
electronics

Article

The Study of Monotonic Core Functions and Their Use to Build
RNS Number Comparators

Mikhail Babenko 1,2,* , Stanislaw J. Piestrak 3 , Nikolay Chervyakov 1 and Maxim Deryabin 4

����������
�������

Citation: Babenko, M.; Piestrak, S.J.;

Chervyakov, N.; Deryabin, M.

The Study of Monotonic Core

Functions and Their Use to Build

RNS Number Comparators.

Electronics 2021, 10, 1041. https://

doi.org/10.3390/electronics10091041

Academic Editor: Alessandro Savino

Received: 17 March 2021

Accepted: 23 April 2021

Published: 28 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computational Mathematics and Cybernetics, North-Caucasus Federal University,
355017 Stavropol, Russia; k-fmf-primath@stavsu.ru

2 Institute for System Programming of the Russian Academy of Sciences, 109004 Moscow, Russia
3 Nanomaterials, Electronic and Living Systems Department, Université de Lorraine, CNRS, IJL,

F-54000 Nancy, France; stanislaw.piestrak@univ-lorraine.fr
4 Computing Platform Lab, Samsung Advanced Institute of Technologies, Suwon 16678, Korea;

max.deriabin@samsung.com
* Correspondence: mgbabenko@ncfu.ru

Abstract: A non-positional residue number system (RNS) enjoys particularly efficient implemen-
tation of addition and multiplication, but non-modular arithmetic operations in RNS-like number
comparison are known to be difficult. In this paper, a new technique for designing comparators
of RNS numbers represented in an arbitrary moduli set is presented. It is based on using the core
function for which it was shown that it must be monotonic to allow for RNS number comparison.
The conditions of the monotonicity of the core function were formulated, which also ensured the min-
imal range of the core function (essential to obtain the best characteristics of the comparator). The best
choice is a core function in which only one coefficient corresponding to the largest modulus is set to 1
whereas all other coefficients are set to 0. It is also shown that the already known diagonal function
is nothing else but the special case of the core function with all coefficients set to 1. Performance
evaluation suggests that the new comparator uses less hardware and in some cases also introduces
smaller delay than its counterparts based on diagonal function. The potential applications of the new
comparator include some recently developed homomorphic encryption algorithms implemented
using RNS.

Keywords: core function; high-speed arithmetic; magnitude comparison; number comparison;
residue number system (RNS)

1. Introduction

Residue number system (RNS) is a non-positional representation of integers whose
main advantage over its traditional positional 2′s complement counterpart is particularly
efficient implementation of the basic arithmetic operations like addition and multipli-
cation, which are executed on shorter operands by parallel independent circuits [1,2].
Unfortunately, non-modular arithmetic operations in RNS like number comparison, sign
and overflow detection are known to be difficult, because they require involvement of all
residues. That execution of these and some other difficult operations does not have to resort
to restore RNS numbers to their positional notation involving cumbersome operations of
finding the remainder of the division by a large and awkward number was first shown
by Akushskii et al. [3]. They introduced the core function whose major advantage is that
it offers the possibility to reduce the range within which the remainder of the division is
calculated and which contains some positional information about an RNS encoded number.
Nevertheless, the main disadvantage of the core function remains that most of non-modular
operations are hard to implement directly [4].

The simplest approach to RNS number comparison relies on converting them to
the positional representations, which are then handled using an ordinary number com-
parator [1]. However, using a reverse converter for RNS number comparison involves

Electronics 2021, 10, 1041. https://doi.org/10.3390/electronics10091041 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7066-0061
https://orcid.org/0000-0003-1248-106X
https://orcid.org/0000-0002-4573-2032
https://orcid.org/0000-0002-6761-3667
https://doi.org/10.3390/electronics10091041
https://doi.org/10.3390/electronics10091041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10091041
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10091041?type=check_update&version=2


Electronics 2021, 10, 1041 2 of 14

computations modulo a very large modulus M, which is both time- and power-consuming.
Nevertheless, as for extra hardware, the latter has the advantage that only the ordinary
a-bit number comparator (a = dlog2 Me) is needed, because any RNS-based processor
must use the reverse converter anyway. Since [3], several attempts to design stand-alone
comparators (for arbitrary RNS moduli sets) using more sophisticated approaches have
been proposed [5–11]. In [5], the algorithm for comparison of signed RNS numbers, based
on using the core function from [3], was proposed. Unfortunately, it requires using a re-
dundant modulus, which must be larger than the range of the core function used. Such
a solution seems impractical due to its cost, because one extra residue datapath channel
must be added just to allow for number comparison (although it can serve to facilitate
execution of some other difficult RNS operations as well). Faster general RNS number
comparators were based on using the diagonal function [6,7] and some monotone functions
proposed in [8], although the latter requires including the modulus of the form 2k. Some
limitations of the comparators of [6,7] were pointed out in [9], and they also apply to those
of [8]. The comparison algorithm suggested in [10], allows one to reduce the maximum
size of modulo addition from M to approximately

√
M, but it suffers from excessive delay

compared to other methods. Finally, a new approach based on the Modified Diagonal
Function (MDF) was proposed recently in [11]. It allows replacing computations modulo
a large and awkward a-bit number M with significantly simpler computations involving
only a power of 2 modulus 2N , although N is always larger than a. The MDF is a kind of
extension of Vu’s approach for sign detection and reverse conversion [12], which also can be
reduced to the computations modulo 2N [13]. The comparator of [11] was shown superior
w.r.t. both area, speed, and power consumption compared to its existing counterparts.

The importance of availability of cost-efficient and fast RNS comparison algorithms
stems from the following observations. Because comparison in RNS has been considered
a complex operation, the most widespread applications of RNS are usually comparison-free.
The potential improvement of the efficiency of RNS comparison techniques can have sig-
nificant impact on novel applications of RNS wherein comparison cannot be avoided.
These include image processing [14], RNS-based convolutional neural networks [15],
and RNS-based error correction codes [16]. However, cryptography and data security
is the most promising emergent and dynamically developing area using RNS to improve
performance of computations involving very large numbers, whose lengths are counted
in thousands of bits. These include integrity verification in RNS-based verifiable secret
sharing schemes [17], RNS-based algorithms in cloud computing and in edge and fog
devices [16,18], and modern post-quantum homomorphic cryptography algorithms based
on algebraic lattices and Ring Learning With Errors (RLWE) assumption, whose execution
can be accelerated using RNS [18–24]. The magnitude comparison is required for integrity
control in [20,22–24]. Because all cryptographic schemes require computations involving
polynomials of very large degree and with very large coefficients, RNS representation of co-
efficients and operands could allow significantly increase processing performance for such
schemes. Nevertheless, in this context using even modulus 2N with N > a might also have
some drawbacks. Although computations modulo 2N are more efficient than modulo any
other modulus, some cryptographic applications like homomorphic encryption algorithms
based on RLWE (requiring comparison of encrypted numbers in RNS) are very sensitive to
memory consumption, which can put executing computations on larger N-bit rather than
a-bit operands on disadvantage. This is because such an approach requires a big amount
of memory to represent ciphertext, the computations modulo 2N could not necessarily
be advantageous (nevertheless, the approach based on the MDF from [11] preserves its
advantages, if applied to implement RNS algorithms involving smaller dynamic range
size). All computations in RLWE-based cryptosystems (both in hardware and software)
are based on some Number-Theoretic Transform (NTT) [18,25], since all ciphertexts are
represented as polynomials in the cyclotomic ring. However, NTT requires representing
numbers in RNS moduli sets composed only of prime numbers, so that involving any
computations modulo 2N could not be supported in general.



