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Abstract: With the concept of Internet-of-Things, autonomous vehicles can provide higher driving
efficiency, traffic safety, and freedom for the driver to perform other tasks. This paper first covers
enabling technology involving a vehicle moving out of parking, traveling on the road, and parking at
the destination. The development of autonomous vehicles relies on the data collected for deployment
in actual road conditions. Research gaps and recommendations for autonomous intelligent vehicles
are included. For example, a sudden obstacle while the autonomous vehicle executes the parking
trajectory on the road is discussed. Several aspects of social problems, such as the liability of an
accident affecting the autonomous vehicle, are described. A smart device to detect abnormal driving
behaviors to prevent possible accidents is briefly discussed.

Keywords: Internet-of-Things; intelligent transport system; fully autonomous vehicle; enabling
technology; social dilemma

1. Introduction

The Internet of Things (IoT) enables billions of intelligent devices with processing,
sensing, and actuating capabilities to connect to the internet and facilitate the sharing and
collaboration of data [1-3]. Such platforms can be applied to smart homes, warning sys-
tems, smart cities, threat identification systems, the automotive field, and mobility [1,2,4].
In the automotive field, IoT allows the development of a vehicle capable of driving au-
tonomously to provide higher driving efficiency, traffic safety, and freedom for the driver to
perform other tasks [5-8]. The driving process can be described as a series of acceleration
changes, direction changes, lane changes, and light changes [9]. To drive without human
intervention, an autonomous vehicle should consider the overall situation [10], which
requires five primary functions: localization, perception, planning, vehicle control, and
system management [11].

The localization module is responsible for estimating vehicle position, and the per-
ception module creates a model of the driving environment from multisensor information-
fused data. Based on localization and perception information, the planning module then
determines the vehicle’s maneuvers for safe navigation. The vehicle control module follows
the planning module’s desired command by controlling the steering, acceleration, and
braking. Finally, the system management module supervises the overall autonomous
driving system [11]. However, the process becomes much more sophisticated when there
are more elements to consider, such as other vehicles, pedestrians, or cyclists on the
road. Therefore, to enable communication between an autonomous vehicle and other
road elements, a vehicle communication system becomes an indispensable and critical
component in an autonomous vehicle. Such communication system is commonly known
as vehicle-to-everything (V2X) communication, which includes several scenarios such as
vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P), and
vehicle-to-network (V2N) [12,13].
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V2V consists of multiple vehicles in which any two vehicles can communicate with
each other [14,15]. Thus, allowing the driver to be aware of other cars’ speed, acceleration
or deceleration, and accidents such as collision and road departure can be avoided [16]. In
contrast, V2I communication allows the vehicle to access the roadside infrastructure for
vast area information dissemination [17]. Services include infotainment delivery, as well
as safety-related information such as speed limits, safe distance warnings, lane-keeping
support, intersection safety, traffic jam warnings, and accident warnings [18]. The idea of
V2P is the exchange of information between a vehicle and a pedestrian through sensors
and smart devices to avoid collision [19-21]. Finally, V2N puts vehicular user equipment
in communication with a server that provides centralized control and traffic, road, and
service information [22]. Therefore, the use of V2X communications coupled with existing
vehicle-sensing capabilities provides the fundamentals for advanced applications targeted
toward road safety, passenger infotainment, manufacturer services, and vehicle traffic
optimization [23,24].

The development of such systems will ultimately rely on the data collected from
actual interaction if they are to be effective when deployed in a real-life situation [25].
For example, machine vision uses image processing to monitor rear vehicles [26] and the
trajectory analysis of surrounding vehicles [27]. Furthermore, historical data are used
to determine the optimal control parameters for maximal fuel efficiency and saving [28].
Without full vehicle autonomy, data collected by in-car sensors can also be used to analyze
driver behavior, which reduces the likelihood of impaired or drowsy driving [29].

