artix-7 FPGA (from Xilinx), and showed increased computation speed and decreased
power consumption.
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3.2. Scheduling and Communication

The authors in [26] proposed an approach termed GENIE for dynamic quality of
service (QoS) scheduling for a GPU cluster framework. The GENIE scheduling framework.
contained two sections: (1) Offline profiling and (2) Online scheduling. The offline profiling
section implements the prediction model based on the characterization of workloads,
whereas the online profiling section implements the scheduling strategy based on the QoS
specifications. Their experimental results were conducted on a GPU cluster and showed an
improvement of 67% in comparison with other baseline schedulers.

The authors in [27] studied the communication requirements for DNN training on
GPU and identified hardware approaches to reduce the bandwidth. Their proposed ar-
chitecture focused on utilizing distributed GPU software tools (e.g., CUDA and MPI).
The authors investigated the communication overheads involved in training DNNs for
both weak and strong scaling of training and showed that overlapping could significantly
reduce them. The authors evaluated the performance of these methods on microbench-
marks and end-to-end training using the opensource LBANN deep learning toolkit, and
showed that their approach could improve on existing methods, particularly for larger-scale
DNN implementations.

The authors in [28] modelled broadcast communication schemes and analyzed the
performance of various approaches on GPU clusters. Their work investigated several
different broadcast algorithms (ring, K-nomial and IB-MCAST) on GPU clusters. The
IB-MCAST header is stored in the host (in this case CPU) memory and the GPU data
are collected in a single step via an IB gather operation with the GDR feature enabled.
Their experimental results gave a 68% latency reduction in comparison with other state-of-
the-art methods. The authors in [29] proposed an approach to improve the performance
communications between GPU nodes by reducing the bottlenecks and I/O communications
in CUDA aware MPI runtimes. In this approach, minibatches are further divided into
several sub-minibatches and copied to GPU buffers. Their work was validated on the Cray
CS-Storm cluster and the GPU cluster contained 12 nodes containing 8 NVIDIA K-80 GPUs.
The results showed that their designs gave performance improvements of 23%, 21% and
15% for the CIFAR-10, MNIST and ImageNet datasets, respectively.

3.3. Image Processing and Computer Vision

The authors in [30] proposed a GPU-based framework for training 3D CNNs using
the voxelization of polygonal models. Their approach uses geometric transformations
and vertex displacement computations for data augmentation in the GPU. The authors
framework was tested with the ModelNet10 and ModelNet40 datasets from Princeton. In
their approach, the voxelization was carried out on-the-fly compared with the standard
approach of carrying out the voxelization separately. Their experimental work which was
implemented using C++ with a single-thread implementation showed that their approach
gave higher performance in comparison with the standard method which performs the
voxelization of models separately.

The authors in [31] proposed an efficient GPU-based image target detection approach
using CNNs. Their proposed approach focused on accelerating the high-level detection
and scheduling task and less on accelerating the low-level convolution computations.
Figure 5 shows their proposed approach which consists of three modules: (1) Sliding-
window module—to preprocess the image; (2) parameter-generating module—to perform
the control and generates a combination instruction which is used as input into the CNN
module; and (3) CNN feedforward execution module.
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Figure 5. GPU-based approach for image target detection [31]. (Reprinted with permission from
ref. [31]. Copyright 2021 IEEE).

The authors in [32] presented a GPU-based real-time stereo estimation architecture
termed StereoBit using the BNN (binary neural network) for computation of the disparity
map. Figure 6 shows their proposed approach. Their experiments used a StereoBit network
architecture with four layers. Their experimental results used a TITAN XP GPU and
showed that the framework gave a performance improvement for the stereo computations
(60 fps) and reduced the memory usage for storing parameters.

Figure 6. GPU-based approach for real-time stereo estimation [32]. (Reprinted with permission from ref. [32]. Copyright
2021 IEEE).
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The authors in [33] proposed a hardware/software GPU-based design for an embed-
ded image recognition system. Their proposed GPU-based embedded image recognition
approach used the NVIDIA GPU to accelerate the computations for an immune CNN to
perform the image recognition. Their experimental results showed that the proposed hard-
ware/software system design gave improved recognition performance and computational
speed compared with the traditional approach.