Electronics 2021, 10, 1041 3 of 14

In this paper, we will study monotonic core functions and, in particular, their properties
which would make them suitable for efficient RNS number comparison. These newly dis-
covered properties will provide the way for construction of the RNS comparison algorithm
based on the core function with the smallest possible range. The general context is that all
computations of a new function can be assumed as computations in the new RNS in which one
of the moduli of the original RNS is excluded. It could serve as a theoretical basis for NTT-based
cryptographic algorithms requiring the use of prime moduli only, aiming at accelerating such
algorithms as homomorphic comparison of numbers in encrypted form.

The main contributions of this paper are twofold. One is a new systematic design
approach to number comparison in RNS, which is based on the newly defined minimum-
range monotonic core function and which is applicable to an arbitrary general RNS moduli
set. Its major advantage is that its hardware implementation is less complex and in some
cases it could be also faster than any previous similar design. Formulated will be the condi-
tions of the monotonicity of the core function (necessary to execute comparison), which
will also ensure its minimal range (essential to obtain the best characteristics of the com-
parator). The second is our finding that the diagonal function, previously used for number
comparison in RNS and reverse conversion, is actually nothing else but the special case of
the core function with all coefficients set to 1.

This paper is organized as follows. Sections 2 and 3 present the basic properties of
RNS and the core functions, respectively. Section 4 details the theoretical background
of the core functions, allowing for number comparison in RNS. Performance evaluation
and comparison against existing circuits are provided in Section 5. Finally, some conclu-
sions and suggestions for future research are given in Section 6.

2. Properties of RNS

The RNS is defined by the set of n pairwise prime moduli {m1, m2, · · · , mn}, which
are here arranged in the increasing order (i.e., m1 < m2 < · · · < mn). The dynamic range of
this RNS is M = ∏n

i=1 mi, i.e., any a-bit integer X (a = dlog2 Me) such that 0 ≤ X < M can

be uniquely represented in RNS as X = {x1, x2, · · · , xn}, written X RNS−→ {x1, x2, · · · , xn},
where xi = |X|mi

(also written xi = X mod mi) is the ai-bit remainder of an integer division
of X by mi (ai = dlog2 mie).

Let Mi = M/mi. M−1
i , the multiplicative inverse of Mi mod mi (0 < M−1

i < mi)
is such an integer that |M−1

i · Mi|mi = 1. To obtain the number X back from RNS to
the positional form, the Chinese remainder theorem (CRT) can be used [1]

X =

∣∣∣∣(Mi

∣∣∣M−1
i

∣∣∣
mi

)
xi

∣∣∣∣
M

=

∣∣∣∣∣ n

∑
i=1

Bixi

∣∣∣∣∣
M

,
(1)

where the set of n CRT constants defined by

Bi = Mi

∣∣∣M−1
i

∣∣∣
mi

, 1 ≤ i ≤ n, (2)

is called the orthogonal basis [3].

3. Properties of the Core Function

The core function was defined [3] as

C(X) =
n

∑
i=1

ωi

⌊
X
mi

⌋
(3)



Electronics 2021, 10, 1041 4 of 14

or equivalently

C(X) = X
n

∑
i=1

ωi
mi
−

n

∑
i=1

xiωi
mi

, (4)

where ωi, 1 ≤ i ≤ n, are integer constants which can be selected arbitrarily. For a given set
of moduli, the core function can be characterized by:

• the value CM = C(M), which can be selected arbitrarily and usually such that CM � M, and
• its range G = Cmax − Cmin, where Cmax and Cmin are respectively its maximum

and minimum, which occur for some Xmax and Xmin [26].

The main attraction of the core function is that its range can vary and, similarly to CM,
it can be significantly smaller than M. Replacing X by M in Equation (4) yields

CM =
n

∑
i=1

ωi Mi. (5)

Because |Mj|mi = 0 for i 6= j, the constant coefficients ωi can be determined by the equation

ωi ≡
(

CM ·M−1
i

)
mod mi, 1 ≤ i ≤ n. (6)

Note that in Equation (6), which also defines a residue class for each i, 1 ≤ i ≤ n, the
coefficients ωi can assume both positive or negative values.

Now we will show how to obtain a practically useful formula to compute C(X) for

any X. As M RNS−→ {0, 0, · · · , 0}, then setting X = M in Equation (4) yields

CM = M
n

∑
i=1

ωi
mi

. (7)

Because Equation (3) is not practical, the value of C(X) can be calculated by using
remainders of X in the CRT according to Equation (1)

X =
n

∑
i=1

Bixi − αM,

where α = bX/Mc. Substituting this expression in Equation (4) and using Equation (7) leads to

C(X) =
CM
M

(
n

∑
i=1

Bixi − αM

)
−

n

∑
i=1

xiωi
mi

=
n

∑
i=1

xi

(
BiCM

M
− ωi

mi

)
− αCM.