There exists literature that has surveyed V2X communication and focused on the area
of network connectivity and security [30-34]. Reviews that focus on other areas related
to the autonomous vehicle have also been presented. Siegel et al. [29] summarized the
state of the art of connected vehicles from the need for vehicle data, applications, enabling
technologies, and challenges. Chen and Englund [35] reviewed cooperative intersection
management where road users, infrastructure, and traffic control centers can communi-
cate and coordinate traffic safely and efficiently. Their paper includes methods for both
signalized and nonsignalized intersections with emphasis on nonsignalized intersections.
Dixit et al. [36] provided a review in the area of autonomous overtaking. The authors
showed that the two essential aspects of high-speed overtaking are vehicle dynamics
and environmental constraints, as well as accurate knowledge of the environment and
surrounding obstacles. Bresson et al. [37] provided a survey on localization techniques
using onboard sensing systems and their combinations with V2V and V2I systems for
autonomous vehicles and investigated their applicability. The authors of [38-40] published
reviews on vehicular cloud computing, which is an extension of mobile cloud comput-
ing based on vehicular networks, and also reviewed several proposed cloud computing
schemes [41-45]. Bousselham et al. [38] focused on applications, cloud formations, key man-
agement, intercloud communication systems, and aspects of privacy and security issues.
Mekki et al. [39] focused on the challenges of vehicular cloud networks. Finally, Boukerche
and De Grande [40] described solutions for vehicular clouds, featuring applications, ser-
vices, and traffic models that can enable vehicular clouds in a more dynamic environment.

Reviews by different authors have focused on a single area. Although Siegel et al. [29]
covered a broader aspect, their review emphasized network connectivity and its application.
Details on the application were very brief. Taking the example of driver monitoring,
Siegel et al. [29] only mentioned applications that could use collected data to monitor
drivers, thus reducing the risk of drowsy drinking. No paper has attempted to provide
an overview of an autonomous vehicle to the best of our knowledge. What separates this
paper from Siegel et al.’s [29] review is that this paper focuses on autonomous vehicle
technologies and provides information on how such technologies can achieve the intended
task. Therefore, the contributions of this paper provide a comprehensive overview of
enabling technologies adopted toward the realization of an autonomous vehicle, followed
by recommendations for identified issues and the identification of missing areas in the
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current literature. It is essential to mention that our focus of the review article is to provide
an overview, and in-depth details of the proposed algorithms are excluded.

2. Advanced Driver-Assistance System

Prior to fully autonomous driving, the technology of advanced driver-assistance
systems (ADASs) is briefly discussed. ADASs can help with monitoring, braking, and
warning tasks to enhance safety conditions on the road. ADASs can perform parking
assistance or monitoring. Connected technologies such as V2X and V2I, streetlights and
traffic information, together with ADASs, can create a safer road for drivers and pedestrians.
As ADASs continue to strive for more benefits, it is known that governments may soon
require vehicles to install essential ADASs and their components over the next few years.
It is necessary to highlight that the ADASs discussed here refer to technology to assist the
driver during driving rather than an autonomously driven car. Current driver-assistance
systems are gradually being equipped with more advanced technology. Most systems
aim to provide parking assistance, forward collision warnings, lane-departure warnings,
adaptive cruise control, and driver drowsiness detection [46].

Parking assistance systems aim to provide safe and comfortable backward parking.
These systems work by reading data such as the magnitude of steering wheel rotation,
speed, and lateral acceleration from the vehicle’s electronic stability control system to
generate the backward parking trajectory. The rear camera then captures the vehicle’s rear
view, and the trajectory is integrated into the view and displayed on the in-car monitor.
Such a reference provides the driver with the information of where the vehicle is heading
and prevents a crash while reversing.

Forward collision avoidance systems are designed to provide the driver with a visual
and audible warning when they are too close to a vehicle ahead [47]. In general, such
systems monitor the vehicle’s speed and the speed of the vehicle in front of it while
measuring the distance between the two vehicles to analyze if there is a risk of collision [48].
Monitoring can be achieved using vision-based sensors, GPS, radar, or LIDAR [49].

Current technology for lane changing focuses primarily on blind-spot identification
and warning [50]. The lane-change assistant recognizes vehicles in the blind spot and
warns the driver when changing lanes [51]. A lane-departure warning system usually
estimates the vehicle’s relative position on the road using a camera to track road markings.
The system then provides an alert to prevent an unintended lane departure using audible,
visual, or haptic steering wheel feedback [52-54]. Such systems have already been rolled out
in several commercial vehicles by Volvo, Mercedes, Audi, BMW, Nissan, and Honda [52,53].