The authors in [34] proposed a real-time face recognition architecture using DNN
on an embedded GPU system. Their face detection system involved tracking faces and
using a CNN to perform the recognition task. The main challenge of the design is the
computational requirements of the CNN when implemented into a hardware platform
with limited computational resources. Their experimental work used a Jetson TX2 which
contains a high-performance processor in a power-efficient design. The authors in [35] also
worked on the image/face recognition. They performed video analysis to identify the face
attributes and to analyze the gender and age features of the customers in business. The face
recognition task was realized using a convolution neural network (CNN) on a hardware
platform utilizing an embedded GPU.

The authors in [36] developed a GPU-based emotion recognition robotic eye for a
service robot. Human emotional states such happy, sad and relaxed were recognized
by a trained deep learning architecture (ConvNet). The robot eye performs two tasks in
the robotic system. Human heads and faces are processed by pretrained haar cascade
classifiers, followed by the recognition of human emotional states by the trained ConvNet.
The authors in [78] proposed a bird species classification system using deep learning
(CNN) on a GPU parallel computing platform. Their approach used the Caltech-UCSD
Birds 200 data set for training the CNN. Their experimental work was performed using
TensorFlow and showed that the DCNN computing platform and implementation could
predict 88% of bird species accurately.

The authors in [37] proposed an embedded GPU cluster computing approach for the
inference of CNN. Their work involved the use of pre-trained CNN models developed
by the U.S. Air Force Research Laboratory. Their experimental platform consisted of six
Jetson TX2 development boards which were operated in parallel. The TX2 development
board cluster was used to perform evaluations for a range of image sizes, tile sizes, tile
overlaps and network configurations. Their experimental results showed that the parallel
GPU cluster computing framework gave a performance increase of 4.3 times. The authors
in [38] applied CNN for the classification of adjective noun pairs on a GPU cluster. Their
approach used the ResNet50 CNN with 50 layers in their experiments that was used to
map a 224 × 224 × 3 image to a 1200-dimensional vector for representing a probability
distribution over the various classes.

The authors in [39] proposed an efficient gradient-based neural architecture search
approach. Their approach represents the search space as a DAG (directed acyclic graph)
which contains multiple sub-graphs. Each sub-graph represents a particular neural ar-
chitecture. The authors used a differentiable sampler over the DAG to avoid the need
for traversing all the sub-graph possibilities. Their experimental work showed that the
approach was computationally efficient and reduced the search cost of the standard ap-
proach by about 104 times. In addition, the CNN and RNN models which were discovered
indicated a competitive performance compared to state-of-the-art models. The authors
in [40] evaluated the reliability of the YOLO object detection framework. In their approach,
they used GPUs designed with various architectures (Pascal, Kepler, Maxwell) for the
detection of objects. The authors also proposed an approach termed the Algorithm-Based
Fault-Tolerance (ABFT) technique for the matrix multiplication kernels of DNNs. Their
experimental work used the Caltech and Visual Object Classes datasets and gave 50–60%
detections and corrections with induced corruptions.
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3.4. Medical or Health

Magnetic resonance imaging (MRI) is popular in modern medicine. To obtain sat-
isfying resolution within a limited scanning time, some fast MRI image reconstruction
algorithms based on parallel imaging such as GRAPPA are used. RAKI is an improved
GRAPPA-like method that reconstructs the under-sampled k-space with estimated point-
spread functions (kernel) in the k-space. In RAKI, kernels are trained by a multi-layer
CNN. However, RAKI reconstruction depends on multiple CNNs and the implementa-
tion of RAKI reconstruction is a time-consuming process. The authors in [41] proposed
accelerated strategies for RAKI implementation aided by GPU parallel programming and
TensorFlow, a popular deep learning framework. In their approach, they limited the it-
eration number of solving optimization problems in the CNN training, while ensuring
a satisfying result. They also parallelized the training tasks by CPU multiprocessing to
maximize the performance by fully utilizing GPU resources to achieve further acceleration.
Their experimental work used two Intel E5–2643 CPUs and a NVIDIA Tesla K80 GPU and
showed that their approach gave more than 60 times performance improvement compared
with the conventional sequential implementation.