(8)

Then, setting X = Bi into Equation (4) with Bi from Equation (1) leads to

C(Bi) =
BiCM

M
−

n

∑
j=1

∣∣∣∣Mi

∣∣∣M−1
i

∣∣∣
mi

∣∣∣∣
mj

ωj

mj
=

BiCM
M
− ωi

mi
. (9)

Now the most convenient formula for calculating C(X) is obtained by substituting
Equation (9) in Equation (8), which yields

C(X) =

∣∣∣∣∣ n

∑
i=1

xiC(Bi)

∣∣∣∣∣
CM

. (10)



Electronics 2021, 10, 1041 5 of 14

4. Number Comparison Using the Core Function
4.1. Monotonic Properties of the Core Function

It has been shown [5,27] that a core function, generally, is not monotonic. Now we will
determine the necessary conditions for its monotonicity, which would make it useful
for RNS number comparison. First, let us express C(X − 1) as a function of C(X) for
0 < X < M. According to Equations (4) and (7)

C(X) =
XCM

M
−

n

∑
i=1

xiωi
mi

. (11)

Because for any xi, 1 ≤ i ≤ n, the following condition is met:

|xi − 1|mi
=

{
xi − 1, if xi > 0

mi − 1, if xi = 0,

we can substitute X− 1 in Equation (11):

C(X− 1) =
(X− 1)Cm

M
−

n

∑
i=1

|xi − 1|mi
ωi

mi

=
XCM

M
− CM

M
−

n

∑
i=1

xi 6=0

(xi − 1)ωi
mi

−
n

∑
i=1
xi=0

(mi − 1)ωi
mi

=
XCM

M
− CM

M
−

n

∑
i=1

xi 6=0

xiωi
mi
−

n

∑
i=1
xi=0

miωi
mi

+
n

∑
i=1

ωi
mi

.

(12)

Applying Equations (7) and (11) to Equation (12) yields

C(X− 1) =
XCM

M
−

n

∑
i=1

xi 6=0

xiωi
mi
−

n

∑
i=1
xi=0

ωi

= C(X)−
n

∑
i=1
xi=0

ωi.
(13)

In other words, the value of the core function for the preceding value of X (i.e., X− 1) is
equal to the sum of the core function for X (i.e., X− 1) and the sum of all those coefficients ωi
for which xi = |X|mi = 0. The latter observation immediately leads to the following property.

Property 1. The core function is monotonic if and only if all its coefficients ωi are non-negative, 1≤ i≤n.

Thus, Property 1 undeniably limits the design space exploration range to only those
core functions which could be suitable for RNS number comparison.

We will consider two special cases of the core function C(X): (i) with all coefficients
ωi = 1 for 1 ≤ i ≤ n, i.e., {ω1, . . . , ωn−1, ωn} = {1, . . . , 1, 1}; and (ii) with only one coeffi-
cient set to 1, ωn = 1, corresponding to the largest modulus mn,
i.e., {ω1, . . . , ωn−1, ωn} = {0, . . . , 0, 1}.

For {ω1, . . . , ωn−1, ωn} = {1, . . . , 1, 1}, the range of the core function C(X) equals to
CM = ∑n

i=1 Mi, i.e., it is nothing else but the sum of quotients SQ introduced in 1993 [6]
also for number comparison. Consequently, the diagonal function D(X) of [6] is nothing
else but the special case of the core function C(X) with CM = SQ: the fact which has been
unnoticed for several years until now.



Electronics 2021, 10, 1041 6 of 14

For {ω1, . . . , ωn−1, ωn} = {0, . . . , 0, 1} we obtain the monotonic core function with
the minimum range G equal to CM = Mn, which is obtained by setting ωi = 0 for
1 ≤ i ≤ n− 1 and ωn = 1 in Equation (3)

Cmn(X) =

⌊
X

mn

⌋
, (14)

i.e., it is nothing else but the quotient obtained by dividing X by the largest modulus mn
and such that CM is the smallest compared to any other CM = Mi, i < n. Henceforth,
the above function will be called the Minimum-Range Monotonic Core Function (MMCF).

Note that:

• the core function cannot be strictly monotonic because CM < M, hence some other
sufficiently large parameter must be used for comparison to resolve the case of
C(X) = C(Y) for some compared numbers X and Y; and

• for any CM < Mn the number comparison becomes impossible, because Mn is the min-
imal possible range for core functions with ωi ≥ 0 according to Equation (5), so that
the number of combinations available to differentiate numbers is only mn · CM < M.

Finally, we compare our results obtained in this section against those of [8], where
a new class of monotonic functions was proposed for number comparison and residue-to-
binary conversion. A closer look reveals that the function FI(X) proposed in this paper
(where I is a non-empty subset of indices 1 ≤ i ≤ n) is nothing else but the core function
with all coefficients ωi set to 1 for any i ∈ I. Besides, the theory of the functions FI(X)
presented in [8] has the following limitations.

(1) No proof is given that the function FI is indeed monotonic. We have formally proven
(Property 1) that all coefficients ωi must be non-negative to guarantee that any core
function C(X) is monotonic.

(2) It is assumed that one modulus must be even 2k, although no justification for this
assumption is given. For the class of core functions considered here, the set of RNS
moduli can be arbitrary (i.e., all moduli can be odd as well).

(3) No suggestions are given, how to choose the function FI to obtain the most efficient
comparator. We have shown how to construct the MMCF.

4.2. New Comparison Algorithm and Its Hardware Implementation

Because Cmn(X) of Equation (14) can be computed using Equation (10), the compari-
son of RNS integers X and Y can be formally summarized as the following algorithm.

Figure 1 shows the hardware implementation of Algorithm 1. The n-operand modular
adder (MOMA) can be implemented e.g., using the methods of [28,29]. Two ordinary
aMn - and an-bit number comparators (aMn = dlog2 Mne) which work in parallel as shown,
can be designed e.g., according to [30] (pp. 45–47). Obviously, the basic principle of
Algorithm 1 and its hardware implementation are the same as for RNS comparators pro-
posed in [9,11]: they only differ in the modulus used by the n-operand MOMA, which
generates the equivalent representation of compared numbers, sufficient to perform com-
parison. The modulus Mn proposed here is the smallest amongst them and this is the main
contribution here.

Example 1. Consider a sample 3-moduli set {5, 7, 8}. Its dynamic range is M = 280 and two
basic sets of constants are: M1 = 56, M2 = 40, M3 = 35; and |M−1

1 |5 = |56|5 = 1,
|M−1

2 |7 = |40|7 = 3, |M−1
3 |8 = |35|8 = 3. The MMCF is obtained for CM = M3 = 35,

ω1 = ω2 = 0, and ω3 = 1. The extra constants needed for comparison using the core func-
tion with CM = M3 = 35 are: B1 = 56, B2 = 120, B3 = 105, Cmn(B1) = 7, Cmn(B2) = 15,

and Cmn(B3) = 13. Now let us compare two numbers: X = 5 RNS−→ {0, 5, 5} and Y = 6 RNS−→ {1, 6, 6},
for which the core functions are:

Cmn(5) = |0 · 7 + 5 · 15 + 5 · 13|35 = |140|35 = 0
Cmn(6) = |1 · 7 + 6 · 15 + 6 · 13|35 = |175|35 = 0



Electronics 2021, 10, 1041 7 of 14

Obviously, because Cmn(5) = Cmn(6) = 0, the result of comparison of x3 = 5 < y3 = 6 is
needed to conclude comparison.