Adaptive cruise control (ACC) is an enhancement of the traditional cruise control (CC)
system that improves driver convenience, reduces driver workload, and has the potential
to improve vehicle safety [55]. Current ACC systems are intelligent systems that control a
vehicle’s acceleration and deceleration to maintain pace with the preceding car or travel at
the desired speed [55,56]. Such systems are achieved with the data collected from onboard
sensors such as an infrared laser, radar, and video sensors [57].

Abnormal driving is usually caused by fatigue, recklessness, and /or drunkenness [58].
A driver with any of these conditions usually exhibits a specific change in behavior or
body movement. When a driver is drowsy, they will usually perform actions such as
rapid and constant blinking, nodding or swinging their head, and frequent yawning [59].
On the other hand, a drunk driver intoxicated by alcohol usually develops the habit of
sudden acceleration or deceleration with a delayed response. Reckless driving is also
similar to drunk driving to a certain degree. The driver may be awake but affected by
emotional factors, thereby exhibiting sudden acceleration or deceleration and violating
the speed limit [58]. Therefore, a driver monitoring system can be achieved by monitoring
the driver directly or indirectly. Direct driver monitoring systems include monitoring
heart rate and driver body movements using different sensors. Indirect driver monitoring
includes analyzing pedal and steering activities and reactions to certain events [60,61].
Upon detecting such abnormal behavior, a warning system will be activated.
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3. The Concepts of Autonomous Driving

The designated purpose of a vehicle is to provide transportation from Point A to Point
B. Therefore, our review will follow the same sequence of a vehicle moving out of a parking
lot/garage, traveling on the road, and parking at the destination.

3.1. Moving Out

On the Internet of Vehicle environment, finding an available parking lot can be
solved [62]. This futuristic parking system provides a car park recommendation for the
driver while taking the driver’s preferences into account [63-65]. Such preferences may
include parking fees, distance from the car park to the destination, driving time from
the current location to the destination, and reservation reliability [64]. Supporting such a
system will require a cooperative network of vehicles, parking lots, and a central server.
The car park will first need to provide the correct occupancy status with the precise location
and then update it into the central server. Once a driver makes a reservation in that
particular car park, information must be updated to the central server. Another possible
solution is to book the parking lot in advance through the use of short message service
(SMS) [66] or an Android application [67].

For an accurate occupancy status, several authors [68-72] have proposed to use image
processing techniques as opposed to using counter-based or sensor-based techniques,
which are relatively higher in cost [73]. Sensors deployed to detect occupancy include a
passive and an active infrared sensor, an ultrasonic sensor, a magnetometer sensor, and a
microwave sensor [74]. Sensors are usually embedded in parking lots to detect the presence
of a vehicle. The idea of using the image processing technique is to first capture the parking
lot’s image using a camera installed in the car park, followed by using an image processing
algorithm to either extract or enhance features in the image. Finally, a classifier is used to
classify the occupancy status. Such a system brings the benefits of saving fuel time, as car
cruising while waiting for an empty lot is reduced, improving the traffic flow in the car
park [75,76]. Furthermore, conflicts between drivers over the rights to the parking lot can
be reduced [77].

3.2. On the Road

While traveling on the road, there are several actions that an autonomous vehicle
would perform, such as lane keeping, lane changing, overtaking, and obeying traffic
rules. For fully autonomous driving, lane keeping is the evolution of a lane-departure
warning system. While the idea of detecting whether a vehicle has drifted into another
lane unintentionally is the same for both systems, the lane-keeping system corrects the
vehicle’s direction to keep it within its lane [78,79]. Early systems corrected vehicle direction
by differential braking. Still, current systems actively control steering to maintain lane
centering [78] by taking the dynamic and kinematics model of the vehicle into consideration
to control the lateral motion of the vehicle [79-84]. Such a system is a great tool to prevent
off-the-road crashes [85]. Studies have shown a significant reduction in driver injury
crashes with cars equipped with such a system compared to cars without this system.