Computed tomography (CT) imaging is used for several applications from diagnosis
to health care. The authors in [42] proposed a fast reconstruction technique termed Deep
Learning Model Based Iterative Reconstruction (DL-MBIR). Their proposed DL-MBIR
approach was trained using a 16-layer residual CNN to produce reconstructions that
approximated MBIR images. Their experimental work was implemented using multiple
GPUs (Titan X) and TensorFlow, and showed that the 2.5D reconstruction method achieved
similar quality to the 3D reconstruction at a lower computational cost. Cervical cancer
is a common cancer in women. The authors in [43] proposed an approach to classify the
cervix type using DNN and GPU. Their experimental results used TensorFlow and Keras
models and techniques and a CUDA parallel computing platform. The CUDA architecture
provided a large API for applications.

Birth asphyxia (perinatal asphyxia) is a medical condition characterized by abnormal
breathing patterns in newborn children. The authors in [44] developed a CNN approach to
enable asphyxia to be determined at its early stages. Their approach observed the patterns
in a children’s cries after training the CNN on samples obtained from affected children.
Their experimental work was implemented on NVIDIA DIGITS and gave a classification
accuracy of 94%.

3.5. Modeling, Prediction and Memory

To achieve exascale computing, energy-efficiency is an essential parameter for high-
performance computing systems. The authors in [45] proposed an approach to model
GPU parameters (computational performance, energy and power consumption). Their
work aimed to predict the changes in the computational time and energy consumption
for different scaling and frequencies of various GPU domains. Their approach used the
LSTM recurrent neural model which includes the input of the PTX assembly code of a GPU
kernel. Their experimental work was performed on four GPU architectures (Tesla T4, Titan
V, Titan Xp and GTX Titan X) and achieved energy savings of 8.0% for Tesla T4, 6.0% for
Titan V, 29.0% for Titan Xp and 11.5% for GTX Titan X.

The limited and small GPU memory poses challenges to fit the full model and data
and limits the size of the training model. To improve the efficiency of training a large
deep neural network on a GPU, the authors in [46] proposed a data pinning algorithm
that reduces GPU memory pressure. They also analyzed access patterns of deep learning
computation, formally formulated the GPU data pinning problem, and provided a data
pinning algorithm that reduces the data movement overheads between the CPU memory
and GPU memory. Their technique reduced the GPU memory usage during the backward
phase by performing gradient computation and weight update simultaneously. Their
experimental results used the VGG-19 deep neural network implementation model and
showed improvements over other approaches (e.g., GeePS [47]).
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The authors in [48] proposed an approach for overhead reduction between a host
PC and the GPU method based on data swapping for reducing the memory usage. The
proposed method introduced the virtual layer concept on a GPU. Their experimental
results showed that their approach could reduce memory usage by about 73% and the
training time by about 33% compared with the traditional method. The authors in [49]
proposed a memory management approach for efficient GPU memory utilization. Their
approach reduced the I/O contention among many GPUs by performing an adjustment of
the number of GPUs that can perform swapping operations on a specific layer. The authors
also proposed an intelligent pre-fetching algorithm that operated from the CPU memory to
the GPU. Their experimental results showed that their proposed approach could achieve
high throughput processing while sustaining a large batch size.

The authors in [50] proposed the design and technique for an out-of-core cuDNN
library which enables CNN computations which exceed the size of the GPU memory
capacity. The software stack using out-of-core (OOC) cuDNN includes extensions of some
CUDA functions for memory management. Their approach was validated by computing a
CNN requiring 60 GB memory on a GPU with a capacity of 16 GB physical memory. The
authors in [51] proposed a memory-efficient architecture for GPU termed GPU-only Unified
ConvMM. In their approach, the matrix multiplication convolutional layer is accelerated
using the parallel computational resources of the GPU. Furthermore, a unified memory
architecture is used to optimize the flow of this GPU-only ConvMM layer. The unified
memory (UM) architecture which contains the shared memory for the CPU and GPU. Their
experimental results showed that the performance of the proposed algorithm could be
improved using the GPU implementation because the GPU implementation minimized the
data transfers between host and device and could provide improvements in performance.