Algorithm 1: Comparison of RNS numbers using the core function with the min-
imal range.

Input: X RNS−→ {x1, x2, · · · , xn}, Y RNS−→ {y1, y2, · · · , yn}.
Output: (1 0 0) if X < Y, (0 1 0) if X = Y, and (0 0 1) if X > Y.
Step 1. Compute Cmn(X) and Cmn(Y).
Step 2. Compare the values of Cmn(X) and Cmn(Y):

(1) If Cmn(X) < Cmn(Y), then X < Y;
(2) If Cmn(X) > Cmn(Y), then X > Y;
(3) If Cmn(X) = Cmn(Y), then:

(a) if xn < yn, then X < Y;
(b) if xn > yn, then X > Y;
(c) if xn = yn, then X = Y.

Circuit
implementation of
the core function

with the
minimal range

LUT1

...

aMn

a1 an

...

...

LUTn

n-operand MOMA mod Mn

yn

Positional
comparison

aMn

Cmn
(X)Cmn

(Y)
aMn

aMn

Cmn
(X)<Cmn

(Y) Cmn
(X)=Cmn

(Y) Cmn
(X)>Cmn

(Y)

aMn
-bit comparator

xn<yn

an-bit comparator

X<Y X=Y X>Y

xn=yn xn>yn

an an

xn·Cmn
(Bn)x1·Cmn

(B1)

Figure 1. Hardware implementation of residue number system (RNS) numbers comparison
algorithm.

5. Performance Evaluation
5.1. General Analysis

Here, we will compare the new comparators against their most efficient known
counterparts based on the diagonal function [7], the modified diagonal function [11], and
those based on CRT [1]. (Because in [9], it was shown that the CRT-based version Case
(a) of Figure 3.1 in [7] was actually the fastest, we will consider only the latter version for
comparison.) The two latter comparators have similar structures as one proposed here
on Figure 1. The only differences are the following: (i) for the diagonal function and for
the CRT the n-operand MOMA mod SQ and mod M is used, respectively; and (ii) for
the CRT, the positional comparison consists only of a simple a-bit comparator. Because
in all three cases an n-operand MOMA with varying modulus is the main building block,
the impact of the size of the modulus on the hardware complexity will be analyzed, using
the characteristics summarized in Table 1.



Electronics 2021, 10, 1041 8 of 14

Table 1. Parameters of multi-operand modular adders (MOMAs) used in residue number system
(RNS) numbers comparators.

Comparator Type Modulus Operand Size [bits]

CRT-based M = Πn
i=1mi aM = dlog2 Me

Diagonal function SQ = ∑n
i=1 Πn

j=1,j 6=imj aSQ = dlog2 SQe
Modified diagonal function 2N N = dlog2[SQ · (mn − 1)]e

New MMCF Mn = Πn−1
i=1 mi aMn = dlog2 Mne

First, we compare the sizes of operands handled by RNS numbers comparators
built using standard CRT-based implementation and the MMCF. By setting Mn = M/mn
and taking the logarithms of both sides, we obtain log2 Mn = log2 M − log2 mn, which
leads to the following inequality.

aM − dlog2 mne ≤ aMn ≤ aM − blog2 mnc. (15)

In particular, if mn = 2k then aMn = aM − k. Clearly, the bigger is the largest modulus
mn, the relatively shorter are operands of the MOMA (aMn vs. aM) and more hardware
savings ((n− 2) · (aM − aMn) FAs less in the CSA tree alone of the MOMA) are observed
compared to the CRT-based implementation. No savings are observed in the positional
comparison, because the sizes of the a-bit comparator for the CRT and the total size of two
comparators for the MMCF Mn− and an-bit are similar, although the latter requires a few
extra final gates.

To compare the sizes of operands handled by comparators built using the diagonal
function and the MMCF notice the following.

SQ
Mn

=
n

∑
i=1

mn

mi
= 1 + mn

n−1

∑
i=1

1
mi

, (16)

from which we get

log2
SQ
Mn

= log2 SQ− log2 Mn = log2

(
1 + mn

n−1

∑
i=1

1
mi

)
. (17)

From the latter equation we obtain the lower- and upper bounds on the number of
bits saved in our design⌊

log2

(
1 + mn

n−1

∑
i=1

1
mi

)⌋
≤ aSQ − aMn ≤

⌈
log2

(
1 + mn

n−1

∑
i=1

1
mi

)⌉
. (18)

In summary, because n ≥ 2, then obviously SQ = ∑n
i=1 Mi > Mn. The resulting

inequality aMn < aSQ implies the following general observations.

• The MOMA mod Mn operates on shorter operands than the MOMA mod SQ, so
that both internal carry-save adders (CSAs) as well as the final CPAs of the for-
mer are shorter by aSQ − aMn bits: therefore hardware savings in adders are about
n(aSQ − aMn) FAs, i.e., they grow with both the number of moduli n and the size of
the largest modulus mn (see (18)).

• Up to aSQ − aMn less outputs from each of n input look-up tables (LUTs) (usually
implemented using ROMs) imply less area due to connections.

• Selection of the largest modulus mn for extra comparison to resolve the ambiguity,
which occurs if Cmn(X) = Cmn(Y), does not affect the delay of the whole RNS com-
parator, because it can be done in parallel with the comparison of Cmn(X) and Cmn(Y)
(cf. Figure 1).



Electronics 2021, 10, 1041 9 of 14

• Some delay saving can be observed for any moduli set for which dlog2 aMne < dlog2 aSQe,
because all fast carry-propagate adders (CPAs) used by the MOMA mod Mn have
a few gate levels less than their counterparts used by the MOMA mod SQ. Examples
of such RNS moduli sets will be given below.

As for the modified diagonal function, we will see that N is always significantly larger
than aMn , which would make the new RNS comparators of interest for some cryptographic
applications mentioned in the Introduction.

5.2. Complexity Analysis for Sample RNS Moduli Sets

To reveal differences between the sizes of MOMAs used in various RNS number com-
parators (hence, hardware savings) depending on the number of moduli n and the dynamic
range DR, the parameters of several sample RNS moduli sets Sn,i are listed in Table 2
(where n is the number of moduli and i is the number of a particular n-moduli set). To note
that amongst them, the sets S6,1 and S11,1 are the maximal sets of the largest relatively
prime moduli respectively of size ai ≤ 4 and ai ≤ 5.