A lane change is described as a maneuver that involves a deliberate and substantial
shift in the lateral position when traveling in the same direction associated with simple
lane change, merge, exit, pass, and weave maneuvers [86]. Such actions will require a
suitable time gap to avoid a frontal collision crash [87]. A lane change is usually carried
out due to the following: (1) to travel at a faster lane and (2) to obstacle avoidance. For an
autonomous vehicle, other than assessing the lane change risk by checking surrounding
vehicles, it should control the vehicle to complete the intended lane change if there is no risk
involved [88]. Information such as the position, velocity, and acceleration of surrounding
vehicles to generate the risk analysis can be based on computer vision systems, such as
those used in lane-departure warning systems, a precise measurement system (inertial
navigation aided by a global navigation satellite system (GNSS) in conjunction with high-
resolution maps) [89] or a V2V communication system [90]. For normal lane changing,
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the collision avoidance problem is formulated as an optimization problem where the time
for completing the lane changing maneuver is minimized by selecting the appropriate
lateral and longitudinal control inputs. After the collection of this information, the vehicle
then computes the trajectory of each neighboring vehicle then compares this with its own
trajectory to determine if any adjacent vehicle poses a safety risk [89]. In an emergency lane-
changing situation such as obstacle avoidance, lateral and longitudinal control inputs are
calculated to minimize the longitudinal distance between the vehicle and the obstacle [91].
In such a scenario, geometric characteristics of obstacles are also taken into consideration
for the planning of trajectory [92]. Finally, steering control would perform the maneuvering
action based on the planned course as closely as possible [92,93]. Such a system will
potentially reduce human errors such as inaccurate estimation of the surrounding traffic or
illegal maneuvers.

The autonomous overtaking procedure consists of a combination of lane keeping and
lane changing. Three consecutive maneuvers could begin with lane changing followed by
traveling on a straight path (lane keeping) parallel to the vehicle to overtake and, again, a
lane change, which has to be planned and coordinated [94]. This procedure can be divided
into two stages. The procedure begins with checking if overtaking can be carried out [95].
Essential factors to consider when performing the maneuvers include the following: a safe
distance to the vehicle to be overtaken; an adequate period for each lane-change maneuver,
accounting for varying road widths; a smooth and comfortable lane-change trajectory;
and safely returning to the original lane or maintaining a safe distance from a vehicle
ahead when the overtaking maneuver cannot be executed [96]. Information of surrounding
vehicles can be obtained as discussed earlier. The second stage is the performing of the
maneuver. The steering control can be achieved through an infrastructure-supported or
autonomous approach. The infrastructure-supported system is based on physically or vir-
tually marked trajectories, usually together with V2V communication. In the autonomous
overtaking process, only onboard sensors are used to determine the relative position and
orientation between vehicles. The vehicle steering control is determined according to the
relative position and orientation concerning the vehicle to overtake. Thus, the overtaking
vehicle accomplishes the maneuver concerning the overtaken vehicle instead of the road.
This system can reduce numerous fatal crashes due to unsafe diversion space from the
original lane, poor visibility when passing a vehicle, or erroneous judgment in returning to
the lane [96].

By using V2I communication and positioning technology, the traffic controller/roadside
infrastructure will have real-time awareness of the number of vehicles, their positions,
and their speeds [97]. The autonomous vehicle will communicate with the traffic con-
troller /roadside where information consists of the right of way [97] and allows planning
of safe trajectory crossing the intersection [98]. A traffic controller communicates with
individual vehicles and assigns specific time slots to pass the intersection after real-time
information processing [99]. The controller functions as a virtual traffic light that can
change at an infinite frequency [99], enabling intelligent traffic signal phase setting, un-
like the current traffic light setting. With the current setting, vehicles are not allowed to
cross the intersection if the light corresponding to their lane is red, even in the absence of
conflicting vehicles [100]. This causes delay, fuel wastage, tailpipe emissions, and passen-
ger frustration [101,102]. In the nonsignalized intersection where there is no traffic light
or other controlling facilities, vehicles first communicate with each other through V2V
communication and negotiate intersection passing. Two categories of solutions can be
adopted to manage such intersections: a cooperative resource reservation and a trajectory
planning approach. The former focuses on scheduling space tiles and time slots requested
by vehicles intending to cross the intersection. In contrast, the latter focuses on the relative
motion between vehicles to determine a safe crossing sequence [103].

To achieve several functions, as discussed early, an autonomous vehicle’s accurate
localization system is required. As classified by Kuutti et al. [6], localization techniques
can be categorized by the mapping approach, the sensor-based approach, and cooperative
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localization techniques. The first method localizes vehicles concerning a reference global or
local map. The sensor-based approach utilizes onboard vehicle sensors to find the global
position of a vehicle in a specified coordinate system. The primary sensors involved are
GPS, inertial motion units (IMUs), cameras, radar, light detection and ranging (LiDAR), and
ultrasonic sensors. In the last method, the localization of vehicles is accomplished through
broadcasting information of their current state. Through V2V and/or V2I communications,
the vehicle can know the surrounding vehicles” exact location.