3.6. Convolution and Performance Analysis

Convolution operations form a large part of the computational requirements for CNNs.
The authors in [6] targeted to enhance the performance of the state-of-the-art convolution
algorithm (termed Winograd convolution) on the GPU. To address the issue of CNNs often
having many zero weights, they proposed a hardware mechanism (termed ZeroSkip) to
skip the multiplication operations that will give zero results regardless of input data. Their
approach used a customized hardware module in the GPU which would dynamically
check for zero elements and manipulate the program counter (PC) accordingly. Their
experimental results used a Titan X and showed that the ZeroSkip method gave a 51.8%
higher performance than the baseline Winograd convolution.

The use of distributed deep learning (DDL) presents some challenges in terms of
portability and scalability issues. The authors in [52] provided a detailed performance anal-
ysis of distributed TensorFlow using the Horovod framework for scalability under various
runtime parameters. The authors implemented DDL approaches for three architectures
(AlexNet, GoogleNet and ResNet50). Their experimental work used the Nvidia K40, K80
and P100 GPUs. Their testing used synthetic image data with various parameters (e.g.,
batch size and number of GPUs). Their results showed that the Horovod framework gave
linear performance (images/s) for scalability up to 256 GPUs.

The authors in [53] proposed a fault-tolerant approach with soft errors as faults in
the network and introduced triple modular redundancy to detect and rectify the faults.
Their work showed that the presence of faults in the network would cause a significant
decrease in the accuracy of the network. CNNs and other neural networks use activation
functions to introduce nonlinearity into models for the computation of complex functions.
The authors in [54] investigated four activation functions (sigmoid, hyperbolic tangent,
rectified linear unit (ReLU) and exponential linear unit (ELU)) by implementing them
on CNN using a GPU. Their experiments used the Nvidia GPU 940MX for training and
testing of the CNN model. Their work showed that the ReLU activation function had
better performance than the sigmoid and hyperbolic tangent activation functions. Another
observed result was that the ELU had better performance than ReLU.
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3.7. VLSI Placement

Analytical placement techniques represent the current state-of-the-art for VLSI place-
ment with the capability to solve a nonlinear optimization problem. The authors in [55]
proposed a GPU-accelerated placement approach termed DREAMPlace. The DREAMPlace
algorithm implementation used deep learning toolkits which consists of three stacks (low-
level operators, gradient derivation and optimization engines). Their experimental results
showed that their DREAMPlace approach had a performance improvement of thirty times
speedup in global placement compared to other state-of-the-art methods.

4. Machine Learning in GPU Architecture

Machine learning (ML) algorithms have seen wide adoption across different domains
and hardware platforms in recent years. This section describes different types of machine
learning techniques for embedded intelligence on GPUs.

4.1. Architecture/Platform/Framework and Strategy

The authors in [56] proposed a parallel approach termed the H-ELM (hierarchical
extreme learning machine) algorithm based on GPU and Flink which is an in-memory
cluster computing platform. Figure 7 shows the architecture and workflow of H-ELM.
Flink uses Java interfaces to communicate with the GPU. The GFlink architecture is shown
in Figure 8.

Figure 7. H-ELM GPU architecture and workflow [56]. (Reprinted with permission from ref. [56].
Copyright 2021 IEEE).

Figure 8. GFlink: (a) Architecture of a work node, (b) Heterogeneous task management [56].
(Reprinted with permission from ref. [56]. Copyright 2021 IEEE).
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The authors in [57] proposed a GPU architecture which is integrated with the Spark
Big data framework. The HeteroSpark clusters can be visualized as Spark clusters with
GPUs connected with Spark worker nodes. The HeteroSpark architecture approach in-
tegrated the GPU accelerator into the Spark framework to increase data parallelism and
algorithm acceleration. Their experimental work validated the HeteroSpark architecture us-
ing popular machine learning applications, and showed that the HeteroSpark architecture
could achieve a performance improvement of 18 times.

The authors in [58] proposed an efficient GPU-based MapReduce framework to ac-
celerate SVM learning. In their framework, GPUs were deployed to perform the parallel
numerical calculations and MapReduce was used to perform parallel task scheduling
and processing. In their approach, the search task for the SVM is performed in parallel
using the MapReduce computational model. The experimental results showed that their
proposed GPU-based MapReduce framework had significant performance improvements
for SVM learning.