Table 2. Operand sizes of the MOMAs required to implement comparators for various RNS moduli sets.

n Moduli Set M SQ Mn aM aSQ aMn SQ/Mn N

3 S3,1 = {63, 65, 256} 1,048,320 36,863 4095 20 16 12 9.00 24
S3,2 = {127, 129, 512} 8,388,096 147,455 16,383 23 18 14 9.00 27

4 S4,1 = {7, 15, 17, 64} 114,240 32,441 1785 17 15 11 18.17 21
S4,2 = {15, 17, 31, 64} 505,920 87,713 7905 19 17 13 11.10 23

S4,3 = {63, 65, 127, 512} 266,273,280 10,939,777 520,065 28 24 19 21.03 33
S4,4 = {251, 253, 255, 256} 4.15× 109 65,351,153 16,193,265 32 26 24 4.04 34
S4,5 = {507, 509, 511, 512} 6.75× 1010 529,816,561 131,870,193 36 29 27 4.02 38

5 S5,1 = {5, 7, 9, 11, 13} 45,045 28,009 3465 16 15 12 8.08 19
S5,2 = {5, 7, 9, 11, 16} 55,440 33,673 3465 16 16 12 9.72 19
S5,3 = {5, 7, 9, 11, 31} 107,415 61,993 3465 17 16 12 17.89 21

S5,4 = {7, 15, 17, 31, 32} 1,770,720 587,623 55,335 21 20 16 10.62 25
S5,5 = {7, 15, 17, 31, 64} 3,541,440 1,119,911 55,335 22 21 16 20.24 27

S5,6 = {7, 15, 17, 31, 128} 7,082,880 2,184,487 55,335 23 22 16 39.48 29
S5,7 = {31, 63, 65, 127, 256} 4.13× 109 310,764,191 16,122,015 32 29 24 19.28 37

6 S6,1 = {5, 7, 9, 11, 13, 16} 720,720 493,189 45,045 20 19 16 10.95 23
S6,2 = {5, 7, 9, 11, 13, 32} 1,441,440 941,333 45,045 21 20 16 20.90 25
S6,3 = {7, 9, 11, 13, 16, 17} 2,450,448 1,330,897 144,144 22 21 18 9.23 25
S6,4 = {7, 9, 11, 13, 31, 32} 8,936,928 4,337,167 279,279 24 23 19 15.53 28
S6,5 = {5, 7, 9, 11, 13, 256} 11,531,520 7,215,349 45,045 24 23 16 160.18 31

7 S7,1 = {5, 7, 9, 11, 13, 17, 32} 24,504,480 17,444,101 765,765 25 25 20 22.78 30
S7,2 = {19, 23, 25, 27, 29, 31, 64} 1.70× 1010 4.34× 109 265,182,525 34 33 28 16.35 38

8 S8,1 = {5, 7, 9, 11, 13, 17, 19, 32} 465,585,120 355,942,399 14,549,535 29 29 24 24.46 34

11 S11,1 = {7, 11, 13, 17, 19, 23, 1.55× 1014 8.49× 1013 4.85× 1012 48 47 43 17.51 52
25, 27, 29, 31, 32}

The comparison of the comparators based on the diagonal function against their
CRT-based counterparts reveals the following:

(i) Any significant advantages of the diagonal function aM − aSQ ≥ 4 are observed only
for a few moduli sets which, additionally, are only the smallest moduli sets composed
of n = 3 or 4 moduli: S3,1, S3,2, S4,3, and S4,4.

(ii) For n ≥ 6, the difference (if any) between aM and aSQ becomes insignificant, which
implies that the diagonal function actually does not offer any meaningful advantages
over standard CRT-based implementation of the RNS numbers comparator.

The comparison of the MMCF-based comparators proposed here against their coun-
terparts based on the diagonal function reveals the following:

(i) Should the even modulus mn = 2k be used, for n ≥ 7, at least (k − 1)n FAs are
saved in our design compared to its counterpart based on the diagonal function.
The inspection of the last column SQ/Mn of Table 2 reveals that the upper-bound



Electronics 2021, 10, 1041 10 of 14

on the MOMA operand reduction (cf. Equation (18)) is obtained for most of the sample
RNS moduli sets listed; the cases of lower-bounds are distinguished by italics.

(ii) For all moduli sets for which dlog2 aSQe ≤ dlog2 aMne (marked in bold in the column
of aMn ) the new comparator is also faster, because it requires one stage less circuitry
of the CPA. For instance, for S6,1 the comparator based on the diagonal function uses
the adder mod 493,189 operating on 19-bits, so that the delay of a CPA used is 12 gate
delays; on the other hand, the MMCF-based comparator uses the adder mod 45,045
operating on 16-bits, so that the delay of a CPA used is 8 gate delays.

(iii) Finally, notice that the data of Table 2 show why we failed to find any closed formula
to evaluate the upper-bound of aSQ − aMn , which would be simpler than (18). Should
it depend e.g., on dlog2 mne alone, notice that although for S6,4 = {7, 9, 11, 13, 31, 32}
we have dlog2 m6e = dlog2 32e = 5 and aSQ − aMn = 4 (which is quite close), for
S3,1 = {63, 65, 256} a significant difference occurs: dlog2 m3e = dlog2 256e = 8
and ared = aSQ − aMn = 4.

To convey a reader with some ideas about the size difference between N of their coun-
terparts based on the modified diagonal function [11] and the MMCF-based comparators
proposed here, we have included the last column N in Table 2. The size of the even modu-
lus N used by the modified diagonal function of [11] for all cases considered is significantly
larger than aMn by from 7 up to 15 bits (for S6,5).

5.3. Detailed Complexity Evaluation

Every RNS comparator considered here has the same general structure as shown
in Figure 1, whose basic blocks are:

• L(l, a)—a look-up table of 2l locations with a-bit output word length (with a time
delay denoted tL(l,a));

• MOMA(n, a)—a multi-operand modular adder (MOMA) for n operands with a-bit
word length (with a time delay denoted tMOMA(n,a)); and

• C(a)—a binary comparator of a-bit integers (with a time delay denoted tC(a)).

We have made the following assumptions regarding the basic building blocks and
we will follow the same notation as previously used in [9]. Similarly as in [7,9], the com-
plexity of various implementations is evaluated in terms of the number of bits for look-up
tables (L), the number of full adders (FA), and time delay (TD). To evaluate the time delay,
∆ the delay of a NAND gate is used as a unit, and it is assumed that tFA = tMUX = 2∆
and tXOR = 1∆.

The delay of an l-input a-output look-up table (implemented as Read-Only Memory
(ROM)) (expressed in ∆) can be approximated by using e.g., a formula from [31]

tL(l,a) = 2 + dlog f (l/2)e+ dlog f 2(l/2)e, (19)

for a given maximum fan-in f . In particular, for f = 3, we have tL(l,a) = 5∆ for
4 ≤ a ≤ 6, 7∆ for 7 ≤ a ≤ 9, and 8∆ for 10 ≤ a ≤ 12.