3.3. Parking

If a reservation is not made in advance, the autonomous vehicle will assist by using
sensors installed to scan for an empty car lot to prevent the driver from driving past an
empty lot. Barnes et al. [104] categorized empty lot detection into seven methods: (1) ultra-
sonic sensor-based, (2) short-range radar sensor-based, (3) image processing, (4) motion
stereo-based method, (5) binocular stereo vision-based method, (6) light stripe projection-
based method, and (7) scanning laser radar-based. Ultrasonic sensors and radar sensors
work in the same way by detecting the distance between the sensor and targeted object
based on the data collected to determine the occupancy status [104-107]. The concept of
image processing is similar to car park monitoring, as discussed earlier. The only difference
is the camera is installed on the vehicle body. Stereo-based methods first construct a 3D
map [108,109] then designate the target position. The light stripe projection-based method
recognizes 3D information by analyzing the light stripe made by a light plane projector
reflected from objects [110].

Finally, after identifying an empty parking lot, the autonomous vehicle completes
the final task by maneuvering itself into the lot. Although there are several different
types of parking lots such as parallel, perpendicular, and fishbone parking [111,112],
autonomous parking usually consists of two steps: (1) optimal path planning and (2) path
following/tracking [112-114]. Using data collected from a combination of sensors, the
optimal path planning algorithm begins by generating a suitable collision-free path from a
given starting point to a required position within the parking lot that satisfies all kinematic
constraints. The parking control scheme then adopts a step-by-step control strategy that
compares the current position and requires the position to choose the steering action at the
current position [115].

Maneuvering a vehicle into a parking spot of limited space is often challenging,
especially for novice drivers, and carries the risk of expensive damage [116,117]. Due to
this problem, novice drivers are reluctant to try parking in smaller lots and cruise around
for another empty lot. This contributes to additional air pollution, fuel consumption, and
congestion [114].

4. Research Gaps in Autonomous Driving

Although the research carried out in the autonomous vehicle area is extensive, several
areas have not been discussed. Firstly, the literature has not yet included a sudden obstacle
while the autonomous vehicle executes the parking trajectory. A child may dash into the
parking lot to retrieve some stuff, or an adult may unknowingly walk into that area. There
is a rear camera for driver reference, and a sensor is installed, which sounds off if it detects
any obstacles behind. However, the driver may not look at the rear camera’s view, or the
sensors may fail to sound off. An autonomous vehicle should stop accordingly if such a
sudden obstacle appears when executing the parking trajectory. However, it should be
smart enough to identify if the obstacle is negligible. For example, if an identified obstacle
is a balloon, the autonomous vehicle should proceed with the parking instead of stopping.

The current literature [118,119] discusses systems catered toward obstacle avoidance.
Funke et al. [119] provided an additional consideration that caters toward pop-up obstacles
such as deer crossing the road. Still, none of the research has discussed how autonomous
vehicles should react to objects falling off a vehicle. Using the example of a heavy vehicle
transporting a pile of iron rods for construction purposes, if such rods fall off the vehicle,
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there is a possibility that the rods pierce the car window and cause fatal injury. Although
the priority of emergency vehicles in intersections has been considered [120], the literature
has not considered giving way to an emergency vehicle.

Future autonomous vehicles must depend not only on internal sensors but also on
the sensors of other vehicles. Measurement data will be shared by means of V2V to enable
better environmental awareness. The fusion of ADAS and smart-lighting infrastructures
can be deployed using radar-camera-based traffic-monitoring devices [121] and low-cost
global navigation satellite system (GNSS) receivers [122], together with microscale traffic
information and other networks [123-126].