The authors in [59] proposed fast and low precision learning for GPU-accelerated
spiking neural network (SNN) simulator architecture termed ParallelSpikeSim. The Paral-
lelSpikeSim simulator uses unsupervised learning and stochasticity and enables fast and
accurate learning with low precision operations. Their experimental results showed up
to two to three times speedup in learning performance compared to deterministic SNN
architectures for simple and complex datasets.

The authors in [60] proposed an event-based and time-driven SNN simulator for a
hybrid CPU–GPU platform. The authors performed a comparative study for the different
simulation methods (event-driven and time-driven methods) with various simulation
techniques and computational platforms (single-core CPU, multi-core CPU and GPU).
Their experimental work implemented the EDLUT (event-driven neural simulator based
on lookup tables) in CPU/GPU clusters, and their results showed improvements in the
spike propagation and queue management time. The authors in [61] proposed a neural
accelerated architecture for GPUs termed NGPU which enables the scalable integration of
neural accelerators for large numbers of GPU cores. The proposed architecture has three
features for improving performance: (1) elimination of fetch/decode during the neural
execution; (2) reduction of memory/register file accesses by storage of partial results and
parameters in dedicated small buffers within the SIMD lanes; and (3) implementation
of the sigmoid using a lookup table. Their experimental results showed that NGPU had
a 2.4 times average performance improvement speedup and a 2.8 times average energy
reduction for a diverse set of benchmarks.

The authors in [62] proposed a novel machine learning approach to find the optimal
choice of GPU memory requirements for CUDA applications. The workflow of the pro-
posed approach has two phases: (1) Offline learning; and (2) Online inference. The Offline
learning phase used the NSight CUDA Profiler to collect a set of profiling metrics. Their
work investigated various classifiers including the random forest, random tree and Logit-
Boost to identify the classifier which would give the highest accuracy. Their experimental
results showed that the proposed approach was able to predict accurately the optimal
memory requirements for discrete memory or unified memory space.

The authors in [63] proposed a generic sparsity pattern termed Regularized Multi
Block (RMB) sparsity pattern, an efficient storage format (CRMB), and a fast GPU algorithm
for processing the RMBMM (SDMM with the multiplicand having the RMB sparsity
pattern). Figure 9 shows the CRMB storage format for storing an RMB sparse matric. Their
work showed that the RMB sparsity pattern enabled efficient implementations for parallel
algorithms and a reduction in storage for a sparse matrix.
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Figure 9. Regularized Multi Block (RMB) sparsity pattern for GPU memory [63]. (Reprinted with
permission from ref. [63]. Copyright 2021 IEEE).

The authors in [64] proposed an approach to allocate computations on GPU kernels
to optimize the problem parameters (neural structure and training set size) and GPU
parameters. Figure 10 shows the neural model and its mapping into a GPU. They termed
this representation BNL (basic neural layer) with the objective to optimize the computa-
tional speed for a matrix of samples. Their experimental results showed that performance
increases of 100 to 250 times could be achieved by optimizing the number of threads and
the GPU global memory.

Figure 10. BNL neural model and mapping to GPU [64]. (Reprinted with permission from ref. [64].
Copyright 2021 IEEE).

The authors in [65] proposed the implementation of a multichannel HNN (MHNN)
on a GPU platform. Their work used three levels of parallelism (thread, block and stream)
and was designed according to the MHNN-based unmixing procedure. Their experimental
results showed that the GPU implementation gave improvements of several hundred times
compared to the sequential CPU implementation.

4.2. Applications

The authors in [66] proposed an approach to optimize the energy consumption of a
GPU by using dynamic voltage and frequency scaling (DVFS). Their approach implemented
the DVFS energy management model in a GPU. Their experimental results used three
GPU platforms (Tesla, Fermi and Kepler) and showed improvements for performance and
power. The authors in [67] proposed another GPU and memory coordinated energy saving
approach using the ELM termed EDVFS. The EDVFS energy saving approach performs the
voltage and frequency adjustments based on the extracted runtime characteristics. Their
experimental results showed that the EDVFS approach gave a maximum energy savings
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and average energy savings of 10.63% and 2.68%, respectively, when compared to the
traditional DVFS.