The delay of the fastest available implementations of positional number comparators
like those from [30] (pp. 45–47) is tC(a) = 4∆ for 2 ≤ a ≤ 4, 8∆ for 5 ≤ a ≤ 24, and 12∆
for 25 ≤ a ≤ 120.

The delay of an a-bit carry-look-ahead (CLA) adder [30] is tCLA(a) = 6∆ for a ≤ 8, 8∆
for 9 ≤ a ≤ 16, and 12∆ for 17 ≤ a ≤ 64.

However, unlike in [9], in all complexity evaluations will be used here the same
MOMA from [32], which is actually faster than the MOMA from [28] used in [9], although
at a little hardware cost. For readers’ convenience, its block scheme is detailed here with
delay evaluations in Figure 2. It is seen that the n-operand CSA tree of this MOMA
produces a pair of vectors S and C, which are partitioned into two pairs of the most
significant bits (MSBs) and the least significant bits S = {SH , SL} and C = {CH , CL}
such that max{SL + CL} < M. The actual exact total numbers of the bits in S and C as
well as the upper-bound on the number of MSBs which could make inputs to the MSB



Electronics 2021, 10, 1041 11 of 14

converter (max{hs + hc}) can be found in Table 3. The MSB converter is nothing else but
an L(hs + hc, 2a) look-up table), which generates |SH + CH |M. The delay of the whole
MOMA in which CLAs are used to implement CPAs equals to

tMOMA(n,a) = (θ(n) + 1)tFA + tL(hC+hS ,a) + tXOR + tCPA(a) + tMUX , (20)

where θ(n) denotes the minimal number of stages on a CSA tree that processes n input
operands, for which some sample values are listed in Table 4.

a-bit CPA’

C S

MUX
0           1

a

n-operand CSA Tree

a

a a

a-bit CPA’’

a a

a

-M

a a

Z

CH CL SH SL

hc lc hs ls

R1

C
1 S

1

c’out c"out

C
2

S
2

s’a-1 s"a-1s’0 s"0

a-bit CSA
2

MSB Converter

a-bit CSA
1

...

a

... ...
... ...

X2

a

X1

a

Xn

θ(n)·tFA

tL(hc+hs,a)

tFA

tXOR

tCPA(a)

tMUX

Figure 2. Detailed structure of the n-operand modular adder (MOMA) mod M.

Table 3. Outputs of the n-operand CSA tree of the MOMA from [32].

r S C max{hs + hc}
4 sa . . . s0 ca−1 . . . c0 6

5, 6 sa . . . s0 ca . . . c1 7

7, 8 sa+1 . . . s0 ca . . . c1 8

9÷ 12 sa+1 . . . s0 ca+1 . . . c2 9

13 sa+2 . . . s0 ca+1 . . . c2 10

14÷ 18 sa+2 . . . s0 ca+2 . . . c3 11

Table 4. The minimal number of carry-save adder (CSA) stages θ(k) required by the k-operand MOMA.

k 3 4 5–6 7–9 10–13 14–19 20–28

θ(k) 1 2 3 4 5 6 7

Example 2. Consider the 6-moduli set S6,1 = {5, 7, 9, 11, 13, 16}, which is the maximal set of
the largest relatively prime 4-bit moduli, whose all basic parameters can be found in Table 2. Its



Electronics 2021, 10, 1041 12 of 14

dynamic range M > 220 is sufficient for many DSP applications. We will evaluate performance
of two different comparator versions. Table 5 details the characteristics of all basic blocks used to
build these comparators as well as the delays of the whole comparators. Note that the delay of both
input look-up tables (LUTs) and the MOMA is counted twice, because we assume that for each pair
of compared numbers their positional values or their core functions are computed serially by the
same circuitry.

The delays of the MOMAs to build the comparators using the diagonal function and MMCF
(calculated according to Equation (20)) are respectively as follows:

tMOMA−DF = (θ(6) + 1) · tFA + tL(7,19) + tXOR + tCPA(19) + tMUX = 3 · 2 + 7 + 1 + 12 + 2 = 28

tMOMA−MMCF = (θ(6) + 1) · tFA + tL(7,19) + tXOR + tCPA(16) + tMUX = 3 · 2 + 7 + 1 + 8 + 2 = 24

Clearly, the data of Table 5 show that the new comparator is faster as it introduces smaller
delay by 8∆. It is also less complex as it uses less FAs (27), HAs (3), 2:1 MUXes (3), and the final
comparator shorter by 3 bits.

Table 5. Complexity estimation of comparators for a sample RNS S6,1 = {5, 7, 9, 11, 13, 16}.

Using Diagonal Function [6] New Using MMCF

LUTs 2 L(3, 19), 4 L(4, 19) 2 L(3, 16), 4 L(4, 16)

MOMA CSA Tree 6× 19 = 114 FAs 6× 16 = 96 FAs
MSB Converter L(7, 19) L(7, 16)

2 CSAs 19 FAs + 19 HAs 16 FAs + 16 HAs

2 CPAs 2× 19 = 38 FAs 2× 16 = 32 FAs

MUX 19 2:1 MUXes 16 2:1 MUXes

Comparator C(19 + 3) + 2 C(16) + C(4)

Time delay 2(tL(4,19) + tMOMA−DF) + 10 2(tL(4,16) + tMOMA−MMCF) + 10
= 2(5 + 28) + 10 = 76 = 2(5 + 24) + 10 = 68

In general, smaller delay can be observed for any moduli set for which at least one of
the below conditions holds.

(i) Each of the pair of a-bit CPAs of a MOMA is faster, which occurs if
dlog2 aMne < dlog2 aSQe. Besides the moduli set S6,1 considered above, the inspection
of the columns aSQ and aMn of Table 2 reveals that several other moduli sets meet
this condition.

(ii) A relatively rare case, when the final a-bit comparator is faster, occurs for most cases
of practical interest e.g., if aMn ≤ 24 and aSQ > 24, when the delay is reduced by 4∆.
In Table 2, only the set S8,1 meets this condition.

5.4. Final Remarks

The complexity evaluation and comparison of the new comparators against their most
efficient known counterparts presented in this section allows to formulate the following
conclusions. To allow number comparison, the new comparators based on the MMCF
use the smallest modulus of all circuits considered. As a result, the operands added
by the MOMA are also the shortest. Because the MOMA is the principal contributor to
the complexity of any comparator, the presented complexity analysis proves that the new
comparators are the least complex. There are also indicated some cases, when the new
comparators are also faster than their counterparts. The data presented in Table 2 reveal
significant impact of selecting possibly the largest modulus on improved performance of
new comparators.