5. Possible Social Issues Caused by Autonomous Driving

While autonomous vehicles bring excellent benefits, there are several social issues
that such technology will bring. The first issue is when an autonomous vehicle should
be held liable for an accident, which the insurer should pay, and how much the manufac-
turer/insurer should pay [127-131]. Greenblatt [127] pointed out that such a legal case is
expensive, difficult to determine if a product is safe, and may result in a product recall.
Greenblatt [127] suggested treating an autonomous vehicle with a human driver equally
so that autonomous vehicles would only be at fault only if they conduct negligence acts.
The idea of a vehicle having the same rights as a human may be easier said than done.
Urooj et al. [132] suggested that vehicles can have the same law as the canine law, where
dogs and vehicles are treated as personal possessions under tort law. However, the authors
did not discuss how the law can be applied to autonomous vehicles, and it appears that
much work has to be done before it can be realized. Borenstein et al. [128] argued that
manufacturers should be responsible for their design, as the introduction of such a system
should not degrade road safety, and emphasized that products should undergo vigorous
testing before actual rollout. As seen, the law governing autonomous vehicles is still at an
early stage [133] and requires more work before a consensus between the public and the
manufacturer can be made.

There is also an ethical issue when designing an autonomous system. Fournier [133]
used a variation of Philippa Foot’s trolley problem to illustrate his question. Suppose a
runaway trolley hurtles toward five people on its track. Should an autonomous vehicle
prevent the death of five by actuating a track switch to change the trolley’s course but
causing one to die, or should an autonomous vehicle standby and watch five die [134]?
Another interesting question would be in a lose-lose situation (Case 1: the vehicle would
either crash into a pregnant woman or an ex-criminal; Case 2: the vehicle would crash
into a family of three or a family of five), how should the autonomous vehicle execute
its maneuver? As reported in the news [135], China has plans to introduce a social credit
system where a citizen would be rated according to their behavior. Should an autonomous
vehicle use such a system and implement an ethical choice? While these are difficult choices,
the software must make such ethical choices.

Finally, one should also consider how law enforcement can eliminate the abuse of
such vehicles for criminal activities. Because the car can travel from Point A to Point B
fully autonomously, a drug dealer, for instance, faces a lower risk in the transportation or
distribution of drugs. Even if the car is stopped, the dealer may very well be far away from
the hands of the law.

6. Discussion

With autonomous parking systems, drivers will no longer have to handle such a
difficult task, thereby eliminating any potential damage when maneuvering a vehicle
into a parking lot and improving traffic congestion and fuel efficiency. As mentioned
earlier, the literature has developed concepts based on the full penetration of autonomous
vehicles, which may not happen soon. How an autonomous vehicle should respond to
a reckless driver has not been discussed. Reckless driving includes tailgating, driving in
the opposite direction, speeding, failure to use turning signals, running red lights, and
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failing to yield the right of way. Moreover, researchers have focused on four-wheel-drive
interactions and have not considered interactions between motorcycles and autonomous
vehicles. Motorcyclists have a high risk of fatality if involved in a crash; how the au-
tonomous vehicle should interact with such a transportation mode is a challenge. With
technological advances, modern devices have the capabilities for driving behavior analy-
sis [136] that can help to curb abnormal driving behaviors. Upon the detection of abnormal
driving behavior, the devices can control the lateral motion of a vehicle. With the need to
reduce carbon footprints, the coordination between power grids using different renewable
energy sources [137-142] and electric vehicles has gained much interest. The distribution
network [137] can adapt to load and provide optimal charging/discharging and manage-
ment. In addition, artificial intelligence has greatly increased the efficiency of the existing
research on autonomous vehicles. Hence, autonomous intelligent vehicles are rapidly
growing, involving different subsystems such as electric drives and battery management
systems, including charging/discharging, grid integration, vehicle-to-grid (V2G) services,
and others.

7. Conclusions

In this paper, an overview of autonomous vehicles was discussed. Sensors are the
fundamentals of an autonomous vehicle that allow information collection and dissem-
ination. Such information allows an advanced system for lane keeping, lane changing,
and obstacle detection. However, there are several limiting factors of different sensors.
Image processing techniques could bring down the cost but are vulnerable to weather and
environmental conditions. Therefore, more efforts are needed to lower the high-reliability
sensor cost for mass production or improve the reliability of low-cost sensors. The research
gaps for autonomous intelligent vehicles were also identified. The fusion of advanced
driver-assistance systems (ADASs) and infrastructures increases as technology advances
and road safety becomes the top priority. The social issues caused by autonomous vehicles
show that regulating laws are still at an early stage.

Future work will focus on the cohabitation of autonomous and nonautonomous
vehicles instead of the full penetration of fully autonomous vehicles. The subject of how
driving behavior via mobile apps can optimize (i.e., increase, decrease, or remain) the car
owner’s insurance premium will be studied.
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