The authors in [68] proposed a GPU approach for PLV (phase locking value) biomark-
ers. Their experimental results showed that their approach gave a 21.3 times improvement
from a search space of over 1.2 million and a significant reduction in complexity for on-
device processing. The authors in [69] proposed an approach for an efficient GPU-based
implementation of multivariate empirical mode decomposition (MEMD) for massive neural
data processing. The authors exploited the computational power of GPUs for paralleliz-
ing the MEMD algorithm using CUDA. The parallel MEMD implementation used the
recursive sifting process which is performed until the stopping criterion. Their experi-
mental results showed an improved performance of 6 to 16 times compared to traditional
PC-based implementations.

The authors in [70] explored the usage of GPUs for simulating large-scale neuronal
networks based on the AdEx (Adaptive Exponential) neuron-model. Their approach used
the AdEx with STDP synapses model. Their implementation used the Thrust GPU library to
bypass the expensive host-device memory operations. Their experimental results showed
that the optimized GPU implementation gave a performance improvement of fifty times
when compared to a reference multicore implementation. Furthermore, their work showed
that a dual-GPU configuration could push the acceleration to a speedup of ninety times for
networks of 20,000 neurons.

The authors in [71] proposed a GPU Simulator of MLMVN (multilayer neural net-
work with multi-valued neurons). The MLMVN requires fewer neurons and iterations
for its learning algorithm to optimize a network learning error. Their experimental work
showed that utilizing the massive parallelism of a GPU could give a thirty times perfor-
mance improvement for the MLMVN learning process. The authors in [72] proposed a
novel approach for ECG recognition over GPU platforms using the probabilistic neural
network (PNN). They also studied various features (discrete wavelet transform (DWT),
autoregressive (AR), and wave Statistic) for the PNN. Their experimental results showed
improvements in computational time using a parallel PNN (P-PNN) using CUDA. The
algorithm performance of P-PNN in terms of the recognition rate was also improved
compared to other learning models such as SVM and ELM.

The authors in [73] proposed an approach for fast soma cell detection in knife-edge
scanning microscopy (KESM) for high-throughput imagery using GPU-accelerated machine
learning. Their proposed approach requires few training data and performs real-time cell
detection at a rate that exceeded the data rate of traditional KESM. The authors in [74]
proposed a parallel implementation of chaos neural networks for an embedded GPU
using OpenCL (Open Computing Language). Their experimental results showed that
the parallel CNN approach implemented on an embedded GPU gave a pseudo-random
number generator that was 49% faster than the AES in counter mode.

The authors in [75] proposed an approach to identify abnormal behaviors for anomaly-
based intrusion detection system (IDS). The training and operation of the neural archi-
tecture on GPU are performed in three stages: (1) preparation of initial data; (2) transfer
of data to the CUDA device; and (3) kernel routine and transfer of the result to the host
device. Their experimental results showed that the GPU implementation gave a thirty
times performance improvement compared to a CPU implementation.

The authors in [76] proposed an approach for robot trajectory generation and the com-
putation of collision-free trajectories for robot swarms using GPU. The performance of the
proposed framework was evaluated on two case studies: (1) a swarm of 200 quadcopters
traversing a maze and (2) a fleet of 100 bicycle robots changing their formation. Their
experimental results showed that the proposed method required just seconds to compute
the feasible and collision-free trajectories for the entire swarm. The authors in [77] proposed
the GPU WiSARD Vessel Tracker GWVT which tracked maritime vessels in dynamic envi-
ronments (varying maneuverability, appearance and shape). The GWVT used the WiSARD
weightless neural network and was implemented on a GPU. The parallel processing capa-
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bilities of the GPU enabled fast execution of the tracking algorithm. Their experimental
results showed that the GWVT gave improved performance over a CPU tracker.

5. Conclusions

This paper has given a comprehensive survey of the research area of embedded
intelligence (EI) for GPU-based architectures and hardware implementations. The review
has covered both the newer deep learning approaches and the traditional machine learning
approaches. The area of GPU memory scheduling and communication has also been
included. GPU-based EI applications for several areas including image processing and
computer vision, medical applications, modeling or prediction, convolution or performance
analysis and VLSI placement have also been discussed to demonstrate the wide potential
of these EI technologies for real-world deployments. The paper aims to be useful and
to motivate researchers towards performing increasing research in this emerging and
important technology area.
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