To maximally benefit of handling RNS data by a set of independent residue datapath
channels mod mi (1 ≤ i ≤ n), it is desirable that the latter are balanced as much as possible,



Electronics 2021, 10, 1041 13 of 14

i.e., they introduce similar delay and consume similar amount of hardware resources.
Particularly advantageous are moduli sets in which the largest modulus mn is even of
the type 2p. This is because despite the modulus 2p is larger by a few bits than all remaining
odd moduli, the delay and hardware complexity of the residue datapath channel mod
2p could still be comparable to those for the largest odd moduli. The latter has been
already observed for the special moduli sets composed only of low-cost moduli of the form
2k ± 1 and 2p [33–35]. Indeed, here we have shown that selecting an even modulus 2p as
the largest one is also more advantageous to built efficient comparators proposed here and
for arbitrary RNS moduli sets, including those containing other odd moduli than those of
the form 2k ± 1 (at least (p · (n + 1) FAs are saved).

6. Conclusions

In this paper, a new general method for comparison of numbers represented using residue
number system (RNS) was proposed. The method is based on using the core function, for
which it was shown that it must be monotonic and use only non-negative coefficients to be
suitable for RNS number comparison. Formulated were the conditions of the monotonicity
of the core function, which also ensure the minimal range of the core function (essential
to obtain the best characteristics of the comparator). It was found that the Minimum-range
Monotonic Core Function (MMCF) has only one coefficient set to 1 (corresponding to the largest
modulus) whereas all other coefficients are set to 0. It is also shown that the already known
diagonal function, previously suggested to implement RNS numbers comparison and other
RNS non-modular operations, is nothing else but the special case of the core function with
all coefficients set to 1. Performance evaluation suggests that the new comparator uses less
hardware and in some cases also introduces smaller delay than its counterparts based on
diagonal function. It is likely that hardware savings could result in smaller power consumption
as well. Some new previously undisclosed limitations of the diagonal function are also revealed.
The new comparator could be of interest in all applications in which the use of the even
modulus 2N must be excluded to implement comparison, like in some recent cryptographic
applications. We believe that the presented study of the monotonic core functions will deepen
the understanding of their properties and hence will allow to apply the presented theory
to improve implementations of other non-modular RNS operations, thus contributing to
extension of the applicability of RNS in different fields.

Author Contributions: Formal analysis, M.B., M.D. and S.J.P.; funding acquisition, M.B. and M.D.;
investigation, M.B., M.D. and S.J.P.; methodology, S.J.P.; project administration, M.B.; software,
M.D. and S.J.P.; supervision, N.C. and M.B.; validation, M.B. and S.J.P.; writing—original draft,
M.D. and S.J.P.; writing—review and editing, M.B. and S.J.P. All authors have read and agreed to
the published version of the manuscript.

Funding: The research was supported by the Russian Science Foundation Grant No. 19-71-10033.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Szabó, N.S.; Tanaka, R.I. Residue Arithmetic and Its Application to Computer Technology; McGraw-Hill: New York, NY, USA, 1967.
2. Ananda Mohan, P.V. Residue Number Systems: Algorithms and Architectures; Birkhäuser: Basel, Switzerland, 2016.
3. Akushskii, I.J.; Burcev, V.M.; Pak, I.T. A new positional characteristic of non-positional codes and its application. In Coding Theory

and the Optimization of Complex Systems; Amerbaev, V.M., Ed.; Nauka: Alma-Ata, Kazakhstan, 1977. (In Russian)
4. Abtahi, M.; Siy, P. Core function of an RNS number with no ambiguity. Comput. Math. Appl. 2015, 50, 459–470. [CrossRef]
5. Miller, D.D.; Altschul, R.E.; King, J.R.; Polky, J.N. Analysis of the residue class core function of Akushskii, Burcev, and Pak.

In Residue Number System Arithmetic: Modern Applications in Digital Signal Processing (Paper 7–2); Soderstrand, M.A., Jenkins, W.K.,
Jullien, G.A., Taylor, F.J., Eds.; IEEE Press: New York, NY, USA, 1986; pp. 390–401.

6. Dimauro, G.; Impedovo, S.; Pirlo, G. A new technique for fast number comparison in the residue number system. IEEE Trans. Comput.
1993, 42, 608–612. [CrossRef]

7. Dimauro, G.; Impedovo, S.; Pirlo, G.; Salzo, A. RNS architectures for the implementation of the ‘diagonal function’. Inf. Process. Lett.
2000, 73, 189–198. [CrossRef]

http://doi.org/10.1016/j.camwa.2005.03.008
http://dx.doi.org/10.1109/12.223680
http://dx.doi.org/10.1016/S0020-0190(00)00003-X


Electronics 2021, 10, 1041 14 of 14

8. Pirlo, G.; Impedovo, D. A new class of monotone functions of the residue number system. Int. J. Math. Models Methods Appl. Sci.
2013, 7, 802–809.

9. Piestrak, S.J. A note on RNS architectures for the implementation of the diagonal function. Inf. Process. Lett. 2015, 115, 453–457.
[CrossRef]

10. Wang, Y.; Song, X.; Aboulhamid, M. A new algorithm for RNS magnitude comparison based on new Chinese remainder theorem
II. In Proceedings of the Ninth Great Lakes Symposium on VLSI (GLSVLSI), Ypsilanti, MI, USA, 4–6 March 1999; pp. 362–365.

11. Babenko, M.; Deryabin, M.; Piestrak, S.J.; Patronik, P.; Chervyakov, N.; Tchernykh, A.; Avetisyan, A. Design Method of
a High-Speed RNS Number Comparator Based on a Modified Diagonal Function. Electronics 2020, 9, 1784. [CrossRef]

12. Vu, T.V. Efficient implementation of the Chinese remainder theorem for sign detection and residue decoding. IEEE Trans. Comput.
1985, C-34, 646–651.

13. Chervyakov, N.I.; Molahosseini, A.S.; Lyakhov, P.A.; Babenko, M.G.; Deryabin, M.A. Residue-to-binary conversion for general
moduli sets based on approximate Chinese remainder theorem. Int. J. Comput. Math. 2017, 94, 1833–1849. [CrossRef]

14. Chervyakov, N.I.; Lyakhov, P.A. RNS-Based Image Processing. In Embedded Systems Design with Special Arithmetic and Number
Systems; Molahosseini, A.S., de Sousa, L.S., Chang, C.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Chapter 9, pp. 217–245.
[CrossRef]

15. Valueva, M.; Nagornov, N.; Lyakhov, P.; Valuev, G.; Chervyakov, N. Application of the residue number system to reduce hardware
costs of the convolutional neural network implementation. Math. Comput. Simul. 2020, 177, 232–243. [CrossRef]

16. Singh, T. Residue number system for fault detection in communication networks. In Proceedings of the 2014 International Conference on
Medical Imaging, m-Health and Emerging Communication Systems (MedCom), Greater Noida, India, 7–8 November 2014; pp. 157–161.

17. Deryabin, M.; Chervyakov, N.; Tchernykh, A.; Babenko, M.; Kucherov, N.; Miranda-López, V.; Avetisyan, A. Secure verifiable
secret short sharing scheme for multi-cloud storage. In Proceedings of the 2018 International Conference on High Performance
Computing & Simulation (HPCS), Orleans, France, 16–20 July 2018; pp. 700–706.

18. Kim, S.; Lee, K.; Cho, W.; Nam, Y.; Cheon, J.H.; Rutenbar, R.A. Hardware Architecture of a Number Theoretic Transform for
a Bootstrappable RNS-based Homomorphic Encryption Scheme. In Proceedings of the 2020 IEEE 28th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), Fayetteville, AR, USA, 3–6 May 2020; pp. 56–64.
[CrossRef]

19. Mkhinini, A.; Maistri, P.; Leveugle, R.; Tourki, R.; Machhout, M. A flexible RNS-based large polynomial multiplier for Fully
Homomorphic Encryption. In Proceedings of the 2016 11th International Design & Test Symposium (IDT), Hammamet, Tunisia,
18–20 December 2016; pp. 131–136. [CrossRef]

20. Alagic, G.; Dulek, Y.; Schaffner, C.; Speelman, F. Quantum Fully Homomorphic Encryption with Verification. In Proceedings of
the Advances in Cryptology—ASIACRYPT 2017, Hong Kong, China, 3–7 December 2017; Takagi, T., Peyrin, T., Eds.; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 438–467.

21. Cheon, J.H.; Han, K.; Kim, A.; Kim, M.; Song, Y. A Full RNS Variant of Approximate Homomorphic Encryption. In Proceedings
of the Selected Areas in Cryptography—SAC 2018, Calgary, AB, Canada, 15–17 August 2018; Volume 11349, pp. 347–368.

22. Chialva, D.; Dooms, A. Conditionals in Homomorphic Encryption and Machine Learning Applications. arXiv 2019, arXiv:1810.12380.
23. El-Yahyaoui, A.; Ech-Cherif El Kettani, M.D. A Verifiable Fully Homomorphic Encryption Scheme for Cloud Computing Security.

Technologies 2019, 7, 21. [CrossRef]
24. Tan, B.H.M.; Lee, H.T.; Wang, H.; Ren, S.Q.; Khin, A.M.M. Efficient Private Comparison Queries over Encrypted Databases using

Fully Homomorphic Encryption with Finite Fields. IEEE Trans. Dependable Secur. Comput. 2020, 1–15. [CrossRef]
25. Sinha Roy, S.; Turan, F.; Jarvinen, K.; Vercauteren, F.; Verbauwhede, I. FPGA-Based High-Performance Parallel Architecture for

Homomorphic Computing on Encrypted Data. In Proceedings of the 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), Washington, DC, USA, 16–20 February 2019; pp. 387–398. [CrossRef]

26. Burgess, N. Scaled and unscaled residue number system to binary conversion techniques using the core function. In Proceedings
of the 13th IEEE Sympsoium on Computer Arithmetic (ARITH’97), Asilomar, CA, USA, 6–9 July 1997; pp. 250–257. [CrossRef]

27. Gonnella, J. The application of core functions to residue number systems. IEEE Trans. Signal Process. 1991, 39, 69–75. [CrossRef]
28. Piestrak, S.J. Design of residue generators and multioperand modular adders using carry-save adders. IEEE Trans. Comput. 1994, 43, 68–77.

[CrossRef]
29. Piestrak, S.J. A high-speed realization of a residue to binary number system converter. IEEE Trans. Circuits Syst. II 1995, 42, 661–663.

[CrossRef]
30. Hwang, K. Computer Arithmetic: Principles, Architecture and Design; Wiley: New York, NY, USA, 1979.
31. Waser, S.; Flynn, M.J. Introduction to Arithmetic for Digital Systems Designers; Holt, Rinehart and Winston: New York, NY, USA, 1982.
32. Piestrak, S.J. Design of high-speed residue-to-binary number system converter based on Chinese Remainder Theorem. In Proceed-

ings of the 1994 IEEE International Conference on Computer Design: VLSI in Computers and Processors, Cambridge, MA, USA,
10–12 October 1994; pp. 508–511.

33. Conway, R.; Nelson, J. Improved RNS FIR filter architectures. IEEE Trans. Circuits Syst. II 2004, 51, 26–28. [CrossRef]
34. Piestrak, S.J.; Berezowski, K.S. Architecture of efficient RNS-based digital signal processor with very low-level pipelining.

In Proceedings of the IET Irish Signals and Systems Conference (ISSC 2008), Galway, Ireland, 18–19 June 2008; pp. 127–132.
35. Patronik, P.; Piestrak, S.J. Hardware/software approach to designing low-power RNS-enhanced arithmetic units. IEEE Trans.

Circuits Syst. I Reg. Pap. 2017, 64, 1031–1039. [CrossRef]

http://dx.doi.org/10.1016/j.ipl.2014.12.003
http://dx.doi.org/10.3390/electronics9111784
http://dx.doi.org/10.1080/00207160.2016.1247439
http://dx.doi.org/10.1007/978-3-319-49742-6_9
http://dx.doi.org/10.1016/j.matcom.2020.04.031
http://dx.doi.org/10.1109/FCCM48280.2020.00017
http://dx.doi.org/10.1109/IDT.2016.7843028
http://dx.doi.org/10.3390/technologies7010021
http://dx.doi.org/10.1109/TDSC.2020.2967740
http://dx.doi.org/10.1109/HPCA.2019.00052
http://dx.doi.org/10.1109/ARITH.1997.614902
http://dx.doi.org/10.1109/78.80766
http://dx.doi.org/10.1109/12.250610
http://dx.doi.org/10.1109/82.471401
http://dx.doi.org/10.1109/TCSII.2003.821524
http://dx.doi.org/10.1109/TCSI.2017.2669108

	Introduction
	Properties of RNS
	Properties of the Core Function
	Number Comparison Using the Core Function
	Monotonic Properties of the Core Function
	New Comparison Algorithm and Its Hardware Implementation

	Performance Evaluation
	General Analysis
	Complexity Analysis for Sample RNS Moduli Sets
	Detailed Complexity Evaluation
	Final Remarks

	Conclusions
	References

